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ABSTRACT

Screening experiments are performed to eliminate unimpor-
tant factors so that the remaining important factors can be
more thoroughly studied in later experiments. Sequential
bifurcation (SB) is a screening method that is well suited
for simulation experiments; the challenge is to prove the
“correctness” of the results. This paper proposes Controlled
Sequential Bifurcation (CSB), a procedure that incorporates
a two-stage hypothesis-testing approach into SB to control
error and power. A detailed algorithm is given, performance
is proved and an empirical evaluation is presented.

1 INTRODUCTION

Screening experiments are designed to investigate the con-
trollable factors in an experiment with a view toward elim-
inating the unimportant ones. According to the sparsity
of effects principle, in many cases only a few factors are
responsible for most of the response variation (Myers and
Montgomery 1995). A good screening procedure should
correctly and efficiently identify important factors. This is
especially important when the system is complicated and
many factors are being considered.

In this paper we focus on factor-screening methods
for discrete-event simulations. Simulation experiments are
significantly different from physical experiments in the fol-
lowing ways:

1. Screening problemsin simulation can involve many
more factors than real-world problems. In typical
physical experiments it is difficult to control more
than 20 factors, while in simulation experiments it
is easy to control and simulate many combinations
of decision variables because the experiment can
be automated (Trocine and Malone 2000, 2001;
Bettonvil and Kleijnen 1997; Kleijnen, Bettonvil
and Persson 2003).
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2. In traditional physical experiments a factor effect
is compared to zero. If the effect is found to be
statistically significantly different than zero, then
the effect is considered to be important. In many
simulation experiments we expeatl factors to
have some non-zero effect. Therefore, in this paper,
we require that the magnitude of an effect be greater
than a specified threshold before it is considered
to be important. Of course, if this threshold is set
to zero, then the two approaches are equivalent.
In physical experiments, switching from one factor
setting to another can be costly (time and money).
In simulation, however, the switching is compara-
tively easy. This makes sequential methods espe-
cially attractive in simulation.

In simulation experiments, common random num-
bers (CRN) can be implemented to reduce the
variance of estimated effects as compared to inde-
pendent simulations. Controlling random number
seeds is not applicable in physical experiments,
although the concept is similar to “blocking.”
These differences suggest that screening strategies for sim-
ulation experiments will be different from those for physical
experiments.

Many screening strategies have been developed to iden-
tify important factors with an economical number of design
points and samples (Trocine and Malone 2000, 2001). For
instance, the first stage of response surface methodology is
usually factor screening, which is often based on a first-
order design such as &2 fractional factorial design or an
orthogonal array such as a Plackett-Burman design. There
has been considerable research in this area (e.g., Myers
and Montgomery 1995; Wu and Hamada 2000). However,
most of these experiment-design strategies emphasize phys-
ical experiments and do not take advantage of the highly
sequential nature of simulation experiments. In fact, recent
research has gone in the opposite direction by combining

3.
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the screening experiments and a follow-up response explo- In this paper we propose a modified SB procedure,
ration into one design to screen out the important factors called Controlled Sequential Bifurcation (CSB), for stochas-
and build the model simultaneously (Cheng and Wu 2001). tic simulations. The contribution of CSB is that it controls

Group-screening methods have been widely used for the Type | Error and power simultaneously. A two-stage
situations with large numbers of factors. The fundamental testing procedure is introduced to guarantee the power of
idea is to identify the important/unimportant factors as a each step; and at the same time the step-down property of
group to save experimental effort (Cheng and Wu 2001). SB implies Type | Error control for each factor.
If a group is considered to be important, then subgroups The paper is organized as follows: In Section 2 we
or individual factors within the group should be further define the underlying response model that we will use. Sec-
screened; if a group is not considered to be important, tion 3 describes the procedure and discusses its performance.
then the whole group can be classified as unimportant. In Section 4 presents an empirical evaluation comparing CSB
group screening the effects of the factors that are grouped to another version of SB designed for stochastic simulation.
together must have the same sign, and a main-effects modelFuture research is discussed in Section 5.
is typically assumed (Trocine and Malone 2001).

