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ABSTRACT

Screening experiments are performed to eliminate unimp
tant factors so that the remaining important factors can
more thoroughly studied in later experiments. Sequent
bifurcation (SB) is a screening method that is well suite
for simulation experiments; the challenge is to prove th
“correctness” of the results. This paper proposes Control
Sequential Bifurcation (CSB), a procedure that incorporat
a two-stage hypothesis-testing approach into SB to cont
error and power. A detailed algorithm is given, performan
is proved and an empirical evaluation is presented.

1 INTRODUCTION

Screening experiments are designed to investigate the c
trollable factors in an experiment with a view toward elim
inating the unimportant ones. According to the sparsi
of effects principle, in many cases only a few factors a
responsible for most of the response variation (Myers a
Montgomery 1995). A good screening procedure shou
correctly and efficiently identify important factors. This is
especially important when the system is complicated a
many factors are being considered.

In this paper we focus on factor-screening metho
for discrete-event simulations. Simulation experiments a
significantly different from physical experiments in the fol
lowing ways:

1. Screening problems in simulation can involve man
more factors than real-world problems. In typica
physical experiments it is difficult to control more
than 20 factors, while in simulation experiments
is easy to control and simulate many combination
of decision variables because the experiment c
be automated (Trocine and Malone 2000, 200
Bettonvil and Kleijnen 1997; Kleijnen, Bettonvil
and Persson 2003).
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2. In traditional physical experiments a factor effect
is compared to zero. If the effect is found to be
statistically significantly different than zero, then
the effect is considered to be important. In many
simulation experiments we expectall factors to
have some non-zeroeffect. Therefore, in this pape
we require that the magnitude of an effect be greate
than a specified threshold before it is considered
to be important. Of course, if this threshold is set
to zero, then the two approaches are equivalent.

3. In physical experiments, switching from one factor
setting to another can be costly (time and money)
In simulation, however, the switching is compara-
tively easy. This makes sequential methods espe
cially attractive in simulation.

4. In simulation experiments, common random num-
bers (CRN) can be implemented to reduce the
variance of estimated effects as compared to inde
pendent simulations. Controlling random number
seeds is not applicable in physical experiments
although the concept is similar to “blocking.”

These differences suggest that screening strategies for si
ulation experiments will be different from those for physical
experiments.

Many screening strategies have been developed to ide
tify important factors with an economical number of design
points and samples (Trocine and Malone 2000, 2001). Fo
instance, the first stage of response surface methodology
usually factor screening, which is often based on a first
order design such as a 2k−p fractional factorial design or an
orthogonal array such as a Plackett-Burman design. The
has been considerable research in this area (e.g., Mye
and Montgomery 1995; Wu and Hamada 2000). Howeve
most of these experiment-design strategies emphasize phy
ical experiments and do not take advantage of the highl
sequential nature of simulation experiments. In fact, recen
research has gone in the opposite direction by combinin
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the screening experiments and a follow-up response expl
ration into one design to screen out the important factor
and build the model simultaneously (Cheng and Wu 2001

Group-screening methods have been widely used fo
situations with large numbers of factors. The fundamenta
idea is to identify the important/unimportant factors as a
group to save experimental effort (Cheng and Wu 2001
If a group is considered to be important, then subgroup
or individual factors within the group should be further
screened; if a group is not considered to be importan
then the whole group can be classified as unimportant. I
group screening the effects of the factors that are groupe
together must have the same sign, and a main-effects mod
is typically assumed (Trocine and Malone 2001).

Other screening methodologies for simulation include
one-factor-at-a-time designs (Campolongo, Kleijnen an
Andres 2000); fold-over designs (Myers and Montgomery
1995); methods based on frequency domain analysis (Mo
ris and Bardhan 1995); edge designs (Elster and Neuma
1995); iterated fractional factorial designs (Campolongo
Kleijnen and Andres 2000) and the Trocine screening pro
cedure (Trocine and Malone 2001). These methods wi
not be discussed in this paper. The interested reader shou
refer to Trocine and Malone (2000, 2001) or Campolongo
Kleijnen and Andres (2000) for reviews.

