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ABSTRACT 

For many real world problems, when the design space is 
huge and unstructured and time consuming simulation is 
needed to estimate the performance measure, it is impor-
tant to decide how many designs should be sampled and 
how long the simulation should be run for each design al-
ternative given that we only have a fixed amount of com-
puting time. In this paper, we present a simulation study on 
how the distribution of the performance measure and the 
distribution of the estimation error/noise will affect the de-
cision. From the analysis, it is observed that when the noise 
is bounded and if there is a high chance that we can get the 
smallest noise, then the decision will be to sample as many 
as possible, but if the noise is unbounded, then it will be 
important to reduce the level of the noise level by assign-
ing more simulation time to each design alternative. 

1 INTRODUCTION 

The essence of any decision problem is an optimization 
problem.  Whether it is a decision on the production 
schedule of a manufacturing plant, a decision on the rout-
ing rules of networking, or a decision on the make-up of 
investment portfolios, the problem always revolves around 
making a choice from a population of alternatives (either 
finite or infinite) so as to optimize the targeted objective.  
Without loss of generality, the objective can be summa-
rized by the mathematical expression that is represented by 
the minimization form as 

 
 )(Min θ

θ
J

Θ∈
 (1) 

 
where Θ is the space of all potential solution candidates, or 
the search space; θ is a design alternative; and J is the per-
formance measure of the decision problem.  The problem 
as defined is not new.  As a matter of fact, it has been the 
center of many theoretical works in mathematics. How-
 
ever, the complexity and the scale of most optimization 
problems encountered in the real-world settings today of-
ten render the application of traditional mathematical ap-
proaches inadequate.   
 There are two major challenges that we might face in 
the real world setting. First, evaluating the performance 
measure J(θ) for the design alternative θ is not a trivial 
task. In some cases, J(θ) can be evaluated in a closed form, 
but unfortunately in many problems, such a closed form 
expression cannot be found and a simulation model is the 
only tool available to estimate the performance measure for 
the design alternative. Moreover, when uncertainties exist 
in the system, we need to repeat the simulation N times in 
order to estimate the average performance. However, the 
accuracy of the estimate cannot improve any better than 

N/1 . Second, the design space Θ can be very huge and 
unstructured. Traditionally, analysis tools play important 
roles in numerical optimization, and one of the examples is 
perturbation analysis (PA) which is used to estimate the 
gradient for determining the local search direction. How-
ever, these tools will fail if the design space is unstruc-
tured. (For example the decision variables are not real 
numbers.) In such a case, brute-force evaluation for all the 
design alternatives will be needed in order to find the op-
timal design. However, when the choice of design alterna-
tives within the design space experiences the effect of 
combinatorial explosion, brute-force evaluation will be 
impractical. As a result, we might need to randomly sam-
ple the design alternatives from the design space or use 
some AI optimization tools, for example, Genetic Algo-
rithm, to help us locate the near-optimal designs. 
 The effects of these two challenges will multiply, and 
make the optimization problem even more intractable. In 
view of these difficulties, ordinal optimization (Ho et al. 
1992) provides a strategic redirection for the optimization 
problem. In ordinal optimization we settle for the good 
enough alternatives with high probability instead of finding  
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the best designs with certainty.  There are two important 
tenets for this strategic redirection: 

1. The order converges exponentially fast while the 
value converges at a rate of N/1 . For example, 
it is easier to determine whether A> B than to es-
timate the difference between A and B.  

