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ABSTRACT interest more often. Large deviations theory has been used
to derive a heuristic change of measure for estimating the
Over the last decade, importance sampling has been a pop-probability that the total system size exceeds a given level
ular technique for the efficient estimation of rare event before returning to zero in tandem Jackson networks (see
probabilities. This paper presents an approach for apply- Parekh and Walrand 1989). Théxponential twistingor
ing balanced likelihood ratio importance sampling to the tilting change of measure interchanges the arrival rate and
problem of quantifying the probability that the content of the smallest service rate in the network. This heuristic was
the second buffer in a two node tandem Jackson network later analyzed by Glasserman and Kou (1995) who estab-
reaches some high level before it becomes empty. Heuristic lished necessary and sufficient conditions for the asymptotic
importance sampling distributions are derived that can be efficiency of this importance sampling estimator. More re-
used to estimate this overflow probability in cases where cently, de Boer, Kroese, and Rubinstein (2002) proposed an
the first buffer capacity is finite or infinite. The proposed adaptive importance sampling method that utilizes a mini-
importance sampling distributions differ from previous bal- mum cross-entropy optimization approach to estimate the
anced likelihood ratio methods in that they are specified as overflow probability in three stages by approximating an
functions of the contents of the buffers. Empirical results optimal tilting parameter.
indicate that the relative errors of these importance sampling The balanced likelihood ratio approach to importance
estimators is bounded independent of the buffer size when sampling (see Alexopoulos and Shultes 1998, 2001) was de-
the second server is the bottleneck and is bounded linearly veloped for analyzing system performance in fault-tolerant

in the buffer size otherwise. repairable systems. This approach has been used to derive
importance sampling estimators for limiting system unavail-
1 INTRODUCTION ability and mean time to system failure that yield bounded

relative error. Shultes (2002) applied this approach to es-

The estimation of rare event probabilities has received con- timate the system overflow probability in tandem Jackson
siderable attention over the last decade. Tandem Jacksonnetworks. This method yields a zero variance importance
networks serve as a simplified model for analyzing rare sampling distribution for a single node system. For systems
events in many systems such as switched telecommunicationwith more than one node, this method yields asymptotically
networks, manufacturing systems and computer networks. efficient results with some restrictions on the model param-
System performance measures such as the probability thateters.
the system size or a specific queue length exceeds a given  The rare event studied in this paper is the buffer overflow
level are needed to accurately assess system reliability, par- probability at the second node in a two node tandem Jackson
ticularly the time until one of these events occurs. network. An exponential tilting technique was developed by

Importance sampling is gaining popularity as an ef- Kroese and Nicola to estimate this overflow probability (see
ficient method for analyzing rare events in queueing and Kroese and Nicola 2002). These authors exponentially tilt
reliability systems (see Asmussen and Rubinstein 1995, Hei- a Markov additive process representation of the system to
delberger 1995). The application of importance sampling derive an importance sampling estimator. Their distribution
involves simulating the model using an auxiliary distribu- is state dependent in that it depends on the contents of the
tion designed to make the system experience rare events offirst buffer.
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This paper applies the balanced likelihood ratio ap-
proach to derive an importance sampling distribution for
estimating the overflow probability at the second node in a
two node tandem Jackson network. Like all balanced likeli-
hood ratio methods, the distribution has guaranteed variance
reduction over standard Monte Carlo methods. Unlike the
distributions from Shultes (2002), the proposed distributions
depend on the contents of the buffers and can be applied
to any set of arrival and service rates. A complete proof
of optimality is not available at this time, but numerical
results suggest asymptotic efficiency.

Section 2 presents the model studied and provides an
overview of importance sampling and the balanced likeli-
hood ratio approach. Section 3.1 and 3.2 provide details of
the proposed method for the infinite and finite first buffer
cases respectively. Section 4 contains experimental results.
Conclusions and future research directions are presented in
Section 5.

2 BACKGROUND

Consider a tandem Jackson network with two nodes. Cus-

tomers arrive at the first queue according to a Poisson process

with rateA.The service time of a customer at the first node is
exponential with ratec1, independent of the input process

and service times at the second node. The output process of

the first queue forms the input process of the second queue.
The service time at the second node is exponential with
rate s, which is also independent of the input process and
service times at the first node. Without loss of generality,
assume that + 1 + u2 = 1. The queueing system is
assumed to be stable, i.e..< min(u1, ©2).