We concentrate on a specific method called Sequenti
Bifurcation (SB), which is a combination of group screening
and a sequential step-down procedure (Bettonvil and Klei
nen 1997). A sequential design is one in which the desig
points (factor combinations to be studied) are selected a
the experiment results become available. Therefore, as t
experiment progresses, insight into factor effects is accu
mulated and used to select the next design point or grou
of design points.

SB is a series of steps. In each step, a group of factors
tested for importance. The first step begins with all factors o
interest in a single group and tests that group’s effect. If th
group’s effect is important, indicating that at least one facto
in the group may have an important effect, then the group
split into two subgroups. The effects of these two subgroup
are then tested in subsequent steps and each subgroup
either classified as unimportant or split into two subgroup
for further testing. As the experiment proceeds, the group
become smaller until eventually all factors that have no
been classified as unimportant are tested individually. Th
method was first proposed for deterministic computer simu
lations by Bettonvil and Kleijnen (1997). Later the method
was extended to cover stochastic simulations (Cheng 1997
The sequential property of the method makes it well suite
for simulation experiments. Examples have shown that th
method is highly efficient when important factors are spars
and clustered (Cheng 1997, Bettonvil and Kleijnen 1997)
but there is no performance guarantee in the stochastic ca
-
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In this paper we propose a modified SB procedure
called Controlled Sequential Bifurcation (CSB), for stochas
tic simulations. The contribution of CSB is that it controls
the Type I Error and power simultaneously. A two-stag
testing procedure is introduced to guarantee the power
each step; and at the same time the step-down property
SB implies Type I Error control for each factor.

The paper is organized as follows: In Section 2 w
define the underlying response model that we will use. Se
tion 3 describes the procedure and discusses its performan
Section 4 presents an empirical evaluation comparing CS
to another version of SB designed for stochastic simulatio
Future research is discussed in Section 5.

2 RESPONSE MODEL

In this section we introduce the underlying response mod
that will guide our new CSB procedure.

2.1 Main-Effects Model

Suppose that there areK factors of interest with effect
coefficientsβ̃ = {β̃1, β̃2, . . . , β̃K }. The output of interest
from a simulation replication is denoted byY, and Y is
represented by the following metamodel:

Y = β̃0 + β̃1z1 + β̃2z2 + · · · + β̃K zK + ε (1)

which is called a multiple linear regression model withK
regression variables and main effects only. The setting
the factors,z = (z1, z2, . . . , zK ), is deterministic and under
the control of the experimenter. The error term,ε, on the
other hand, is a random variable; in this paper we assume
is a Nor(0, σ 2(z)) random variable whereσ 2(z) is unknown
and may depend onz.

We do not assume that the main-effects model hold
across the entire range of the factorsz. Rather, we assume
that it is a good local approximation for modest deviation
from a nominal level, typically the center of the design
space.

2.2 Determination of Factor Levels

In practice, when we consider whether a change in th
response is worth pursuing, the cost to achieve the chan
is critical. Similarly, when we compare the importance o
two different factors we have to make sure that they ar
based on the same cost or the comparison has little meani
By scaling the effect coefficients with respect to the cost o
changing the factors’ levels we can insure that the resul
have a useful interpretation. We describe one way to d
this here.

Let ci be the cost per unit change of factorzi , for
i = 1, 2, . . . , K . Further, letc∗ = maxi∈D ci , whereD is
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the set of indices of all of the factors whose levels can onl
be changed in discrete units (e.g., number of machines
a workstation, or number of cashiers at the checkout). L
10 be the minimum change in the expected response f
which we would be willing to spendc∗, and let11 be a
change in the expected response that we would not want
miss if it could be achieved for only a cost ofc∗. If D = ∅,
then let (c∗,10) be such that we are willing to spendc∗
for a 10 change in the expected response, and define11
as before.