2. The probability of getting something “good 
enough” increases exponentially with the size of 
the “good enough set” 

 The theoretical proofs of these two tenets can be found 
in Dai (1996), Xie (1997) and Lee et al. (1999). 
 Ordinal optimization has provided an important in-
sight in tackling the problem, that is, if we are only asking 
for good enough designs, we should not be spending too 
much time to run the simulation for a single design. The 
remaining questions are now given a fixed computing 
budget, how many designs should be sampled from the de-
sign space and how long should the run of the simulation 
be for each design so as to maximize the chance of finding 
some good designs.  
 Ranking and selection has been an important research 
area in the simulation field as it addresses how to allocate 
computing resources to design alternatives so as to guaran-
tee a certain level for the probability of correct selection. 
The indifference zone (IZ) selection procedure has been a 
common method to tackle the problem. Rinott (1978) de-
veloped a two-stage method based on this concept. In the 
first step, all the design alternatives will be allocated with a 
small number of replications of the simulation in order to 
estimate the variability of the systems. Then during the 
second stage, based on the indifference zone concept, the 
number of replications of the simulation that should be al-
located for each design is computed so that the probability 
of correct selection is within the specified confidence level. 
However this method is only recommended for a small 
number of alternatives as the formula is calculated based 
on the least favorable configuration assumption that the 
best design is hard to be separated from the others. 
 Goldsman and Nelson (1998) and Nelson et al. (2001) 
have extended this method and used the idea of sample-
screen-sample-select to tackle the problem. In the first 
stage, subset selection scheme is used to screen out the 
noncompetitive designs and then the indifference zone se-
lection procedure is used to select the best design from the 
survivors of the screening process. 
 Chen (1995) provides another direction to address the 
problem; he formulates the process of selecting the best 
design as an optimization problem. The idea is to decide 
how to allocate the computing resources to all the designs 
so as to maximize the probability of correct selection. As 
the closed form expression for the probability of correct 
selection is difficult to compute, he approximates this 
probability by using Chernoff bound. Then the steepest-
descent algorithm is applied to solve this approximated op-
timization problem (Chen et al. 1997, 1998, 2000).  
 All the research works mentioned above only deal with 
a fixed number of design alternatives. To our knowledge, the 
problem on how many designs to sample has not been ad-
dressed adequately. In this paper, we will provide some in-
sights for this problem. In the following section, we will de-
fine the problem of sampling, ranking and selection. 
Simulation study of the problem will be presented in Section 
3. Then in Section 4, we will show some application exam-
ples. Finally the conclusions will be made in Section 5.   

2 SAMPLING, RANKING AND SELECTION  

In the optimal computing budget allocation problem pro-
posed by Chen (1995), he targets on maximizing the prob-
ability of correct selection given that the computing time is 
fixed. When the problem of sampling (how many designs 
to sample) is considered, we should revise the objective, 
and one of the reasonable objectives can be to maximize 
the expected true performance of the observed best design. 

The revised optimal computing budget allocation 
problem is as follows: 

 

  (2) 
Budget Computing         s.t.
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where J is the true performance value; ω  is the noise; J~  
is the observed performance value which is equal to the 
sum of the true performance value and the noise; the sub-
script  is the design with true rank i; ][i ]~[i

J

 is the design 
which is observed as rank i when the designs are ranked 
according to the observed performance, ~ ; n1 is the num-
ber of designs sampled; and n2 is the number of replica-
tions of the simulation allocated to each design. We as-
sume that horse race selection method is used, i.e., every 
design will be given equal number of replications to run. It 
can be observed that when n1 is large, a lot of designs will 
be sampled, and each design will be given only few repli-
cations to run. Although we might be able to sample some 
good designs, due to the large noises, we might not be able 
to correctly select those good designs. On the other hand if 
n1 is small, only a few designs are sampled, and each de-
sign will be allocated with a lot of replications to run. As a 
result, we are able to select the top design within these n1 
sampled designs, but this top design might not be good be-
cause the good designs may not have been sampled. There-
fore, it is believe that there should be a tradeoff between 
how many designs should be sampled and how long the 
simulation should be run. 
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3 SIMULATION STUDY 

The problem stated in (2) is not easy to solve as there is no 
closed form expression for . However in order to 
understand how the different probability distributions of 
the performance measure and the noise will affect the allo-
cation decision (i.e., n

][ ]1~[JE

1 = how many designs to sample and 
n2 = how long the replications should run), we have per-
formed some simulation studies. The following two sub-
sections will describe and discuss the scenarios and the re-
sults of the studies. 

3.1 Uniform Distribution 

In this simulation study, we assume that : 
1. The computing budget is fixed at 10000 replica-

tions.  
2. The true performance value, J, for the designs that 

we sampled from the design space follows a uni-
form distribution U[0, 12 ] (the standard devia-
tion equals to 1). 

3. The noise, ω, follows a uniform distribution 
U[0, 12 σN], where σN  = { 5, 2, 1, 0.5, 0.1}. 

In the study, we first sample n1 designs from the dis-
tribution of the true performance, i.e., U[0, 12 ]  . Then 
for each design we generate n2 noises to represent the n2 
independent replicate runs for the design, and the average 
of these n2 noises will be added to the true performance 
measure, J, which make up the observed performance 
value, J~ , for the design. The n1 designs are then ranked 
based on the observed performance values, and the design 
which is ranked the best, its true performance value will be 
recorded. We repeat this experiment 1000 times in order to 
estimate the expected true performance value for the ob-
served best design. The same procedure is repeated for dif-
ferent values of n1 and n2 (the values of n1 and n2 are cho-
sen in such a way that  n1n2 =10000) and the results from 
the simulation studies are shown in Table 1 and Figure 1. 
The shaded cell in each row denotes the best decision in 
each scenario (different σN). 