Other screening methodologies for simulation include 2 RESPONSE MODEL
one-factor-at-a-time designs (Campolongo, Kleijnen and
Andres 2000); fold-over designs (Myers and Montgomery In this section we introduce the underlying response model
1995); methods based on frequency domain analysis (Mor- that will guide our new CSB procedure.
ris and Bardhan 1995); edge designs (Elster and Neumaier
1995); iterated fractional factorial designs (Campolongo, 2.1 Main-Effects Model
Kleijnen and Andres 2000) and the Trocine screening pro-
cedure (Trocine and Malone 2001). These methods will Suppose that there arné factors of interest with effect
not be discussed in this paper. The interested reader shouldcoefficientsg = {1, Bo. ..., Bk}. The output of interest
refer to Trocine and Malone (2000, 2001) or Campolongo, from a simulation replication is denoted b, andY is
Kleijnen and Andres (2000) for reviews. represented by the following metamodel:

We concentrate on a specific method called Sequential
Bifurcation (SB), which is a combination of group screening Y =Bo+P1za+ Pozo+ - + Bk + ¢ (1)
and a sequential step-down procedure (Bettonvil and Kleij-
nen 1997). A sequential design is one in which the design which is called a multiple linear regression model wih
points (factor combinations to be studied) are selected as regression variables and main effects only. The setting of
the experiment results become available. Therefore, as thethe factorsz = (z3, 7, .. ., zk ), is deterministic and under
experiment progresses, insight into factor effects is accu- the control of the experimenter. The error tesnon the
mulated and used to select the next design point or group other hand, is a random variable; in this paper we assume it
of design points. is a NoK0, o2(z)) random variable where?(z) is unknown

SBis a series of steps. In each step, a group of factors is and may depend on
tested forimportance. The first step begins with all factors of We do not assume that the main-effects model holds
interest in a single group and tests that group’s effect. If the across the entire range of the factarsRather, we assume
group’s effect is important, indicating that at least one factor that it is a good local approximation for modest deviations
in the group may have an important effect, then the group is from a nominal level, typically the center of the design
splitinto two subgroups. The effects of these two subgroups space.
are then tested in subsequent steps and each subgroup is
either classified as unimportant or split into two subgroups 2.2 Determination of Factor Levels
for further testing. As the experiment proceeds, the groups
become smaller until eventually all factors that have not In practice, when we consider whether a change in the
been classified as unimportant are tested individually. This response is worth pursuing, the cost to achieve the change
method was first proposed for deterministic computer simu- is critical. Similarly, when we compare the importance of
lations by Bettonvil and Kleijnen (1997). Later the method two different factors we have to make sure that they are
was extended to cover stochastic simulations (Cheng 1997). based on the same cost or the comparison has little meaning.
The sequential property of the method makes it well suited By scaling the effect coefficients with respect to the cost of
for simulation experiments. Examples have shown that the changing the factors’ levels we can insure that the results
method is highly efficient when important factors are sparse have a useful interpretation. We describe one way to do
and clustered (Cheng 1997, Bettonvil and Kleijnen 1997), this here.
but there is no performance guarantee in the stochastic case. Let ¢ be the cost per unit change of factar, for

i =12,...,K. Further, letc* = max<p ¢, whereD is
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the set of indices of all of the factors whose levels can only tion, we instead pursue a screening procedure that controls
be changed in discrete units (e.g., number of machines at the probability of incorrectly classifying each factor. More

a workstation, or number of cashiers at the checkout). Let specifically, for those factors with effects Ag, we require

Ag be the minimum change in the expected response for the procedure to control the Type | Error of declaring them

which we would be willing to spend*, and letA; be a important to be< «; and for those factors with effects
change in the expected response that we would not want to > A1 we require the procedure to provide power for iden-
miss if it could be achieved for only a costof. If D = ¢, tifying them as important to be- y. Herea and y are
then let(c*, Ag) be such that we are willing to sper user-specified parameters ang and A; are defined as in
for a Ag change in the expected response, and define Section 2.2 withA1 > Ag. Those factors whose effects fall
as before. betweenAg and A1 are considered important and we want
Let the procedure to have reasonable, though not guaranteed,
c*/ci, 1¢D power to identify them. Figure 1 is a generic illustration
P lc*/ci|, ieD of the desired performance of our screening procedure.

