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ABSTRACT 

An important class of discrete event systems, tandem queue-
ing networks, are considered and formulated as mathemati-
cal programming problems where the constraints represent 
the system dynamics.  The dual of the mathematical pro-
gramming formulation is a network flow problem where the 
longest path equals the makespan of n jobs.  This dual net-
work provides an alternative proof of the reversibility prop-
erty of tandem queueing networks under communication 
blocking.  The approach extends to other systems. 

1 INTRODUCTION 

Schruben (2000) proposed a mapping of discrete event sys-
tem models into mathematical programming formulations, 
where the solutions represent the system trajectories of the 
discrete event systems.  The idea of this mapping is that a 
discrete event system is first modeled as an Event Graph 
(EG) (Schruben 1983), a powerful graphical representation 
for discrete event systems.  Then the constraints of the sys-
tem are derived from the edges of the EG along with the 
feasibility conditions of the state variables.  It should be 
noted that there is another way of representing a discrete 
event system as a mathematical programming formulation 
which is based on a Petri Net Modeling technique (Yen 
1999).  However, since Event Graph Modeling (EGM) 
(Schruben and Schruben 2000) is more general than Petri 
Net Modeling (all Petri Net models can be transformed 
into EGs, but the reverse does not hold.  See Schruben 
2003), our derivation will be based on the EG representa-
tion. Perhaps the first reference on modeling queueing sys-
tem dynamics as network optimization programs can be 
found in Maxwell and Wilson (1981). 

The objective of this paper is two-fold: First, we show 
how the system dynamics of a tandem queueing network 
can be transformed into a set of linear programming (LP) 
constraints by means of EGM.  Second, some properties of 
 
the system are investigated and proved using the linear 
programming formulation.  Among these properties, the 
reversibility property is of special interest. 

Specifically, we study a tandem queueing system with 
m consecutive stages, labeled k = 1,..,m.  In each stage, 
there is a single server and a finite storage space for jobs.  
Job i = 1,..,n is processed at all stages in sequence with 
service times ski.  It is assumed that {(s1i, s2i,…,smi), i = 
1,..,n} are i.i.d.  random variables. 

Since the buffer spaces at each stage are limited, a 
control policy is needed to control the production process 
at the stages.  The most common control policies that have 
been considered in the literature are the communication 
blocking control policy and the production blocking con-
trol policy (Buzacott and Shanthikumar 1993).  In these 
two blocking schemes, a parameter ak is associated with 
each stage, representing the maximum number of jobs at 
the stage at any time of the production process. 

For the single server system, under communication 
blocking, the server at stage k will start processing a job 
whenever these three conditions are satisfied: C1) a job is 
available for processing, C2) the server at stage k is avail-
able, and C3) there is an empty space at the next stage.  Un-
der production blocking, the three conditions are: P1) a job 
is available for processing, P2) the server at stage k is avail-
able, and P3) there is no finished job blocked at stage k. 

The only difference between these two control policies 
is the third condition: In communication blocking, the 
server will check the next stage for an empty buffer space 
before starting a service, therefore it is “blocked before ser-
vice.” On the other hand, in production blocking, the server 
will check the next stage for an empty buffer space after 
finishing processing a job, therefore it is “blocked after 
service”; it may have at most one finished job blocked at 
the stage, which can be considered an additional buffer 
placed at the end of the stage: this makes production block-
ing superior to communication blocking in terms of 
throughput, all else being equal. 
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Cheng (1993) proposed another control policy called 
general blocking, which is an extension to Kanban block-
ing (Buzacott 1989).  In general blocking, there are three 
parameters, ak, bk, and kk, associated with each stage.  They 
are, respectively, the maximum number of jobs waiting and 
in service, the maximum number of finished jobs allowed 
at the stage, and the maximum number of jobs allowed at 
the stage (including the jobs waiting, in service, and fin-
ished).  To rule out triviality, the following conditions are 
necessary: kk ≥ ak ≥ 1, kk ≥ bk ≥ 0, and bk + ak ≥ kk for k = 
1,..,m.  Despite its name, a system becomes more restric-
tive as its number of parameters increases. 

Under general blocking, the server at stage k will start 
processing a job whenever these three conditions are satis-
fied: G1) a job is available for processing, G2) the server at 
stage k is available and G3) there are strictly less than bk 
finished jobs blocked at stage k. 