Let

δi =
{

c∗/ci , i /∈ D
bc∗/ci c, i ∈ D

which is the maximum change in factori that can be achieved
for a cost ofc∗; and letwi = δi ci /c∗ ≤ 1, which is the
fraction of a full-cost move,c∗/ci , that can actually be
made for factori . If factor i can be changed continuously
(i /∈ D), or i ∈ D but c∗/ci is an integer, thenwi = 1. If
i ∈ D andc∗/ci is not an integer, thenwi < 1.

For instance, suppose that there areK = 3 factors. The
level of the first can be changed continuously, but the othe
two are discrete. Ifc1 = 300, c2 = 400, andc3 = 1000,
then c∗ = 1000, δ1 = 10/3, δ2 = 2, and δ3 = 1 giving
w1 = 1, w2 = 0.8 andw3 = 1.

Recall that the main-effects model is

Y = β̃0 +
K∑

i=1

β̃i zi + εi .

Let the nominal (low) level ofzi bez0
i and let the high level

be z0
i + δi , for i = 1, 2, . . . , K . Define the transformed

variablesxi = wi (zi −z0
i )/δi = (ci /c∗)(zi −z0

i ). ThenY can
be expressed as a linear regression onxi , i = 1, 2, . . . , K ,
as

Y = β0 +
K∑

i=1

βi xi + εi (2)

where the low level ofxi is 0, the high level iswi , and
βi = δi β̃i /wi , for i = 1, 2, . . . , K . We assume that the
sign of each factor effect is known so that we can set th
levels of each factor to haveβi > 0 for all i > 0.

Now eachβi , i > 0, has a practical interpretation:
it represents the change in the expected response wh
spendingc∗ to change the level of factori , and this change
can be compared with10 and11 without ambiguity.

2.3 Objective of the Screening Procedure

In screening experiments, the primary objective is to divid
the factors into two groups: those that are unimportan
which we take to meanβi ≤ 10, and those that are im-
portant, meaningβi > 10. Since we can never make
these determinations with certainty in a stochastic simula
t

n

tion, we instead pursue a screening procedure that con
the probability of incorrectly classifying each factor. Mor
specifically, for those factors with effects≤ 10, we require
the procedure to control the Type I Error of declaring the
important to be≤ α; and for those factors with effect
≥ 11 we require the procedure to provide power for ide
tifying them as important to be≥ γ . Here α and γ are
user-specified parameters and10 and11 are defined as in
Section 2.2 with11 ≥ 10. Those factors whose effects fa
between10 and11 are considered important and we wa
the procedure to have reasonable, though not guarant
power to identify them. Figure 1 is a generic illustratio
of the desired performance of our screening procedure

To illustrate, consider a simulated manufacturing sy
tem where the response is the expected throughput of
system. The controllable factors may include the numbe
machines at each workstation; average processing tim
each machine; and skill levels of the workers. The practi
threshold10 is set as the minimum change in expect
throughput that managers consider worth pursuing at a c
c∗ of changing the most expensive factor by one unit. F
example,c∗ might be the cost of purchasing a very expe
sive machine. In this illustration, screening experime
would be used to identify each factor that influences
expected throughput by more than10 when spendingc∗ to
change that factor. For each factor, the procedure sho
have probability≤ α of declaring it important if it cannot
influence the expected throughput by at least10 at a cost
of c∗. The procedure should also have probability≥ γ

of identifying a factor as important if its influence on th
expected throughput is≥ 11 at a cost ofc∗. Here11 is a
critical change in the expected throughput that the manag
do not want to ignore if it can be achieved for a cost
only c∗. Factors whose effects are neither unimportant n
critical will be identified with less power thanγ .