To illustrate, consider a simulated manufacturing sys-
whichis the maximum change in facidhat can be achieved  tem where the response is the expected throughput of the
for a cost ofc*; and letw; = §ici/c* < 1, which is the system. The controllable factors may include the number of
fraction of a full-cost movec*/ci, that can actually be  machines at each workstation; average processing time of
made for factoi. If factori can be changed continuously  each machine; and skill levels of the workers. The practical
(i ¢ D), ori € D butc*/c is an integer, them; = 1. If thresholdAg is set as the minimum change in expected
i € D andc*/c is not an integer, themw; < 1. throughput that managers consider worth pursuing at a cost

For instance, suppose that there Kre= 3 factors. The c* of changing the most expensive factor by one unit. For
level of the first can be changed continuously, but the other examplec* might be the cost of purchasing a very expen-

two are discrete. Ity = 300, c; = 400, andcs = 1000, sive machine. In this illustration, screening experiments
thenc* = 1000, 1 = 10/3,52 = 2, and é3 = 1 giving would be used to identify each factor that influences the
w1 =1, w2 =0.8 andwz = 1. expected throughput by more thag when spending* to
Recall that the main-effects model is change that factor. For each factor, the procedure should
K have probability< « of declaring it important if it cannot
Y =fo+ ZBi Zi +&. influence the expected throughput by at leAstat a cost
i of ¢*. The procedure should also have probabilityy
of identifying a factor as important if its influence on the
Let the nominal (|OW) level of; bezio and let the hlgh level expected throughput is Ap at a cost ofc*. HereAq is a
be 20 + &, fori = 1,2,...,K. Define the transformed critical change in the expected throughput that the managers
variable; = wij (z; —ziO)/Si = (G /c*)(zi—zio). ThenY can do not want to ignore if it can be achieved for a cost of
be expressed as a linear regressiorxgn = 1,2, ..., K, only ¢*. Factors whose effects are neither unimportant nor
as critical will be identified with less power than.
K
Y =B+ ) BiXi+ei 2) 3 CONTROLLED SEQUENTIAL
i—1 BIFURCATION (CSB)

where the low level ofx; is 0, the high level iswj, and
B = 8 Bi/wi, fori =1,2,...,K. We assume that the
sign of each factor effect is known so that we can set the
levels of each factor to havyg > O for all i > 0.

Now eachgi, i > 0, has a practical interpretation:
it represents the change in the expected response when
spendingc* to change the level of factar and this change
can be compared withhg and A1 without ambiguity.

The CSB procedure inherits the basic concepts from the
SB procedure proposed by Bettonvil and Kleijnen (1997)

and from the SB-under-uncertainty procedure proposed by
Cheng (1997). Specifically, like other SB procedures, the
CSB procedure is a series of steps in which groups of factors
are tested. If a group of factors is considered unimportant,
then every factor in the group will be considered unimportant.
Ifthe group is considered important, then itis split for further

testing. When the algorithm stops, each of the factors will

be classified as either important or unimportant. The unique

In screening experiments, the primary objective is to divide feature of CSB is that each step contains a two-stage testing

the factors into two groups: those that are unimportant procedure to insure the desired power. In addition, CSB
which we take to mear < Ao, and those that are im ' preserves the step-down nature of SB so that Type | Error
1 = ] -

portant, meaningi > Ao. Since we can never make is ;:r:)ntfrolllled: The tte_stlng procedure is explained in detail
these determinations with certainty in a stochastic simula- in the Tollowing sections.
567
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Screening Procedures

3.1 Notation

The notation that we use to define CSB is provided below.

There are in totaK indexed factors.
Letx; representthe setting of factiorA replication
at levelk is defined as follows:

o fwi, i=12,....k
Xl(k)—{o’ i=k+Lk+2...,K

Yj (k) : The j" response at leved

Y (k): Average of all available responses at lekel
no: Number of initial replications made at each
level

o2: variance of responses at level

Dj(ki, k2) = Yj(ka) = Yj(ky),j =1,2,..., for

k2 > ki, whose expected value Ej:‘ile wi Bi;
and whose variance is2 + o2

D(k1, k2) = Y(k2) — Y(kq), for ko > ki.

w(k1, k2) = min{wk, +1, Wky 42, - - - » Wy}

is the smallest weight associated with
Bia+1s Bra+2s - - - Pro-

S (ki k) = X1, (Dj (ke ka) — D(ke. k2))* /(no—
1). Notice thatS?(ky, ko) is only determined by
the initial ng replications.