 
Table 1: Expected True Performance Value for the Ob-
served Best for Uniform Noise Case 
        n1 

σN 
100 500 1000 2000 5000 10000

5 0.2330 0.3685 0.4346 0.4488 0.2067 0.0492

2 0.1198 0.1680 0.1951 0.2141 0.1125 0.0306

1 0.0687 0.0888 0.1109 0.1178 0.0698 0.0216

0.5 0.0517 0.0532 0.0579 0.0677 0.0428 0.0157

0.1 0.0327 0.0158 0.0162 0.0178 0.0140 0.0067
0
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Figure 1: Expected True Performance Value for the 
Observed Best for Uniform Noise Case 

 
From the table, it can be found that the best perform-

ance is always when n1 equals to 10000 and n2  equals to 1. 
In other words, “sampling more is better than doing more 
replications”. The reason is because the distribution of the 
noise is uniform which has a finite bound at the left hand 
side region.  When a good design has a noise coming from 
this left hand side region (i.e., very small noise), there will 
be no designs having observed ranks better than it unless 
the designs are indeed better or at least not worse than this 
good design. For illustration purpose, we assume that the 
noise follows the uniform distribution, U[0,1]. When a de-
sign with true performance value J1 has a noise ω equal to 
δ, then only the design with a true performance value lower 
than J1 + δ can have better observed performance than it. 
Since δ is small, this implies that J1 + δ is indifferent with 
J1 , and the designs with true performance values lower 
than J1 + δ can also be viewed as the designs that are better 
or at least not worse than the design with true performance 
J1. Therefore, for this situation, the best option is to sample 
as many as possible so as to increase the chance of getting 
good designs having noises coming from the left hand side 
region of the distribution (or having a very small noise). 
 In order to compare the effect of having different dis-
tributions on the noise, we repeat the same experiment, ex-
cept that the distributions of the noise are varied. The fol-
lowing lists the different distributions of the noise used for 
the simulation runs: 

Normal : N(0, σN) • 
• 
• 
• 
• 

Truncated Normal, N(0, σN) at 3σN, 
Truncated Normal, N(0, σN) at 1σN  
Exponential : Exp (1/σN) 
Negative Exponential : NegExp(1/σN) 

The results from the simulation runs are shown in Ta-
bles 2-6. Similarly the shaded cell in each row denotes the 
best decision in each scenario (different σN). 

From Tables 2-6, we observe that depending on the 
distribution types that have been used to model the noise, 
some distributions will require more sampling for better  
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Table 2: Expected True Performance Value for the Ob-
served Best for Normal Noise Case 
        n1 

σN 
100 500 1000 2000 5000 10000

5 0.2424 0.3825 0.4803 0.6296 0.8482 0.9921
2 0.1176 0.1667 0.2195 0.2677 0.3984 0.5343
1 0.0714 0.0943 0.1193 0.1457 0.2055 0.2664

0.5 0.0507 0.0522 0.0635 0.0778 0.1047 0.1358
0.1 0.0354 0.0154 0.0171 0.0180 0.0262 0.0328

 
Table 3: Expected True Performance Value for the Ob-
served Best for Truncated Normal at 3 σN  Noise Case 
        n1 

σN 
100 500 1000 2000 5000 10000

5 0.2363 0.3930 0.5159 0.6278 0.7228 0.3416
2 0.1153 0.1626 0.2106 0.2693 0.3352 0.1954
1 0.0746 0.0884 0.1096 0.1433 0.1734 0.1231

0.5 0.0492 0.0508 0.0617 0.0775 0.0971 0.0745
0.1 0.0356 0.0142 0.0162 0.0195 0.0246 0.0247

 
Table 4: Expected True Performance Value for the Ob-
served Best for Truncated Normal at 1 σN  Noise Case 
        n1 

σN 100 500 1000 2000 5000 10000

5 0.1436 0.2167 0.2597 0.2649 0.1651 0.0451
2 0.0761 0.0999 0.1189 0.1349 0.0847 0.0271
1 0.0533 0.0541 0.0647 0.0741 0.0537 0.0189