Let X(t) andY (t) denote the number of customers at
the first and second node at tinherespectively (including
customersin service). Lbtdenote the size of the first buffer,
which may be finite or infinite. The quantity of interestis the
probability (y) that the number of customers in the second
gueue reaches some high leek IN before hitting 0. We
wish to estimate this probability given that the system starts
in state(X(0) =0,Y(0) =0) or (X(0) =1,Y(0) = 1.
These probabilities are denotedjgsand y1 respectively.

The system can be modeled as a Markov process with
system stateZ (t) = (X (1), Y(t)). Let

r)y=2+1(X{t) >0 u1+1(Y{) >0 uz

denote the total rate of event transitions outZit). The
probability that a buffer overflow is observed depends upon
the embedded discrete-time Markov chain whose one-step
transition probabilities at time are: A/r (t) the probability

the next event is an arrival,(X (t) > 0) u1/r (t) the prob-
ability that the next event is a service completion at node
one, and XY (t) > 0) uz/r (t) the probability that the next
event is a service completion at node two.
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2.1 Importance Sampling

Let @2 denote the set of all cycles and for easte €, let
B(w) denote the largest number of customers at the second
node within the cycle. The probabilitl? (w) of observing

the cyclew is the product of one-step transition probabilities.
A new distributionP’ is defined using importance sampling,
such thatP(w) > 0 = P’(w) > 0 and

P(w) /
y = 1(B(w) = B) —P'()
a%;z P/(w)
= Y 1(8(®) = B)L()P ()
we

where the likelihood ratiol (w) is the Radon-Nikodym
derivative of P with respect toP’. The likelihood ratio

L (w) can be decomposed into a product of one-step transition
event likelihood ratiosissociated with each individual event
within the cycle.

2.1.1 Asymptotic Properties

The asymptotic efficiency of an estimator can be measured
using the relative error of the estimated quantity. Relative
error is defined as the ratio of the standard deviation of
the estimator over its expected value. The estimator yields
bounded relative erroif the relative error remains bounded

as the quantity to be estimated approaches zero. This means
that, the sample size required to achieve a desired level of ac-
curacy remains bounded in the limit. An estimator is said to
beasymptotically efficientthe relative error grows at a sub-
exponential rate as the quantity to be estimated approaches
zero. For importance sampling estimators, bounded relative
error implies asymptotic efficiency.

2.1.2 Variance Reduction Ratio

To compare the performance of two importance sampling
estimators, we need to take into account variance reduc-
tion and the computational effort required to achieve that
reduction. The variance reduction ratio (VRR) measures
the trade-off between variance reduction and the associated
computational cost. VRRs are computed by multiplying a
ratio of the variances of two estimators by a ratio of the
corresponding computational effort, i.e., simulation time or
number of events sampled to generate that variance. Typi-
cally, VRRs are estimated empirically by simulation. If the
VRR is less than one, then the approach in the numerator
is more efficient and a VRR greater than one implies that
the approach in the denominator is more efficient.
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2.2 Balanced Likelihood Ratio Approaches erality, the importance sampling distributions are described
for the starting state (0,0).
The proposed importance sampling method is based on Customer arrival events and service completion events
the balanced likelihood ratio approach. This approach was at the first node generate event likelihood ratios denoted
originally proposed to estimate the reliability of fault-tolerant by la andls respectively. These event likelihood ratios are
repairable systems (see Alexopoulos and Shultes 2001) andused as multipliers for biasing the probability of service
was later adapted to estimate system overflow probabilities completion at the second node. The importance sampling
in tandem-Jackson networks (see Shultes 2002). A key distribution is formed such that the content of the second
feature of this approach is that likelihood ratios associated buffer reaches the bounB in all cycles. The idea is to
with regenerative cycles can be bounded from above by avoid paths which fail to experience the rare event within
controlling event likelihood ratios associated with individual  the cycle.
events within cycles. The proposed importance sampling distribution depends
The application of the balanced likelihood ratio ap- on the sample path for the proceds For simplicity, time
proach to estimatgp andys proceeds as follows. Classify  and the sample path history are omitted from the follow-
all system events into 2 classes: events that move the systeming presentation. Lek’ denote the importance sampling
towards buffer overflow and events that move the system probability of an arrival event. Let} and u}, denote the
away from buffer overflow. Arrival events and service com- importance sampling probabilities of service completion
pletion events at the first node belong to the first category events at the first and second nodes respectively.
and service completion events at the second node fall into
the second category. The balanced likelihood ratio method 3.1 Infinite First Buffer
balances the event likelihood ratios associated with events
from these two classes. The importance sampling approach described in Section 2.2
Every service completion event at the second node must is directly applied to the infinite first buffer case. Assume
be preceded by an arrival event and a service completion the system starts from staf6, 0). There are four cases to
event at the first node. The product of these three event consider: (1) The system is empty, (2) All customers are
likelihood ratios can be forced to be one for all customers. at the first node, (3) All customers are at the second node,
This assignment causes likelihood ratios associated with and (4) Customers are at both nodes in the system.
cycles to be bounded below one. The proposed method Case 1: The system is empty. The next event is a
has the following basic balanced likelihood ratio properties customer arrival with probability one. The event likelihood
established by Shultes (2002). ratio for this event is replaced bya’ = A/ (A + w2) in
» Every event that moves the system closer to the the implementation to ensure that the service completion
rare event (arrival and service completion at the probability at node two associated with this arrival is reduced.
first node) has one corresponding event (service Itis easy to show that this deviation from the basic balanced
completion at the second node) that effectively likelihood ratio approach maintains established likelihood
cancels out the events that moved the system closer ratio properties.
to overflow. Case 2: All customers in the system are at the first
» Events that would complete a cycle before the sys- node, i.e., the system state (iX(t) = x, Y(t) =0,t > 0)
tem experiences a rare event have zero probability for somex € IN. In this case, the next event could be
in the importance sampling distribution. either an customer arrival or a service completion at the
« If the events that move the system closer to buffer first node. Deviating from the original balanced likelihood
overflow are forced to be more likely, then the ratio description, the importance sampling probability for
corresponding future event which would move the a service completion event at the first node is reduced to
system away from overflow is forced to be less increase the arrival probability. The importance sampling