For all blocking schemes, blocking may happen from 
time to time, complicating the design and performance 
analysis of the system in terms of problem size or diffi-
culty.  In order to facilitate the analysis procedure, much 
research has been done to explore the structural properties 
of the system.  Of particular interest is the well-known re-
versibility property: A tandem queue is said to be reversi-
ble if it has the same throughput as the corresponding re-
versed tandem queueing network (definitions in Section 
3.2).  Therefore, if the system is reversible, then the system 
properties of the original system can be inferred from those 
of the reversed system, thus simplifying the analysis proc-
ess.  Other motivations for studying the reversibility prop-
erty of tandem queueing networks can be found in Chan 
and Schruben (2003). 

The reversibility property of tandem queueing net-
works has been established and proved for communication 
blocking, production blocking (Yamazaki, Sakasegawa, 
and Kawashima 1978, Dattatreya 1978, and Muth 1979), 
as well as general blocking (Cheng 1995).  All these proofs 
are based on the so-called “activity network,” a directed 
graph with arcs representing the time required to process 
jobs in the system.  In this paper, we propose another inter-
esting proof of the reversibility property based on the dual 
network graph (a flow network) derived from the dual of a 
set of linear programming constraints representing the sys-
tem dynamics.  Since our dual graph is a network flow 
graph, algorithms and techniques in the field of network 
flows can now be used in the performance analysis of 
queueing systems: finding the makespan or bottleneck 
server can now be carried out by using the longest path al-
gorithm (see Section 3.1 for details).  Another potential 
application of our dual graph is that it can be used to prove 
the reversibility of multi-server tandem queues.  This will 
be presented in a subsequent paper. 

The paper is organized as follows.  In Section 2, we 
derive the LP formulation of a tandem queueing network 
for communication blocking.  We provide the proof of the 
reversibility property in Section 3.  In Section 4, we re-
mark on some ongoing research and possible future re-
search directions. 

2 MAPPING EVENT GRAPHS TO 
MATHEMATICAL PROGRAMMING 
FORMULATIONS 

In this Section, we derive the LP formulation of a m-stage 
single-server tandem queue under communication block-
ing.  For the derivation of production blocking and general 
blocking, see Chan and Schruben (2003). 

Let TQmC(G/G/Rk/ak), k = 1,..,m, denote a m-stage 
tandem queue with communication blocking, where stage k 
is a G/G/Rk queue with raw job buffer ak.  Figure 1 is an 
example of 3-stage single server tandem queue with a 
communication blocking control policy. 

 

A

st age 1

R1=1
a1=4

B

st age 2

C

st age 3

R2=1
a2=3

R3=1
a3=2  

Figure 1: TQ3C(G/G/1/4, G/G/1/3, G/G/1/2) 
 
To model an m-stage tandem queue with n jobs being proc-
essed as an EG, the following notation is needed: tak is the 
time between the arrival of the i-1th job and the ith job; ski is 
the service time of the ith service at stage k; Aki, Ski, and Fki 
are the time of the ith Arrival event, Start event, and Finish 
event at stage k respectively; Qk(t) is the number of jobs in 
front of stage k at time t; Rk(t) is the number of available 
resources at stage k at time t; ak(t) is the number of avail-
able raw job spaces at stage k at time t; 

{ }
0

( ) lim max ;E iC t i E t
ε

ε
→

= ≤ +  is the right-continuous 

event counting function that counts the number of times 
that event E has occurred by time t (see Schruben 2000 for 
a more detailed definition).  Figure 2 is the EG of 
TQ3C(G/G/1/a1, G/G/1/a2, G/G/1/a3) where R1 = R2 = R3 = 
1.  Notice that a1 is irrelevant because we assume that there 
is an infinite input buffer in front of the first stage. 
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Figure 2: EG of TQ3C(G/G/1/a1, G/G/1/a2, G/G/1/a3) 
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2.1 Derivation of LP  

Formulation for TQ3C(.) 

Following the method given in Schruben (2000) and using 
the Finish event times as the variables, we derive the LP 
formulation for the TQ3C(G/G/1/a1,G/G/1/a2,G/G/1/a3) as 
the following. 

2.1.1 Unconditional Edges: 

In Figure 2, there are six unconditional edges, giving us the 
following six equations. 