3 CONTROLLED SEQUENTIAL
BIFURCATION (CSB)

The CSB procedure inherits the basic concepts from
SB procedure proposed by Bettonvil and Kleijnen (199
and from the SB-under-uncertainty procedure proposed
Cheng (1997). Specifically, like other SB procedures,
CSB procedure is a series of steps in which groups of fac
are tested. If a group of factors is considered unimporta
then every factor in the group will be considered unimporta
If the group is considered important, then it is split for furth
testing. When the algorithm stops, each of the factors w
be classified as either important or unimportant. The uniq
feature of CSB is that each step contains a two-stage tes
procedure to insure the desired power. In addition, C
preserves the step-down nature of SB so that Type I E
is controlled. The testing procedure is explained in de
in the following sections.
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Figure 1: Generic Illustration of Desired Performance of
Screening Procedures

3.1 Notation

The notation that we use to define CSB is provided below

• There are in totalK indexed factors.
• Let xi represent the setting of factori . A replication

at levelk is defined as follows:

xi (k) =
{

wi , i = 1, 2, . . . , k
0, i = k + 1, k + 2, . . . , K

• Yj (k) : The j th response at levelk
• Ȳ(k): Average of all available responses at levelk
• n0: Number of initial replications made at each

level
• σ 2

k : variance of responses at levelk
• Dj (k1, k2) = Yj (k2) − Yj (k1), j = 1, 2, . . ., for

k2 > k1, whose expected value is
∑k2

i=k1+1 wi βi ;

and whose variance isσ 2
k1

+ σ 2
k2

.

• D̄(k1, k2) = Ȳ(k2) − Ȳ(k1), for k2 > k1.
• w(k1, k2) = min{wk1+1, wk1+2, . . . , wk2}

is the smallest weight associated with
βk1+1, βk1+2, . . . , βk2.

• S2(k1, k2) = ∑n0
j =1

(
Dj (k1, k2) − D̄(k1, k2)

)2
/(n0−

1). Notice thatS2(k1, k2) is only determined by
the initial n0 replications.

• UA(k1, k2) = 10 + t√1−α, n0−1S(k1, k2)/
√

w2nk,
where nk = min{nk1, nk2} and nki is the total
number of available responses at factor levelki .
The subscriptA = I , I I denotes the first or second
stage of the testing procedure, respectively.
• L A(k1, k2) = 10− t(1+γ )/2,n0−1S(k1, k2)/
√

w2nk,
where nk = min{nk1, nk2} and nki is the total
number of available responses at factor levelki .
The subscriptA = I , I I denotes the first or second
stage of the testing procedure, respectively.

• h: A constant such that Pr(T ≤ t√1−α,n0
− h) =

(1−γ )/2, whereT is a t-distributed random vari-
able withn0 − 1 degrees of freedom.

• N(k1, k2) = dh2S2(k1, k2)/ (w(11 − 10))
2e

3.2 CSB Procedure

A high-level description of CSB is shown in Figure 2. The
figure illustrates how groups are created, manipulated, test
and classified, but does not specify how data are genera
or what tests are performed. Detailed descriptions of da
collection and hypothesis testing follow. This section is
closed by an example.

Data (replications) are obtained whenever new group
are formed according to the following rule: When forming
a new group containing factors{k1+1, k1+2, . . . , k2} with
k1 < k2, check the number of observations at levelk1 and
k2.

• If nk1 = 0, then getn0 observations at levelk1 and
setnk1 = n0.

Initialization: Create an empty LIFO queue for
groups. Add the group{1, 2, . . . , K } to the
LIFO queue.

While queue is not empty, do

Remove: Remove a group from the
queue.

Test:

Unimportant: If group is unimpor-
tant, then classify all factors in the
group as unimportant.

Important (size = 1): If group is
important and of size 1, then classify
the factor as important.

Important (size > 1): If group is
important and size is greater than
1, then split it into two subgroups
such that all factors in the first sub-
group have smaller index than those
in the second subgroup. Add each
subgroup to the LIFO queue.