likely. probabilities in this case are:
3 TANDEM QUEUES M,1=|a< H1 ) and
A+ p1

Balanced likelihood ratio methods for estimating the proba-

bilities yp andy1 when the first buffer capacity is infinite and , ,

finite are described in Sections 3.1 and 3.2 respectively. The A=1-p.

importance sampling distribution is the same for estimating Case 3:All customers in the system are at the second
both yo and y1. However, the method for estimating node, i.e., the system state (X (t) = 0, Y(t) = y, t > 0)

includes cases which do not occur while estimagigi.e., for somey € IN. In this case, the next event could be either
when the starting state is (1,1). Hence, without loss of gen- 5 o\,stomer arrival or a service completion at the second
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node. The importance sampling probabilities whes 1
are:

w2

L =la Is( ),and
2% (Is) o
V=1-—ub.

The service completion event is not allowed whes= 1

if the rare event has not yet occurred within the cycle. In

this latter case, the customer arrival probability is one.
Case 4: Customers in the system are at node one and

node two, i.e., the system state(i$(t) = x, Y() =y, t >

0) for somex € IN, y € IN. The importance sampling

probabilities in this case wheyn > 1 derive from:

The remaining probability(1 — 115) is split between the

customer arrival event and service completion event at the
first node based on the number of customers in the system.
The importance sampling distribution gives more importance
to arrivals when the system size is less than the buffer size

B. When the system size is greater than the boBnthe
importance sampling probabilities allocated to the arrival

Hn2

5 =la(s) <7
K2 A+ 1+ 2

eventand the service completion at node one are proportional

to the respective rates and 1.

Let ps and pa denote the fraction ofl — 45) assigned
to the service completion at the first node and the arrival
event respectively. The importance sampling probabilities
for the arrival event and the service completion at node one
are:

wy=ps(1—ub), and

)\‘/:pa(l_:u//z)5

where
max| 0.5, Hl/ if x+y<B,
— 1—ub
Ps = 1 ]
if Xx+y> B,
A+
and
pa=1— ps.

3.1.1 Implementation

Define two stacksLa for storing arrival event likelihood
ratios andLs for storing likelihood ratios for service com-
pletion events at the first node. Initially each stack contains
one multiplier]a’ = »/(A + u2) is on stackLa andls’ =0

is on stack_s where the 0 guarantees that the cycle does not
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end without observing a buffer overflow event. After each
arrival event, the event likelihood ratiG./1") is pushed
onto stackLa. After each service completion event at the
second node, one likelihood ratio from each stack is re-
moved. For each service completion event at the first node,
the event likelihood ratigu1/u;) is pushed onto stacks

if the system is in statéx, y) for somex € IN, y € N

and a likelihood ratio is removed from statla when the
system state igx, 0) for somex € IN.