 
Edge A1-A1: 1, 1 1i i iA A ta+ = +  (1) 
Edge S1-F1: 1 1i i 1iF S s= +  (2) 
Edge F1-A2: 1i 2iF A=  (3) 
Edge S2-F2:  2 2i i 2iF S s= +  (4) 
Edge F2-A3: 2i 3iF A=  (5) 
Edge S3-F3: 3 3i i 3iF S s= +  (6) 

2.1.2 Conditional Edges: 

There are eight conditional edges and eight state variables.  
The two events associated with the conditional edge have 
only one state variable that gets incremented and decre-
mented between them.  Here, there are eight constraints 
(one constraint corresponds to the feasibility condition of a 
state variable).  The first feasibility condition of the state 
variable Q1 gives us the first constraint derived as follows: 
At any time of the simulation, since Q1 is equal to the 
number of A1 events that have occurred minus the number 
of S1 events that have occurred, it can not be less than zero 
at any time t.  Using the event counts CE(t) defined earlier, 
we have: 
 

  

1 1 1
1 1 1 1
1 1

1 1

( ) ( ) ( ) 0
( ) ( ) 0
( )

A S
A i S i
A i
i i

Q t C t C t
C S C S
C S i
A S

= − ≥
− ≥
≥

≤
 
In the third inequality, we have used the fact that the num-
ber of S1 events that have occurred at time S1i is i.  The last 
inequality is because of the well-known relationship be-
tween an event and its counting point process, 

1 1 1 1( )A i iC S i A S≥ ⇔ ≤ i

1i

 (Ross 1997).  Combining the last 
inequality and equation (2) gives the constraint, 

 
 1 1i iF A s≥ +   
 
Similarly, the feasibility condition of state variable R1 
gives us the next constraint: At any time of the simulation, 
since R1 is equal to the number of F1 events that have oc-
curred minus the number of S1 events that have occurred 
plus 1, it cannot be less than zero at any time t (We add 1 
because it is the original number of available resources at 
stage 1), we have: 

 

  
1 1 1

1 1 1 1
1 1

1, 1 1

( ) 1 ( ) ( ) 0
1 ( ) ( )

( ) 1

F S
F i S i

F i
i i

R t C t C t
C S C S

C S i
F S−

= + − ≥
+ −

≥ −
≤

0≥

1i

 
The third and fourth inequalities are derived in a similar 
manner.  Combining the last inequality and equation (2) 
gives the constraint, 

 
 1 1, 1i iF F −− ≥ s   
 
Using a similar procedure to derive constraints for the 
other state variables, along with the objective of executing 
all events as soon as possible (this objective function en-
sures that the server will work on the jobs as soon as possi-
ble), we end up with the following LP formulation. 

 
TQ3C-LP1: 
 

( )

2

3
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1

1 1 1

1 1, 1 1 1

1 2, 1 2 12

2 1 2 2

2 2, 1 2 2

2 3, 2 3 23

min
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, 2, ..., ( )

, 1, ..., ( )
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n
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i i a i
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i i a i

F F F

st
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=

−

−

−

−

+ +

≥ + =
− ≥ =

− ≥ = +

− ≥ =
− ≥ =

− ≥ = +

∑

3 2 3 3

3 3, 1 3 3

, 1, ..., ( )
, 2, ..., ( )

i i i i

i i i i

F F s i n U
F F s i n V−

− ≥ =
− ≥ =

1i

i

i

U

 
where Uki, Vki, and Wk,k+1,i are the corresponding dual vari-
ables for each constraint. 

2.2 Extension to m-Stage Tandem Queue  
with Communication Blocking 

The LP for 3-stage tandem queue with communication 
blocking is easily extended to an LP for m-stage tandem 
queue.  The third, fourth, and fifth inequalities of TQ3C-
LP1 are equivalent to the necessary and sufficient condi-
tions C1, C2, and C3 introduced in Section 1.  Therefore,  
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the m-stage formulation should be based on these condi-
tions, which leads to: 
 
TQmC-LP1: 
 

1

,
1 1

, 1, ,

, , 1 ,

, 1, 1 , 1

min

.
, 1, .., , 1, ..., ( )

, 1, .., , 2, ..., ( )
, 1, .., 1, 1, ..., ( )

k

m n

k i
k i

k i k i ki k i

k i k i ki k i

k i k i a ki k k k i

F

st
F F s k m i n U

F F s k m i n V
F F s k m i a n W

+

= =

−

−

+ − + +

− ≥ = =

− ≥ = =

− ≥ = − = +

∑∑

,

 
where F0i = A1i, i = 1,..,n.  We can also write the constraints 
as the following: 
 
 { }1, 1, , 1 1,max , ,

kk i k i k i k i a kiF F F F s
+− − + −= +   

 
which is the same as equation 5.38 in Buzacott and Shan-
thikumar (1993). 