End Test

End While

Figure 2: Structure of CSB
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• If nk2 = 0, then getn0 observations at levelk2 and
setnk2 = n0.

• If nk1 < nk2, then makenk2 − nk1 additional repli-
cations at levelk1 and setnk1 = nk2.

• If nk2 < nk1, then makenk1 − nk2 additional repli-
cations at levelk2 and setnk2 = nk1.

Suppose the group removed from the queue conta
factors{k1+1, k1+2, . . . , k2} with k1 < k2. TheTest step
in Figure 2 tests the following hypothesis to determine if
group might contain important factors:

H0 :
k2∑

i=k1+1

βi ≤ 10 vs. H1 :
k2∑

i=k1+1

βi > 10.

The procedure given below for testing this hypothesis gu
antees power≥ γ if

∑k2
i=k1+1 βi ≥ 11.

1. If D̄(k1, k2)/w(k1, k2) ≤ UI , and min{nk1, nk2} ≥
N(k1, k2), then classify the group as unimportan

2. Else ifD̄(k1, k2)/w(k1, k2) ≤ L I , then classify the
group as unimportant.

3. Else if D̄(k1, k2)/w(k1, k2) > UI , then classify
the group as important.

4. Else make(N(k1, k2)−nk1)
+ observations at levels

k1 andk2 (recall thatnk1 = nk2). Then setnk1 =
nk2 = max{N(k1, k2), nk1}. Notice thatS2(k2, k2)

and the degrees of freedom do not change, b
D̄(k1, k2) is updated.

(a) If D̄(k1, k2)/w(k1, k2) < UI I , then classify
the group as unimportant.

(b) If D̄(k1, k2)/w(k1, k2) ≥ UI I , then classify
the group as important.

Notice that E
[
D̄(k1, k2)

] = ∑k2
i=k1+1 wi βi ≤∑k2

i=k1+1 βi . Therefore testing based on̄D(k1, k2) would

sacrifice power. Thus, we usēD(k1, k2)/w(k1, k2) because
E

[
D̄(k1, k2)/w(k1, k2)

] ≥ ∑k2
i=k1+1 βi .

As an illustration, consider the case ofK = 10 factors
and the first pass through the algorithm. Initially we mak
n0 replications at level 0 (all factors at their low level) an
n0 replications at level 10 (all factors at their high level
The group removed from the queue contains all factors a
w(0, 10) = min{w1, w2, . . . , w10}.

Next we evaluate D̄(0, 10), UI and L I . If
D̄(0, 10)/w(0, 10) ≤ L I , then we conclude that none
of the factors are important, since the sum of all e
fects is not important, and the algorithm stops.
D̄(0, 10)/w(0, 10) > UI , then the factors are separated in
two groups,{β1, β2, β3, β4, β5} and {β6, β7, β8, β9, β10},
andn0 replications are made at level 5 (xi , i = 1, 2, . . . , 5
are set at their high level andxi , i = 6, 7, . . . , 10 are set
at their low level). Both groups are added to the queue

If, on the other hand,D̄(0, 10)/w(0, 10) is between
L I andUI , then we calculateN(0, 10). If N(0, 10) ≤ n0,
s

-

t

then we conclude that all the factors are not importan
and the algorithm stops. IfN(0, 10) > n0, then we
collect N(0, 10) − n0 replications at both level 0 and
level 10, reevaluateD̄(0, 10), and calculateUI I . If
D̄(0, 10)/w(0, 10) ≥ UI I , then the factors are separated
into two groups as described above andn0 replications are
made at level 5. Both groups are added to the queue. Ot
erwise, all factors will be considered as unimportant an
the algorithm stops.

3.3 Implementation Issues

The following are key issues in our implementation of CSB

• Group splitting: Our current version of CSB
splits an important group in the middle. When
the number of factors in the group is odd, the
group containing factors with smaller indices will
get one more factor. So for a group containing
factors{k1 + 1, k1 + 2, . . . , k2} with k1 < k2, we
split at the pointk = d(k1 + k2)/2e and the two
new groups contains factors{k1+1, k1+2, . . . , k}
and{k + 1, k + 2, . . . , k2}, respectively. There are
other policies available (see Kleijnen, Bettonvil and
Persson 2003).