3.2 Finite First Buffer

The balanced likelihood ratio method for estimating the
probability of buffer overflow in the second node when
the first buffer has finite capacity is described below. The
approach is similar to the infinite first buffer case.

Assume the system starts from stée0). The same
four cases as in the infinite first buffer case are considered.
For cases 1, 2 and 3, i.e., when the system is empty and
when the system state (g, 0) and (0, y) for somex € N,

y € N, the importance sampling distribution is the same as
in the infinite first buffer case. When the system is in state
(X, y) for somex € N, y € IN, the importance sampling

probabilities derive from the same starting point as before:

As before, the remaining probabilifjl — 15) is split be-
tween the customer arrival event and the service completion
event at the first node based on the number of customers
in the system. Since the first node has a finite capdgity
the fractionps of (1 - y/z) assigned to the service comple-
tion at node one is increased, relative to the infinite first
buffer case, by a factar which depends on the number of
customers at the first node. Howeveruif > u2 then this
modification is not necessary, so= 0 in this special case.
The importance sampling probabilities for customer arrival
events and service completion at node one are:

K2

/
" :Ia(ls)(i
2 At 1+ u2

wy = (ps+¢)(1—ps), and

)"/:l_ll‘él__:u/25

where ps is defined as before and

(1)

The method can be implemented in the same way as that of
the infinite first buffer case using two stacksa for storing
arrival event likelihood ratios ants for storing likelihood
ratios of service completion events at first node.

X

n1
A+

b
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4 NUMERICAL RESULTS only linearly bounded in this case while the relative errors
for the K-N method are bounded.
Experimental results for four, two node tandem Jackson The BLR method yields similar results when used to

network examples are presented. In the first example, the estimate the overflow probabilitiegy and y1. The K-N

second server is the bottlenegk > ), inthe second and method also yields similar results except when the first

third examples the first server is the bottlenépk < o) server is the bottleneck and its capacity is infinite in which

and in the fourth example the service rates at the two case the relative error increases sharply with Kroese

nodes are equal. Results from experiments that estimate and Nicola (2002) have suggested that a different change

the probability that the contents of the second buffer reach of measure is needed in this case when the starting state is

the boundB before reaching zero starting from stafe 1) (0,0).

and (0, 0) are presented for both finite and infinite first

buffer cases. These cases come directly from Kroese and5 CONCLUSIONS

Nicola (2002). The rates in the tables can be normalized

so that the normalized rates sum to one. This paper presents a balanced likelihood ratio importance
The result from each simulation experiment is based on sampling approach for estimating the overflow probability

1,000,000 cycles. Cycles end when the second node expe-of the second buffer in a two node tandem Jackson network.

riences buffer overflow or when the second node empties. Numerical results indicate that the relative error is bounded

Each simulation run provides an estimate for the overflow independent of the buffer size except when the first server

probability (Mean), a 95% confidence interval halfwidth is the bottleneck in which case the relative error is lin-

(Halfwidth) and the relative error, i.e., standard deviation early bounded. Empirical evidence indicates that the BLR

divided by mean (RE). Computation times (CPU) are dis- method outperforms existing importance sampling distribu-

played in terms of average number of events per cycle. tions when the first node buffer is infinite. More work is

The tables include estimates of the overflow probabilities needed to determine why the BLR method struggles when

obtained by applying the exponential change of measure the first node buffer is finite. The theoretical properties

technique presented by Kroese and Nicola (2002). The nu- of the proposed importance sampling distributions includ-

merical values for these probabilities presented by Kroese ing asymptotic characteristics need to be studied in detail.

and Nicola (2002) are also provided. The numerical values The proposed methods can be readily extended to estimate

can be obtained by using the algorithm outlined in Garvels individual buffer overflow probabilities in tandem Jackson

and Kroese (1999). The results from the two methods networks with more than two nodes.