2.3 Comparison of Communication  
Blocking and Production Blocking 

Some results given in Buzacott and Shanthikumar (1993) 
can be shown easily using the linear programming formu-
lations (complete proofs are presented in Chan and 
Schruben 2003). 

1. The departure time under communication block-
ing is not less than the departure time under pro-
duction blocking. 
Proof: 
This result is immediate when one compares the 
two linear programs for these systems (see Chan 
and Schruben 2003 for the LP of production 
blocking).      □ 

2. The departure time under production blocking with 
buffer capacities {a1, a2,…, am} is not less than the 
departure time under communication blocking with 
buffer capacities {a1+1, a2+1,…, am+1}. 
Proof: 
This is true because the LP of production blocking 
with buffer capacities {a1, a2,…, am} has more 
constraints than the LP of communication block-
ing with buffer capacities {a1+1, a2+1,…, am+1}, 
all else being equal.      □ 

3. The throughput of the communication blocking 
tandem queue with buffer capacity {a1, a2,…, am} 
is not greater than that of the production blocking 
tandem queue with buffer capacity {a1, a2,…, am}, 
which is, in turn, not greater than that of commu-
nication blocking tandem queue with {a1+1, 
a2+1,…, am+1}. 
Proof: 
The proof is based on the above first and second 
results.    □ 

3 REVERSIBILITY OF TANDEM  
QUEUEING NETWORKS 

The well-known reversibility property of single-server tan-
dem queues has been proven by many researchers using 
different methods.  Many of the proofs are based on a char-
acterization of the activity network associated with the 
queue, see Yamazaki, Sakasegawa, and Kawashima 
(1978), Dattatreya (1978), Muth (1979), Liu and Buzacott 
(1992) and Cheng (1995).  An activity network for a tan-
dem queue is a directed graph, representing the time re-
quired to process n jobs. 

n

In this Section, we propose a dual network graph (a 
flow network) that yields not only the proof of the reversi-
bility but also some important information on the system, 
e.g. the number of jobs in each busy period.  Our dual net-
work is a network flow model derived directly from the 
dual linear programming formulation, not from the activity 
of the system, which makes it fundamentally different from 
the activity networks in the literature.  Because of its 
mathematical form, it can also be used in the performance 
analysis of the queueing system. 

3.1 Dual Network (Flow Network) 

To derive the dual network using the 3-stage communica-
tion blocking tandem queue as an example, we first take 
the dual of TQ3C-LP1.  Since all service times are positive 
(except for a dummy server who has zero service time, 
which actually can be expressed as an empty buffer), all 
the Fki, k = 1,..,m, i = 1,..,n, in the primal are strictly posi-
tive, forcing all the inequality constraints in the dual to be 
equalities.  By examining the structure of the dual, one can 
see that it is, in fact, the network flow problem of finding 
the longest paths from the first node (source) to all other 
nodes (sink), where each constraint represents the flow 
conservation constraint of a node in the network.  Since the 
constraints are equality, summing over all constraints will 
yield the flow balance constraint for the source node, 

.  Therefore, a total of m*n units of flow 

(one unit flow is one Finish event) will be sent from the 
source node to all other m*n sink nodes (one event for each 
sink node). 

11

n
ii

U m
=

= ∗∑
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The dual LP and the dual network of TQ3C-
LP1(G/G/1/•,G/G/1/3,G/G/1/2) are given in the following 
and in Figure 3 respectively: 
 
TQ3C-LP1-Dual: 

 

   

( )
5 5 5

1 1 1 1 1 1 12
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5 5 5
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Figure 3: Dual Network Graph of TQ3C-
LP1(G/G/1/•,G/G/1/3,G/G/1/2) 

 