Ua(ka, k2) = Ao + t 15, n,—15(ke, k2)/v/w?ng,
where ng = min{ny, nK,} and ny is the total
number of available responses at factor lekel
The subscripA = I, |1 denotes the first or second
stage of the testing procedure, respectively.
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o La(ke, k2) = Ag—t(14y)/2,n0-1S(K1, ko) /v/w?ny,
where ng = min{ny, Nk,} and ny is the total
number of available responses at factor leikel
The subscripA = I, |1 denotes the first or second
stage of the testing procedure, respectively.

* h: A constant such that PF < tT—an, — h) =
(1—1y)/2, whereT is at-distributed random vari-
able withng — 1 degrees of freedom.

© Nk k) = [h2S (k1. k2)/ (w(A1 — Ag))?]

3.2 CSB Procedure

A high-level description of CSB is shown in Figure 2. The
figure illustrates how groups are created, manipulated, tested
and classified, but does not specify how data are generated
or what tests are performed. Detailed descriptions of data
collection and hypothesis testing follow. This section is
closed by an example.

Data (replications) are obtained whenever new groups
are formed according to the following rule: When forming
a new group containing factofk; + 1, k1 + 2, ..., ko} with
ki1 < ko, check the number of observations at lekeland
ko.

* If n,, =0, then geng observations at levéd; and

setny, = ng.
Initialization: Create an empty LIFO queue for
groups. Add the groupl, 2, ..., K} to the
LIFO queue.
While queue is not empty, do
Remove: Remove a group from the
queue.
Test:
Unimportant: If group is unimpor-

tant, then classify all factors in the
group as unimportant.

Important (size = 1): If group is
importantand of size 1, then classjfy
the factor as important.

Important (size > 1): If group is
important and size is greater than
1, then split it into two subgroups
such that all factors in the first sup-
group have smaller index than thgse
in the second subgroup. Add edch
subgroup to the LIFO queue.

End Test
End While

Figure 2: Structure of CSB
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then we conclude that all the factors are not important
and the algorithm stops. IN(0,10) > ng, then we
collect N(0,10) — ng replications at both level 0 and
level 10, reevaluateD(0,10), and calculateU;;. If
o If nk, < N, then makeny, — ng, additional repli- D(0, 10)/w(0, 10) > U,;, then the factors are separated
cations at leveky and setny, = n,. into two groups as described above andreplications are
Suppose the group removed from the queue contains made at level 5. Both groups are added to the queue. Oth-
factors{ks +1, k1 +2, ..., ko} with ky < ko. TheTest step erwise, all factors will be considered as unimportant and
in Figure 2 tests the following hypothesis to determine if a the algorithm stops.
group might contain important factors:

* If n,, = 0, then geng observations at levéd, and
setng, = Np.

* If ng, < n,, then makeny, — nk, additional repli-
cations at levek; and setny, = n,.

3.3 Implementation Issues

k2 k2
Ho: Z Bi <Apwvs Hi: Z Bi > Ao. The following are key issues in our implementation of CSB.

i=ky+1 i=ky+1

The procedure given below for testing this hypothesis guar-
antees powep y if Zikile Bi = A1

1. If D(ky, k2)/w(ka, k2) < Uy, and mir{ng,, ng,} >

N (k1, ko), then classify the group as unimportant.

2. ElseifD(ky, ko) /w(ky, ko) < Ly, then classify the

group as unimportant.

3. Else if D(ky, ko)/w(ky, ko) > Uy, then classify

the group as important.

4. Else makéN (ki, ko) —nk, )™ observations at levels

ki andky (recall thatng, = ny,). Then setny,

Nk, = Max{N(kz, k2), Nk, }. Notice thatS?(kz, kz)

and the degrees of freedom do not change, but

D (K1, ko) is updated.

(@) If D(ky, ko)/w(ky, ko) < Uy, then classify
the group as unimportant.

(b) If D(ke, k2)/w(ke, ko) > Uy, then classify
the group as important.