(BLR and exponential change of measure) are compared

using Variance Reduction Ratios (VRRS). Ifthe VRR isless REFERENCES

than one, then the exponential change of measure method

by Kroese and Nicola (K-N method) is more efficient and Alexopoulos, C. and B. C. Shultes. 1998. The balanced like-

the BLR method is more efficient if VRR is greater than lihood ratio method for estimating performance mea-
one. All simulations were implemented in C and run on an sures of highly reliable systems. roceedings of
HP C3600 workstation. the 1998 Winter Simulation Conferenced. D. J.
Tables 1-4 display the results for the estimates of the Medeiros, E. F. Watson, J. S. Carson, and M. S. Mani-
probability y; for the infinite first buffer cases. Tables 5-8 vannan, 1479-1486. Piscataway, New Jersey: |IEEE.
display the results for the estimates of the probability Alexopoulos, C. and B. C. Shultes. 2001. Estimating
for cases where the first buffer is limited to nine customers. reliability measures for highly dependable systems, us-
Tables 9 and 10 present the estimates of the probability ing balanced likelihood ratioslEEE Transactions on
yo for all the four examples for the infinite and finite first Reliability 50 (3): 265-280.
buffer cases respectively. Asmussen, S., and R.Y. Rubinstein. 1995. Steady state rare
The relative error of the BLR method is bounded in- events simulation in queueing models and its complexity
dependent of the buffer size when the second server is the properties. IMdvances in Queueing: Theory, Methods
bottleneck in both finite and infinite buffer cases. In the and Open problemsd. J. H. Dhashalow, CRC Press,

other two cases, i.e., when the first server is the bottleneck Boca Raton, Florida, 429-462.
and when the service rates at both nodes are equal, theDe Boer, P. T., D. P. Kroese, and R. Y. Rubinstein. 2002.

relative error is linearly bounded. Based on the numerical Estimating buffer overflows in three stages using cross-
results, the BLR method is more efficient than the K-N entropy. InProceedings of the 2002 Winter Simulation

method when the buffer at the first node is infinite. In Conferenceed. E. Yucesan, C.-H. Chen, J. L. Snowdon,
contrast, the K-N method is more efficient than the BLR and J. M. Charnes, 301-309.

method forB larger than 25 in the finite first buffer cases. Glasserman, P. and S.-G. Kou. 1995. Analysis of an im-
This is not surprising given that the BLR relative errors are portance sampling estimator for tandem queussM
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Table 1: Estimates of; in Example 1(x, u1, u2 = 1,4, 2) with b = oo
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE | CPU| VRR |

20 | 14306 |y Tase 06| 50008 | 11303 51 |
% | 447608 |t yoiconl Tooe 1] 11303 65 | —
S0 | 13315 | T s is [ Sore s T a0l 36 | —
60 | 130618 | 15 pase ot | 113603 To4 |
100 | 138030 G100l sroess | T3 276 [ —

Table 2: Estimates of; in Example 2(x, u1, u2 =1, 2, 3) with b = oo
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | 2051l |y yEe T Tores | 4a9es] 48 | =
%5 | 461l | gose el Soreds | 5903 57 |
S0 | 431627 |y gome o7 7o7e 09| 56603 112 |
00 | 29032 |y rGie s seres 5 T6e0s 15T —
100 | 8603 || i es| poena | 158003 25 | —

Table 3: Estimates of; in Example 3(, u1, u2 = 3,4, 6) with b = oo
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | 135008 |t Tt o T Sse 00| 50003 4 | —
% | 19790 |y | Tope o] o517 59003 57
S0 | 220009 |y e 1o 415001 | 549003 ToT |
60 | 654023 |t S syl Tase st ] 07603 100 | —
100 | 679837 || Sone 37| poe 38 | T5 2003 1o |

Table 4: Estimates of1 in Example 4(A, u1, u2 = 1, 2, 2) with b = oo
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |
BLR 2.79e-07| 6.11e-10 | 1.11e-03| 95 3.1

20 2.79¢-07 g [ 2.786-07] 15009 | 2.906:03] 43 | —
25 | 766009 || 67e 00 467e 1| 310603 51 | —
50 | 18616 || Toee 6 1 Tee-18 | 379603 107 |
60 | 13819 |00 1o Tode2r | 390603 127 | —
100 | 962632 | g5 S0 1 563034 4590.03] 208 | —

508



Dhamodaran and Shultes

Table 5: Estimates of1 in Example 1(A, u1, u2 =1,4,2) with b =9
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE | CPU| VRR |

m [ oo [ &5 eeml o T [
5 [smer [ pm et o e @
R e i
o [me AR e n e
wo[v o e L e

Table 6: Estimates of1 in Example 2(A, u1, u2 =1,2,3) with b =9
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | 1891l Tt sese i 23R 0s] 43 |
% | 376014 |y Trse s 2a7eml 5 | —
S0 | 12527 |y | Tose o7l Save 0] 237603 107 =
60 | 5003 |y S 53 pase s | 237003 5 =
100 | 13854 |57 al 63907 | 237003 21|