There are 15 constraints in the dual LP, consequently 
there are 15 sink nodes in the dual graph.  The constraint 
for the source node (node A0) is obtained by summing over 

all 15 constraints, which is .  Graphically, 

node A

5
11

15ii
U

=
=∑

0 generates 15 units of flow and sends them out 
along its 5 incident arcs to nodes s11, s12, s13, s14, and s15.  If 
jobs arrive at the system according to a random process, 
i.e. {A1i, i = 1,..,5}, then the length of each of these 5 arcs 
equals the arrival time of the corresponding job, i.e. the 
length of arc (A0, s13) is A13, the time epoch of the 3rd job’s 
arrival.  If all jobs are waiting at stage 1 when the system 
starts (at time 0), then the length of these five arcs will be 
zero.  In this case, U12, U13, U14, and U15 will be zero and 
U11 will be 15 because the server can only serve one job at 
a time and thus arcs (A0, s12), (A0, s13), (A0, s14), and (A0, 
s15) can be eliminated.  This is important in proving the 
property of reversibility. 

The length of all other arcs equals the service time of 
the corresponding job at that stage, i.e. the length of arc 
(s22, s23) equals s23, the service time of the 3rd job at stage 2.  
This is also true for arcs (s13, s23) and (s31, s23), meaning 
that all arcs that enter the same node have the same length.  
Hence, we can modify the network slightly by letting the 
“length” of each node equal the service time of the corre-
sponding job at that stage, i.e. the “length” of node s23 
equals s23, the service time of the 3rd job at stage 2.  This 
change will facilitate our proof of reversibility later. 

There are three types of flows in the network, Uki, Vki, 
and Wk,k+1,i.  Uki is the flow from stage k to stage k+1; Vkz is 
the flow within stage k; and Wk,k+1,i is the flow from stage 
k+1 back to stage k.  The primal formulation tells us that 
one and only one constraint regarding Fki is binding if there 
is no time tie.  However, if there is a time tie, we can arbi-
trary pick one of the constraints that are blinding (e.g. al-
ways pick the server with the smallest index).  This will 
not change our proof.  Therefore, one and only one of Uki, 
Vki, and Wk,k+1,i is positive. 

The flow of each arc is shown at the end of the arc, i.e. 
W233 is the flow from node s31 to node s23 and its value 
represents the number of tasks (a “task” is finishing proc-
essing a job at one stage, e.g. a job has three tasks in a 3-
stage tandem queue) within the same busy period.  If a ser-
vice time is changed, it may affect several tasks.  For ex-
ample, if W233 = 4, a change in the service time s23 will af-
fect 4 tasks, including the 3rd job itself. 

3.2 Reversibility of Communication  
Blocking Tandem Queues 

We start the proof by giving some definitions related to re-
versibility.  All notation in this Section with a “~” refers to 
the reversed system. 
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3.2.1 Definition 3.1. 

The throughput, TH, of a tandem queueing network is de-
fined as the number of jobs per unit time released from the 

last station in the long run: lim
n mn

n
E F→∞

=
  

TH . 

3.2.2 Definition 3.2. 

Given a tandem queueing network, the corresponding re-
versed tandem queueing network is obtained by reversing 
the order of all stations. 

For communication blocking, since ak is defined as the 
buffer between stage k-1 and stage k plus the one space for 
a job during service, this reversal means , k = 
2,..,m. 

2k ma a + −= k

3.2.3 Definition 3.3. 

A tandem queueing network is said to be reversible if it 
has the same throughput as its corresponding reversed tan-
dem queueing network. 

In the following, we will show that, under job reversal 
( 1 , 1 , 1, .., , 1, ..,ki m k n is s k m i+ − + −= = = n mn), F

)

 is identical to 
Fmn.  So, if the service times {(s1i, s2i,…, smi), i = 1,..,n} are 
i.i.d.  random variables, the completion time of processing 
n jobs in the reversed queue has the same distribution as 
the completion time of processing n jobs in the original 
queue (i.e. Prob( ) Prob(mn mnF x≤ = F ≤ x  for any posi-
tive integer n and real number x), thus the throughputs of 
the two systems are the same and consequently the reversi-
bility property is proved. 

Now assume that, at time 0, there are n jobs waiting 
for processing at stage 1 and there are no jobs at the other 
stages.  Using the argument in Section 3.1, we can elimi-
nate all arcs emanating from A0 except the one that ends at 
node s11.  The dual problem is to find the longest paths 
from node s11 to all other nodes, especially to node s35, 
which is the makespan for processing all jobs and is usu-
ally called the critical path. 