• Number of replications at each level: In our
current version of CSB, before performing the hy-
pothesis test, we always make enough replication
to insure thatnk1 = nk2.

• Ordering of the factors: It is preferable to have
the factors ordered monotonically bywi so that
the small wi are grouped together. Consider
a group containing factors{k1, k1 + 1, . . . , k2},
0 ≤ k1 ≤ k2 ≤ K . The preferred order is to make
thewi in the group as close to each other as pos
sible, so E

[
D̄(k1, k2)/w(k1, k2)

]
will be closer

to
∑k2

i=k1+1 βi than the case with arbitrarily or-
deredwi . This can improve the efficiency of the
procedure.

3.4 Performance of CSB

The performance guarantees for the CSB procedure a
stated in following theorems. For the proofs see Wan
Ankenman and Nelson (2003).

Theorem 1 If model (2) holds with normally dis-
tributed error, then CSB guarantees that

Pr{Declare factori important |βi ≤ 10} ≤ α

for each factori individually.
Theorem 2 Let the group containing the factors

denoted{kl + 1, . . . , km} be represented by{kl → km},



Wan, Ankenman, and Nelson

I
er
ua
n
ed

n

n
a

e
t-
o
ed
e
r-
ys

ro
as

st
d
e
re

a
a

e
rio
rs

lie

of

s
n

e
al,
.
I
f

.

o

,

0 ≤ kl ≤ km ≤ K . If model (2) holds with normally
distributed error, then the two-stage test guarantees that

Pr


Declare{kl → km} important

∣∣∣∣∣∣
km∑

i=kl +1

βi ≥ 11


 ≥ γ

for each group{kl → km} tested.
In summary, the CSB procedure controls the Type

Error for each factor individually and guarantees the pow
for each step. The procedure does not require an eq
variance assumption, and is valid with or without commo
random numbers. The empirical evaluation will be discuss
in Section 4.

4 EMPIRICAL EVALUATION

In this section, we discuss the numerical results of simulatio
experiments to compare the following two procedures:

1. The CSB method proposed in Section 3.
2. Cheng’s method (Cheng 1997), an enhanceme

of the SB procedure for stochastic responses th
assumes equal variances.

The idea behind Cheng’s method is to determine wheth
a group of two or more factors are unimportant by construc
ing a one-sided confidence interval on the group effect. F
a group containing a single factor, replications are add
one-at-a-time until a two-sided confidence interval on th
factor effect shows that the effect is important or unimpo
tant. When a single factor is tested, the method emplo
an indifference parametera. In our notation, all the fac-
tors with effects smaller than10 + a can be classified as
unimportant. Cheng’s method does not guarantee to cont
Type I Error for each factor or power at any step, and h
no concept like11 for a critically important factor.

4.1 Summary of Results

Rather than employ system simulation models in this te
we chose instead to generate data from a main-effects mo
in which we could control the size of the effects and th
variances at different design points. Normal errors a
assumed with mean 0 and standard deviation,σ , equal to
m ∗ (1 + I ∗ size of the group effect), whereI is 0 if we
are running an equal-variance case, and 1 for an unequ
variance case. Thus, in unequal variance cases the stand
deviation is proportional to the size of the effect of th
group being screened. Neither procedure assumes p
knowledge of the variances. Common random numbe
were not employed.

For each case considered, the CSB procedure is app
1000 times and the percentage of time factori is declared
important is recorded; this is an unbiased estimator
Pr{factor i is declared important}.
l

t
t

r

r

l

,
el

l-
rd

r

d

To compare CSB to Cheng’s method, we set the indif-
ference parameter,a, such that the number of replications
required by Cheng’s method is approximately the same a
the number used by CSB for that case. Therefore we ca
compare the achieved Type I error and power of the two
methods with equal simulation effort.