Table 7: Estimates of1 in Example 3(A, u1, u2 = 3,4,6) with b=9
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | 115008 |t IRl s e 1T | 2o7e 03| AT |
% | 14100 | Tereto| soseds| 2a7ena| 5 | —
S0 | 38920 |y Sae o5 T73e07 | 227603 103
60 | 58402 |t Caoe sl setess] 22703 o1 | —
100 | 298639 || 5 onc S5l Tasedt [ 227603 207 |

Table 8: Estimates of1 in Example 4(A, u1, u2 =1,2,2) with b =9
| Buffersize | Numerical | Method | Mean | Halfwidth [ RE [ CPU | VRR |

20 | 256007 |y e o7 g5se o] ToTes| 43 | —
% | 640209 |y e oo P a0e 1| 19T 3| 51 |
S0 | 634617 | e Ssetr pare s | ToTes| THo | =
G0 | 39920 |y Tone o5 Ta9e 07 | TOTe3| 157 |
100 | 624833 | S5re 53 pase s [ Totes| 22T | =
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Table 9: Estimates ofp with b = oo

| Buffersize | Example | Method | Mean | Halfwidth | RE | CPU] VRR ]

1 BLR 7.40e-16| 1.40e-18 | 0.97e-03| 230 1.0

K-N 7.40e-16| 2.05e-18 | 1.41e-03| 112 —

5 BLR 1.03e-26| 9.80e-29 | 4.86e-03| 188 | 18.4

50 K-N 9.06e-27| 5.54e-28 | 31.1e-03| 108 —
3 BLR 3.86e-19| 3.10e-21 | 4.10e-03| 267 | 10.4

K-N 3.82e-19| 1.65e-20 | 22.1e-03| 98 —

4 BLR 1.54e-16| 4.87e-19 | 1.62e-03| 257 6.0

K-N 1.54e-16| 1.93e-18 | 6.39e-03| 98 —

1 BLR 6.56e-31| 1.23e-33 | 0.96e-03| 480 1.0

K-N 6.56e-31| 1.82e-33 | 1.41e-03| 224 —

5 BLR 2.39e-52| 5.76e-54 | 12.3e-03| 380 | 17.8

100 K-N 2.22e-52| 3.29e-53 | 75.7e-03| 207 —
3 BLR 1.23e-36| 1.87e-38 | 7.72e-03| 543 | 11.8

K-N 1.23e-36| 1.09e-37 | 45.4e-03| 187 —

4 BLR 9.53e-32| 3.76e-34 | 2.01e-03| 520 3.6

K-N 9.59e-32| 1.18e-33 | 6.28e-03| 187 —

Table 10: Estimates ofy with b =9
| Buffersize | Example| Method | Mean | Halfwidth | RE | CPU| VRR |

1 BLR 7.23e-16| 1.40e-18 | 0.99e-03| 233 1.0

K-N 7.35e-16| 2.06e-18 | 1.43e-03| 111 —

2 BLR 1.96e-27| 1.16e-29 | 3.02e-03| 185 1.9

50 K-N 1.96e-27| 2.15e-29 | 5.61e-03| 103 —
3 BLR 5.59e-20| 3.05e-22 | 2.79e-03| 251 0.8

K-N 5.64e-20| 4.30e-22 | 3.89e-03| 100 —

4 BLR 5.89e-17| 1.78e-19 | 1.54e-03| 269 1.0

K-N 5.86e-17| 2.89e-19 | 2.52e-03| 101 —

1 BLR 6.21e-31| 1.23e-33 | 1.00e-03| 483 1.0

K-N 6.45e-31| 1.83e-33 | 1.45e-03| 225 —

5 BLR 2.16e-54| 3.93e-56 | 9.27e-03| 374 0.2

100 K-N 2.18e-54| 2.41e-56 | 5.65e-03| 204 —
3 BLR 4.30e-39| 6.10e-41 | 7.23e-03| 512 0.1

K-N 4.33e-39| 3.29e-41 | 3.88e-03| 199 —

4 BLR 5.83e-33| 3.86e-35 | 3.38e-03| 554 0.3

K-N 5.78e-33| 2.85e-35 | 2.51e-03| 200 —
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