0.5 0.0400 0.0308 0.0361 0.0411 0.0321 0.0141
0.1 0.0356 0.0111 0.0108 0.0110 0.0105 0.0060

 
Table 5: Expected True Performance Value for the Ob-
served Best for Exponential Noise Case 
        n1 

σN 
100 500 1000 2000 5000 10000

5 0.2178 0.2542 0.2647 0.2024 0.0940 0.0254
2 0.1115 0.1254 0.1203 0.1030 0.0510 0.0163
1 0.0703 0.0738 0.0731 0.0618 0.0327 0.0114

0.5 0.0496 0.0434 0.0419 0.0377 0.0212 0.0079
0.1 0.0325 0.0147 0.0121 0.0112 0.0074 0.0037

 

Table 6: Expected True Performance Value for the Ob-
served Best for Negative Exponential Noise Case 
        n1

σN 
100 500 1000 2000 5000 10000

5 0.2603 0.5257 0.7758 1.1230 1.4064 1.5714
2 0.1275 0.2233 0.3521 0.5574 1.0628 1.3422
1 0.0725 0.1183 0.1783 0.2958 0.6763 1.0508

0.5 0.0528 0.0661 0.0922 0.1445 0.3086 0.6726
0.1 0.0326 0.0173 0.0219 0.0293 0.0598 0.1058

 
performance (for example the exponential and the trun-
cated normal at 1σN), and as for the others, (for example, 
the negative exponential, the normal and the truncated 
normal at 3σN), they require less sampling and more repli-
cations when the level of the noise is high. These two types 
of distributions give very different results; the reason is 
that for the exponential, the uniform and the truncated nor-
mal at 1σN distributions, they all have finite bounds at the 
left hand side of the distributions and the probability of 
having noises coming from this neighborhood is high. 
Hence it is always better to sample more so as to increase 
the chance of having more good designs. If we compare 
the results for different distributions, we will observe that 
the exponential distribution has the best performance, since 
the probability of getting the noise that comes from the 
neighborhood of the left hand side bound is higher when 
compared with the uniform and the truncated normal at 
1σN distributions.  
 On the other hand, for the negative exponential, the 
normal and the truncated normal at 3σN, they are either un-
bounded or bounded but with only a small probability of 
having noises from the neighborhood of the left hand side 
bounds. For this type of distributions, the suggestion is to 
have more replications so as to reduce the level of the 
noise. Similarly, we can also observe that the negative ex-
ponential distribution will have the worst performance, as 
there is a higher chance for a bad design obtaining a large 
negative noise which makes its observed performance bet-
ter than all the good designs.   

3.2 Normal Distribution 

The same experiment in Section 3.1 is repeated for the case 
when the true performance value follows a standard normal 
distribution N(0,1). The case for the noise that follows 
normal distribution is shown in Table 7 and Figure 2.  
 From the Figure 2 and Table 7, we observe that there 
is a trade off between reducing noise (increasing replica-
tions) and increasing sample size. For the case when the 
level of the noise is high, it is recommended to reduce the 
level of the noise first by assigning more replications to 
run, but when the level of the noise is low, it will be better  
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Table 7: Expected True Performance Value for the Ob-
served Best for Normal Noise Case 
        n1 

σN 
100 500 1000 2000 5000 10000

5 -2.226 -2.054 -1.711 -1.415 -0.966 -0.757
2 -2.459 -2.784 -2.753 -2.566 -2.112 -1.719
1 -2.530 -2.954 -3.098 -3.166 -2.992 -2.742

0.5 -2.508 -3.032 -3.189 -3.357 -3.484 -3.416
0.1 -2.513 -3.046 -3.236 -3.448 -3.680 -3.829
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Figure 2: Expected True Performance Value for the 
Observed Best for Normal Noise Case 

