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ABSTRACT 

We study the concept of ports and we define an ontology 
for representing them. Ports define the locations of interac-
tion at the boundaries of components or sub-systems; they 
can be used across different disciplines for both product 
modeling and simulation. They are therefore a convenient 
abstraction that allows simulation modelers to modularize 
and encapsulate their system descriptions such that con-
figurations of port-based product models can be used to 
generate multiple simulation models at different levels of 
abstraction.  However, to combine system models effec-
tively across different disciplines, the representation of the 
ports needs to be unambiguous yet flexible, so that it can 
accommodate the differences in vocabulary and approach 
of all the disciplines. We provide an overview of how a 
port ontology, defined in the web ontology language, 
OWL, can capture both syntactic and semantic information 
such that automated modelers can reason about the system 
configuration and corresponding simulation models. 

1 PORTS FOR AUTOMATED  
MODEL COMPOSITION 

1.1 Ports 

Ports constitute the interface that defines the boundary of 
components or sub-systems in a system configuration. As 
illustrated in Figure 1, a system can be represented as a 
configuration of components or sub-systems that are con-
nected to each other through well-defined interfaces.  The 
configuration interface of a component object consists of 
ports, which define the intended interaction between a 
component and its environment; interactions consist of the 
exchange of energy, matter, or signals (information).  For 
instance, the configuration interface of the motor in 
Figure 1 has ports for the stator, the shaft of the rotor, and 
the electrical connectors. 

It is through its ports that a component (sub-system) 
interacts with other components (sub-systems), as is indi- 
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cated in the graph by the connection between ports.  The 
fact that these interactions have been abstracted into ports 
does not imply that only components with standardized 
connectors can be defined in this fashion.  When interfaces 
are not completely standardized (e.g. a weld between two 
structural elements), the interaction can still be abstracted 
into one of a relatively small set of general interactions 
types (e.g. a rigid mechanical connection). 

1.2 Association Models 

Let us now take a look at how the configuration interfaces 
can be useful beyond just representing the system architec-
ture.  Assume that each configuration interface is linked to 
an association model that establishes the relationships be-
tween geometric, functional, and behavioral models, as is 
illustrated in Figure 2.  An association model may contain 
multiple simulation models at different levels of detail or 
from different disciplinary perspectives.  For instance, a 
solar panel on a satellite can be modeled as a source of 
electrical energy, as flexible mechanical inertia, or both, 
depending on the analysis for which the simulation will be 
used.  Regardless of the choice of model, however, the sys-
tem configuration (the location and type of connection be-
tween the solar panel and the rest of the satellite system) 
remains the same. 
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Figure 2: An Association Model Contains a 
Configuration Interface and Models with Dif-
ferent Product Perspectives 

 
 In addition to simulation and geometry models, the in-
tegrated component representations or association models 
also include the relationships between the configuration 
interface and the models. The relationship between the 
ports of the configuration interface and the ports in the be-
havioral interface is often, but not always, a one-to-one 
mapping.  For instance, the shaft of the AC motor corre-
sponds to a single mechanical energy port, but the AC plug 
configuration port is modeled as two electrical ports, one 
for each pin. 

1.3 Model Composition 

As a result of the mapping between configuration interfaces 
and the corresponding simulation models, the definition of a 
system architecture as a composition of component objects 
allows us to create a composition of simulation models that 
constitute the corresponding system-level model.  As is 
shown in Figure 2, the design configuration consisting of the 
pulley mounted onto the motor shaft can be represented by 
connecting the shaft port of the pulley to the rotor port of the 
motor.  The corresponding simulation model is obtained by 
connecting the simulation models of the motor and pulley 
through the corresponding ports. The ports in this scenario 
play an important role of providing and specifying interac-
tion constraints between artifacts (shaft and pulley) and 
among representations (configuration interfaces, simulation 
models, and CAD models). 

Through this mechanism, we could define a system (a 
configuration of component objects) and automatically 
compose the corresponding simulation model.  This is al-
ready common practice in electrical CAD software (Mentor 
Graphics 2000); when creating a chip layout, the instantia-
tion of a transistor or logic gate defines the geometry for the 
silicon layers as well as the corresponding simulation model. 
Similarly, Zeigler, Praehofer et al. (2000) has introduced a 
modular, hierarchical, port-based representation for discrete 
event simulation. These DEVS models can be associated 
with entity structures in the System Entity Structure/Model 
Base Framework, allowing for composition at the structural 
level. In mechanical CAD, the integration between design 
and simulation is not as common.  For purely mechanical 
systems, most mechanical CAD packages do provide an op-
tional module for multi-body simulation (Duckering 2000), 
but these modules do not support port-based configuration 
and lack sufficient support for multi-disciplinary systems.  
Our research aims to extend these ideas to simulation-based 
design of multidisciplinary systems. 