Notice that since exactly one of Uki, Vki, and Wk,k+1,i is 
positive, for each node in the network there is exactly one 
arc with positive flow going into it (the others have zero 
flow), and the longest path from the beginning node to the 
last node is continuous and unique (this can be easily seen if 
one starts from the last node, going backward to the first). 

To show that the queue is reversible, we reverse the 
order of all stages and let the jobs enter the system in the 
reversed order.  This is same as reversing the direction of 
all arrows and letting the jobs enter the system from the 
last node, node s35.  It is obvious that this reversal does not 
change the structure of the network.  The reversed dual 
problem is now to find the longest paths form node s35 to 
all other nodes.  Since the structure of network does not 
change, the longest path from node s35 to node s11 remains 
unchanged.  However the longest paths from s35 to other 
nodes in the reversed network are not the same as the long-
est paths starting from s11 in the original network.  For ex-
ample, the length of the path from node s35 to node s23 in 
the reversed network is not equal to the length of the path 
from node s11 to node s23 in the original network.  But these 
differences do not affect the makespan of processing n 
jobs.  The longest path also reveals the bottleneck servers. 

The fact that the structure of the reversed dual network 
is the same as that of the original dual network can be veri-
fied by reversing the order of stages and the service times 
in formulation TP3C-LP1 (the reversed queue is denoted as 
TQ3CR-LP1(G/G/1/•,G/G/1/3,G/G/1/2), where the “R” 
stands for “Reversed”), taking the dual of it, and drawing 
the dual network graph from that reversed formulation; this 
is also a tandem queue and can be expressed as TQ3C-
LP1(G/G/1/•,G/G/1/2,G/G/1/3).  Figure 4 shows that struc-
ture remains unchanged. 

Therefore, we have , which implies the tan-
dem queue is reversible. 

mn mnF F=
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s25 s24 s23 s21s22

s15 s14 s13 s11s12

s35 s34 s33 s31s32
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s25 s24 s23 s21s22

s15 s14 s13 s11s12

s35 s34 s33 s31s32

U11

U21 U22 U23 U24 U25

U31 U32 U33 U34 U35

U11

U21 U22 U23 U24 U25

U31 U32 U33 U34 U35

V12 V13 V14 V15

V22 V23 V24 V25

V32 V33 V34 V35

V12 V13 V14 V15

V22 V23 V24 V25

V32 V33 V34 V35

W234 W235

W123 W124 W125

W234 W235

W123 W124 W125

 
Figure 4: Dual Network Graph 
of TQ3CR-LP1(G/G/1/•,G/G/1/ 
3,G/G/1/2) 

3.3 Reversibility of Production Blocking  
and General Blocking Tandem Queues 

Cheng (1995) gives a sufficient condition for the reversi-
bility of a general blocking tandem queue, which is the in-
terchangeability of ak and bk (bk = ak).  This condition is 
restrictive.  In Chan and Schruben (2003), the authors ex-
amine the reversibility of production blocking and general 
blocking tandem queues and provide a more relaxed condi-
tion for the reversibility of a general blocking tandem 
queue, which is stated as the following: 

Condition: A general blocking tandem queue is 
reversible if it satisfies the following condition: 

• 

 
 ak – bk = Z,     k = 1,..,m,  



Chan and Schruben 

 
where Z is an arbitrary integer.  This condition implies 
Cheng (1995)’s condition when Z is 0.  The intuitive inter-
pretation of this condition is that, as long as the buffer size 
between stage k-1 and stage k in the reversed queue is 
same as the buffer size between stage m+1-k and stage 
m+2-k in the original queue, the blocking scenario is the 
same and thus the queue is reversible. 

4 CONCLUSION AND EXTENSION 

Although we study only single-server tandem queues here, it 
is possible to extend our LP method to do the performance 
analysis of multi-server tandem queues.  It is a potential tool 
for proving the reversibility of multi-server tandem queues.  
Another possible use of our methodology is to prove the re-
versibility of closed tandem queueing networks. 

While we focus our attention on tandem queueing 
networks, the method given in Section 2 can also be used 
in deriving the mathematical programming formulation for 
other discrete event systems. 

The mathematical programming representation of dis-
crete event systems makes it possible for us to use the 
techniques or algorithms of mathematical programming for 
the analysis of discrete event systems; i.e. when doing a 
simulation of a tandem queue, one may solve the mathe-
matical programming problem, find the bottleneck server, 
and do sensitivity analysis using the dual variables. 
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