 
to sample more so as to obtain more good designs. Another 
observation is that when the level of the noise is higher 
than 0.5, the results suggest that it is always better to as-
sign the number of replications of the simulation to all the 
designs so that the level of the noise can be reduced to the 
level around 0.5. In fact, the standard deviation of 0.5 for 
the noise is still quite high (about half of the standard de-
viation for the performance measure) which traditionally, 
we always want to assign more replications to increase the 
accuracy of the estimation. However, the results suggest 
otherwise; that is, more sampling rather than more replica-
tions. One of the reasons can be due to the first and second 
tenets provided by ordinal optimization, which says that 
the order is quite robust against the noise, and by enlarging 
the good enough set, the chance of getting good enough 
solutions will be increased. Sampling more in fact can be 
interpreted as enlarging the good enough set.   
 Similar to Section 3.1, we repeat the experiment for 
other distributions for the noise, and the results can be 
shown in Table 8-12.  
 From Tables 7-12, similar observations to Section 3.1 
can be found. There are also two types of distributions 
which give different results. For the uniform, the exponen-
tial and the truncated normal at 1σN distributions, the re-
sults suggest to sample more. However, for the normal, the 
truncated normal at 3σN, and the negative exponential dis-
tributions, we need to reduce down the level of the noise  
 

Table 8: : Expected True Performance Value for the Ob-
served Best for Uniform Noise Case 
        n1

σN 
100 500 1000 2000 5000 10000

5 -2.238 -2.016 -1.845 -1.726 -2.363 -3.028
2 -2.448 -2.780 -2.749 -2.704 -2.851 -3.265
1 -2.520 -2.972 -3.105 -3.186 -3.227 -3.458

0.5 -2.503 -2.999 -3.206 -3.348 -3.510 -3.626
0.1 -2.499 -3.044 -3.246 -3.428 -3.677 -3.843

 
Table 9: Expected True Performance Value for the Ob-
served Best for Truncated Normal at 3 σN  Noise Case 
        n1

σN 
100 500 1000 2000 5000 10000

5 -2.196 -2.027 -1.767 -1.430 -1.166 -1.848
2 -2.464 -2.753 -2.766 -2.583 -2.301 -2.458
1 -2.482 -2.968 -3.091 -3.116 -3.034 -2.984

0.5 -2.514 -3.030 -3.212 -3.368 -3.504 -3.476
0.1 -2.522 -3.036 -3.226 -3.436 -3.654 -3.832

 
Table 10: : Expected True Performance Value for the Ob-
served Best for Truncated Normal at 1 σN  Noise Case 
        n1

σN 
100 500 1000 2000 5000 10000

5 -2.393 -2.628 -2.506 -2.395 -2.596 -3.097
2 -2.504 -2.966 -3.050 -3.124 -3.175 -3.399
1 -2.513 -2.989 -3.179 -3.319 -3.487 -3.579

0.5 -2.529 -3.037 -3.234 -3.417 -3.631 -3.746
0.1 -2.480 -3.031 -3.247 -3.445 -3.697 -3.843

 
Table 11: Expected True Performance Value for the Ob-
served Best for Exponential Noise Case 
        n1

σN 
100 500 1000 2000 5000 10000

5 -2.273 -2.311 -2.375 -2.512 -2.938 -3.294
2 -2.450 -2.843 -2.946 -3.025 -3.272 -3.516
1 -2.523 -2.974 -3.141 -3.250 -3.472 -3.667

0.5 -2.502 -3.000 -3.211 -3.373 -3.592 -3.738
0.1 -2.499 -3.045 -3.246 -3.428 -3.677 -3.851
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Table 12: Expected True Performance Value for the Ob-
served Best for Negative Exponential Noise Case 
        n1 

σN 
100 500 1000 2000 5000 10000

5 -2.223 -1.612 -1.128 -0.703 -0.307 -0.197
2 -2.440 -2.685 -2.356 -1.685 -0.743 -0.506
1 -2.520 -2.959 -3.031 -2.831 -1.656 -0.829

0.5 -2.502 -2.998 -3.194 -3.299 -3.006 -1.750
0.1 -2.499 -3.044 -3.246 -3.428 -3.674 -3.830

 
by assigning more replications of the simulation to run for 
each design. Similar to Section 3.1, the exponential distri-
bution has the best performance while the negative expo-
nential distribution has the worst performance. 

Comparing Tables 1-6 with Tables 7-12, we have ob-
served that the distribution of the true performance also 
plays an important role in deciding how many designs to 
sample and how many replications of the simulation to run. 
Generally, if the true performance follows a normal distri-
bution, it will be better to sample more compared to the 
case when the true performance follows a uniform distribu-
tion. This is because when the true performance follows a 
normal distribution, the improvement on the sampled best 
designs is significant when we increase the sample size (in 
fact the best design for normal distribution is at -∞). How-
ever, for the uniform distribution, we will not expect any 
great improvement on the sampled best designs when the 
sample size increases. 