Notice that E[D(ky, k2)] Y wifi <
Zikikl“ﬁi. Therefore testing based dd(ki, kz) would
sacrifice power. Thus, we ug®(ky, ko) /w(ky, ko) because
E [Dike. ko) /wike, k)] = 302, .1 Bi-

As an illustration, consider the case Kf= 10 factors
and the first pass through the algorithm. Initially we make

np replications at level O (all factors at their low level) and
no replications at level 10 (all factors at their high level).

e Group splitting: Our current version of CSB
splits an important group in the middle. When
the number of factors in the group is odd, the
group containing factors with smaller indices will
get one more factor. So for a group containing
factors{ks + 1, k1 + 2, ..., ko} with k1 < ko, we
split at the pointk = [(ky + k2)/2] and the two
new groups contains factofk; +1, k1 +2, ..., k}
and{k+1,k+2,...,Kkp}, respectively. There are
other policies available (see Kleijnen, Bettonviland
Persson 2003).

* Number of replications at each level: In our
current version of CSB, before performing the hy-
pothesis test, we always make enough replications
to insure thaty, = ny,.

e Ordering of the factors: It is preferable to have
the factors ordered monotonically hy; so that
the small w; are grouped together. Consider
a group containing factorgky, k; + 1, ..., ka},

0 <kj < ko < K. The preferred order is to make
the wj in the group as close to each other as pos-
sible, so E [D(k1, k2)/w(ka, k)] will be closer

to Z:‘ikl 418 than the case with arbitrarily or-
deredw;j. This can improve the efficiency of the
procedure.

3.4 Performance of CSB

The group removed from the queue contains all factors and The performance guarantees for the CSB procedure are

w(0, 10) = min{w1, wo, ..., wio}.

Next we evaluate D(0,10), U, and L. If
D(0, 10)/w(0,10) < L;, then we conclude that none
of the factors are important, since the sum of all ef-
fects is not important, and the algorithm stops. |If
D(0, 10)/w(0, 10) > U, then the factors are separated into
two groups, {1, B2, B3, Ba, Bs} and {Be. B7. Bs, Pa, P10},
andng replications are made at level & (i =1,2,...,5
are set at their high level and, i = 6,7,...,10 are set
at their low level). Both groups are added to the queue.

If, on the other handD(0, 10)/w(0, 10) is between
L, andU,, then we calculatdN(0, 10). If N(O, 10) < ng,
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stated in following theorems.
Ankenman and Nelson (2003).

Theorem 1 If model (2) holds with normally dis-
tributed error, then CSB guarantees that

For the proofs see Wan,

Pr{Declare factori important|8i < Ao} <«

for each factor individually.
Theorem 2 Let the group containing the factors
denoted{k| + 1, ..., kn} be represented byki — km},
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0 < k < kp < K. If model (2) holds with normally To compare CSB to Cheng’s method, we set the indif-
distributed error, then the two-stage test guarantees that ference parametea, such that the number of replications
required by Cheng’s method is approximately the same as

km the number used by CSB for that case. Therefore we can
Pr{ Declare {kj — km} important Z Bi=A1g >y compare the achieved Type | error and power of the two
i=k+1 methods with equal simulation effort.
The performance of Cheng's method depends on the
for each groupfk; — km} tested. case considered. When the variances are large or unequal,

In summary, the CSB procedure controls the Type | Cheng’s method loses control of the Type | Error and power.
Error for each factor individually and guarantees the power The CSB method, on the other hand, controls the Type |
for each step. The procedure does not require an equal Error and power across all cases (although the number of
variance assumption, and is valid with or without common replications required to achieve this does differ substantially
random numbers. The empirical evaluation will be discussed by case).
in Section 4. In the following subsections we provide some illustra-

tive numerical results that emphasize the key conclusions.
4 EMPIRICAL EVALUATION