The performance of Cheng’s method depends on th
case considered. When the variances are large or unequ
Cheng’s method loses control of the Type I Error and power
The CSB method, on the other hand, controls the Type
Error and power across all cases (although the number o
replications required to achieve this does differ substantially
by case).

In the following subsections we provide some illustra-
tive numerical results that emphasize the key conclusions

4.2 Unequal-Variance Cases

We set the parameters as in Table 1. We considered tw
different settings for the factor effects:

1. In Case 1 we set (β1, β2, . . . , β10) =
(2, 2.44, 2.88, 3.32, 3.76, 4.2, 4.64, 5.08, 5.52, 6),
spanning the range from10 to 10 + 11. For
CSB, the probability thatβ1 is declared important
should be smaller than 0.05, but forβ6, . . . , β10
it should be≥ 0.95.
LettingP(DI ) mean “probability of being declared
important,” Figure 3 plotsP(DI ) against effect size
for Cheng’s method and CSB with large (m = 1)
and small (m = 0.1) variances. We can see that
when variance is small, the two methods have
similar performance although CSB attains greater
power earlier. When the variance is large, however
Cheng’s method loses control of both Type I Error
and power.

2. In Case 2 we set (β1, β2, . . . , β10) =
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2), so that all effects are
10. This set is designed to study the Type I Error
control of the two methods. The other parameters
are the same as in the previous case.

Table 1: Parameters for Unequal-Variance Cases

Parameter Value
K 10
10 2
11 4
α 0.05
γ 0.95
σ m∗(1 + size of the group effect)
m 0.1, 1



Wan, Ankenman, and Nelson

r

s
,

n

e

to
SB
nd
-
e
an-
en

nt
ro-
e

beta

P
(D

I)

2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

CSB..large.var
Cheng..large.var
CSB..small.var
Cheng..small.var
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Figure 4 shows the Type I Error control of both
methods. Cheng’s method has large Type I Erro
(as high as 0.5) when the variance is large. Even fo
the small-variance case, the largest Type I Error i
still more than 0.2 for Cheng’s method. By design
CSB controls Type I Error to be≤ α in all cases.

4.3 Equal-Variance Cases

The parameter settings are the same as the unequal varia
cases except thatσ = m, which is the same across all
responses. We considered two different settings for th
factor effects:

1. In Case 1 we set (β1, β2, . . . , β10) =
(2, 2.44, 2.88, 3.32, 3.76, 4.2, 4.64, 5.08, 5.52, 6).
The results are summarized in Figure 5. This
time the two methods perform similarly, although
CSB has somewhat larger power.
r
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Figure 5: Case 1 with Equal Variances
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Figure 6: Case 2 with Equal Variances

2. In Case 2 we set (β1, β2, . . . , β10) =
(2, 2, 2, 2, 2, 2, 2, 2, 2, 2). As shown in Figure 6,
CSB has a better control of Type I Error in both
cases.

To summarize, CSB has superior performance
Cheng’s method in large and unequal variance cases. C
has guaranteed performance with different parameter a
factor configurations, which makes it attractive for prob
lems with limited prior knowledge. Cheng’s method, on th
other hand, assumes variance homogeneity to gain adv
tages on degrees of freedom and it can be effective wh
this assumption is satisfied.

5 CONCLUSION

CSB is a new factor-screening method for discrete-eve
simulations; it combines a two-stage hypothesis-testing p
cedure with the sequential bifurcation method to control th
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power at each bifurcation step and Type I Error for ea
factor under heterogeneous variance conditions. CSB is
first factor-screening procedure to provide these guarante

Future research will concentrate on developing a mo
efficient hypothesis test that takes advantage of situation
which a group factor effect is clearly greater than11. An-
other topic worth considering is how to make the procedu
more adaptive to accumulated information as the screen
experiment progresses.
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