4 APPLICATION EXAMPLES 

In this section we will repeat the experiment in Section 3 
except that instead of generating the performance directly 
from a distribution, we generate the designs uniformly (i.e., 
the values of decision variables will be uniformly gener-
ated). Two different functions are considered in these ex-
periments, where one of them has a finite bound while the 
other does not have any bound.  

4.1 Example 1  

A one-dimensional Shekel function is considered: 
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We randomly generate the values of the decision vari-

able x from a uniform distribution U[0,10] and the estima-
tion error is assumed to follow a normal distribution. Note 
that the standard deviation of the noise is adjusted so that 
σN can represent the ratio of the standard deviation of the 
noise to that of the performance distribution. The results 
from the simulation studies can be found in Table 13. 

From Table 13, we found out that the results of this ex-
periment are quite close to the results of Table 2 (the case of 
the true performance following a uniform distribution and 
the noise following a normal distribution). This is not sur-
prising as the values for the function f1 are always above 
zero, and the distribution for the performance function also 
follows a bounded distribution as shown in Figure 3. 

Since the true performance values are bounded at the 
left hand side, the suggestion is to reduce the noise as 
much as possible so as not to miss any good designs from 
the horse race selection.  

 
Table 13: Expected True Performance Value for the Ob-
served Best for Shekel Function 

n1 

σN 
100 500 1000 2000 5000 10000

5 0.3313 0.4055 0.4665 0.4974 0.6077 0.6646
2 0.2500 0.2956 0.3272 0.3536 0.4119 0.447
1 0.1948 0.2343 0.2576 0.274 0.3156 0.3594

0.5 0.1577 0.1761 0.1979 0.2165 0.2494 0.2786
0.1 0.1414 0.1324 0.1335 0.1366 0.1446 0.1526
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Figure 3: The Performance Distribution for the Shekel 
Function 

4.2 Example 2  

The same experiment is repeated except that the perform-
ance function is as follows: 
 

 






<≤−−
≥≥=

10)ln(
110)ln()(2 xifx

xifxxf  (5) 

 
Similarly, we randomly generate the values of the de-

cision variable x from a uniform distribution U[0,10] and 
the noise is assumed to follow a normal distribution. Note 
that the standard deviation of the noise is adjusted so as σN 
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will represent the ratio of the standard deviation of the 
noise to that of the performance distribution. The results 
from the simulation studies can be found in Table 14. 
Similar to Example 1, the results in Table 14 resemble that 
of the results in Table 7 (the case of both the true perform-
ance and the noise following normal distributions). This is 
because, similar to normal distribution, the performance 
distribution of the function f2 is also unbounded at the left 
hand side of the distribution (see Figure 4), and the best 
design can have a value approaching - ∞. However, if we 
compare the results of this experiment with the results in 
Table 7 in more details, we would realize that it will sug-
gest to sample more for this experiment. The reason is be-
cause the distribution of the performance function f2 is 
skewed to the right and this means that we will have a 
higher chance to sample more good designs compared to 
the normal distribution. As a results, it will be more bene-
ficial to sample more.  
 

Table1 14: Expected True Performance Value for the 
Observed Best for the Performance Function f2(x) 
        n1 

σN 
100 500 1000 2000 5000 10000

5 -2.132 -2.147 -2.008 -1.586 -0.727 -0.046
2 -2.324 -2.760 -2.779 -2.645 -2.405 -2.015
1 -2.338 -2.922 -3.074 -3.180 -3.082 -2.860

0.5 -2.369 -2.965 -3.183 -3.340 -3.508 -3.518
0.1 -2.335 -2.986 -3.192 -3.418 -3.665 -3.874
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Figure 4: The Performance Distribution for the Func-
tion f2(x) 

5 CONCLUSIONS 

In this paper, we have conducted a preliminary study on 
how to consider sampling when we have a fixed computing 
budget. Simulation experiments have been run for different 
scenarios, and it is found that the distribution properties of 
the true performance and the noise play an important role. 
If the probability that the noise comes from a neighbor-
hood of the left hand side of the bound is high, then it is 
better to do more sampling, but if the noise is normal (or is 
unbounded), then it is better to reduce the level of the noise 
by assigning more time to run the simulation. Similarly, if 
the distribution for the performance is bounded at the left 
hand side, then it is advisable to spend time on running 
more replications, but if the distribution for the true per-
formance is unbounded at the left hand side, then it will be 
better to sample more.  
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