4.2 Unequal-Variance Cases
In this section, we discuss the numerical results of simulation

experiments to compare the following two procedures: We set the parameters as in Table 1. We considered two
1. The CSB method proposed in Section 3. different settings for the factor effects:
2. Cheng's method (Cheng 1997), an enhancement 1. In Case 1 we set(fspfo,...,P10 =
of the SB procedure for stochastic responses that (2,2.44,2.88,3.32,3.76,4.2, 4.64, 5.08, 5.52, 6),
assumes equal variances. spanning the range fromg to Ag + Aj. For
Theideabehind Cheng’s method is to determine whether CSB, the probability thag; is declared important
a group of two or more factors are unimportant by construct- should be smaller than 0.05, but 8, .. ., f10
ing a one-sided confidence interval on the group effect. For it should be> 0.95.
a group containing a single factor, replications are added Letting P(D1) mean “probability of being declared
one-at-a-time until a two-sided confidence interval on the important,” Figure 3 plot® (D) against effect size
factor effect shows that the effect is important or unimpor- for Cheng’s method and CSB with large & 1)
tant. When a single factor is tested, the method employs and small n = 0.1) variances. We can see that
an indifference parameter. In our notation, all the fac- when variance is small, the two methods have
tors with effects smaller thamg + a can be classified as similar performance although CSB attains greater
unimportant. Cheng’s method does not guarantee to control power earlier. When the variance is large, however,
Type | Error for each factor or power at any step, and has Cheng’s method loses control of both Type | Error
no concept likeA for a critically important factor. and power.
2. In Case 2 we set(f1,82,...,0100 =
4.1 Summary of Results (2,2,2,2,2,2,2,2,2,2), so that all effects are
Ag. This set is designed to study the Type | Error
Rather than employ system simulation models in this test, control of the two methods. The other parameters
we chose instead to generate data from a main-effects model are the same as in the previous case.

in which we could control the size of the effects and the
variances at different design points. Normal errors are

assumed with mean 0 and standard deviatignequal to Table 1: Parameters for Unequal-Variance Cases
m* (1 + Z = size of the group effegt whereZ is O if we Paramete Value
are running an equal-variance case, and 1 for an unequal- K 10
variance case. Thus, in unequal variance cases the standard Ao 2
deviation is proportional to the size of the effect of the AL 2
group being screened. Neither procedure assumes prior o 0.05
knowledge of the variances. Common random numbers v 095
were not employed. _ _ o m«(1 + size of the group effect
For each case considered, the CSB procedure is applied m 01 1

1000 times and the percentage of time fadtis declared
important is recorded; this is an unbiased estimator of
Pr{factori is declared importaht
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Figure 3: Case 1 with Unequal Variances
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Figure 4: Case 2 with Unequal Variances

Figure 4 shows the Type | Error control of both
methods. Cheng’s method has large Type | Error
(as high as 0.5) when the variance is large. Even for
the small-variance case, the largest Type | Error is
still more than 0.2 for Cheng’s method. By design,
CSB controls Type | Error to be « in all cases.

4.3 Equal-Variance Cases
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47 ——— Cheng..small.var
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Figure 5: Case 1 with Equal Variances
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Figure 6: Case 2 with Equal Variances

2. In Case 2 we set(f1,82,...,0100 =
(2,2,2,2,2,2,2,2,2,2). As shown in Figure 6,
CSB has a better control of Type | Error in both
cases.

To summarize, CSB has superior performance to
Cheng’s method in large and unequal variance cases. CSB
has guaranteed performance with different parameter and
factor configurations, which makes it attractive for prob-
lems with limited prior knowledge. Cheng’s method, on the

The parameter settings are the same as the unequal varianc@®ther hand, assumes variance homogeneity to gain advan-

cases except that = m, which is the same across all

tages on degrees of freedom and it can be effective when

responses. We considered two different settings for the this assumption is satisfied.

factor effects:
1. In Case 1 we set(B1,82,...,0100 =
(2,2.44,2.88,3.32,3.76,4.2, 4.64,5.08, 5.52, 6).
The results are summarized in Figure 5. This
time the two methods perform similarly, although
CSB has somewhat larger power.
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5 CONCLUSION

CSB is a new factor-screening method for discrete-event
simulations; it combines a two-stage hypothesis-testing pro-
cedure with the sequential bifurcation method to control the



Wan, Ankenman, and Nelson

power at each bifurcation step and Type | Error for each

factor under heterogeneous variance conditions. CSB is the
first factor-screening procedure to provide these guarantees.

Future research will concentrate on developing a more
efficient hypothesis test that takes advantage of situations in
which a group factor effect is clearly greater thap. An-
other topic worth considering is how to make the procedure
more adaptive to accumulated information as the screening
experiment progresses.
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