To support automating the modeling and simulation 
process, it is essential that the relationships between the 
different aspects and perspectives of a component are rep-
resented explicitly.  To determine which interaction models 
and corresponding simulation models need to be used for 
the simulation of a particular system, information is needed 
beyond what is contained in the configuration interfaces 
and simulation models themselves.  This paper introduces 
representations for ports that form the bridge between 
component configuration and composition of the underly-
ing models.  To support automating the composition proc-
ess, these representations need to be unambiguous, com-
puter interpretable, and sufficiently broad so that they can 
provide access not only to configuration and simulation in-
formation, but also to function and form. 

Our approach is based on semantically rich product 
models that include not only simulation models, but also 
function and geometry models.  The approach takes advan-
tage of recent developments in Information Technology, 
including semantic data formats, ontologies, and knowl-
edge repositories.  This is part of a general trend to move 
from data-centric to knowledge-centric representations, a 
trend that has been the focus of several ongoing research 
efforts related to engineering design (Eastman and 
Fereshetian 1994; Wood and Agogino 1996; Counsell, Por-
ter et al. 1999; Susca, Mandorli et al. 2000; Szykman, 
Sriram et al. 2000), but could also benefit the simulation 
area.  A good overview is provided in (Benson and Ter-
penny 2001).  Unfortunately, the representation of ports 
has received little or no attention in this context. 

2 WHY A PORT ONTOLOGY? 

In order for product models to be useful for knowledge 
representation, the information encoded in product models 
needs to be unambiguously understood by all analysts, in-
dependent of their perspectives, physical locations, and 
times. Ambiguity may arise when multiple terms are used 
to mean the same thing, or when one term is used with 
multiple meanings. For example, a design concept may 
have multiple descriptions: a hinge can also be called a ro-
tary joint or a groove can also be called a notch.  

There are two general approaches to support unambigu-
ous computable representations: labels and metadata. Giving 
a port a unique label or a name is a common implementation 
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in computer aided design applications. The benefit of using 
labels is that it is easy to create by designers. However, the 
label approach requires extra effort to effectively sort and 
retrieve synonyms and maintain relations among the same 
terms used for different design concepts.  

On the other hand, the metadata approach assigns 
primitive and compound attributes to the terms used to de-
fine concepts. For example, a hinge can be defined as a 
connection that cannot resist the external moment around 
the hinge axis. If a rotary joint is defined with the same de-
gree of freedom attribute, then a computer application or 
engineer can infer that a hinge is also a rotary joint. The 
metadata approach is superior to the label approach since it 
compares not only the syntax but also the semantics.  

However, the implementation of the metadata ap-
proach is not straightforward. The definition language must 
have the capability to define not only the syntax produc-
tions but also the semantic rules for the design concepts. 
Defining a port taxonomy in the Extensible Markup Lan-
guage (XML) (Bray, Paoli et al. 2000) has been proposed 
by Sinha, Paredis et al. (2001).  XML is similar to the Hy-
pertext Markup Language (HTML), but allows user-
defined tags and various types of references. Its simplicity 
and flexibility has led to widespread adoption in the Infor-
mation Technology world.  While it provides an important 
solution for making Internet information computer inter-
pretable, XML by itself has a limited expressiveness for 
describing the relationships (schemas or semantics) be-
tween concepts. XML regulates only syntactic and struc-
tural relationships among tags. Most of the semantics of 
the tags (other than “has-a” and “one-of” relations) have to 
be hard coded within the parsing modules of the applica-
tions. It would be good if one could incorporate the seman-
tics in the representation itself. Our approach for providing 
such representations is based on ontologies. An ontology 
can be informally defined as a description of concepts and 
relationships that are used in a specific knowledge domain.  

3 RELATED WORK ON ONTOLOGIES 

Ontology representations convey and encapsulate both syn-
tax and semantics, allowing computer programs to share, 
exchange, extend, reuse and translate information.  The 
representations can be based on either frame-based logic or 
description logic  (Fensel 2000). In the frame-based lan-
guage, Ontolingua (Farquhar, Fikes et al. 1997), the 
knowledge domain is described using frames and slots. On 
the other hand, the description logic languages provide de-
clarative statements to describe the relations between con-
cepts and relations. These statements are collected and 
processed later by the reasoner to create a complete termi-
nology network. Representative description logic systems 
includes CLASSIC (Borgida, Brachman et al. 1989), FaCT 
(Horrocks 1998), and RACER (Haarslev and Moller 2001).  
Two ontology languages, the DARPA Agent Markup 
Language (DAML) (Hendler and McGuinness 2000) and 
DAML+OIL (Ontology Inference Layer) (Fensel, Hor-
rocks et al. 2001; Fensel, van Harmelen et al. 2003) have 
recently been merged and extended into the Web Ontology 
Language (OWL) as a W3C working draft (Dean, Con-
nolly et al. 2002). Both frame-based logic and description 
logic reasoners can be used to handle OWL. 

So far, these languages have been used to build on-
tologies mostly in the areas of computer science and social 
sciences. We propose to study the applicability of these on-
tology tools for product representations in the context of 
system simulation and design.  Our work will focus on the 
representation of engineering ports, which has not yet been 
addressed in the ontology literature. A few other research 
efforts are underway towards ontologies: the PHYSSYS 
engineering ontologies for engineering modeling, simula-
tion and design (Borst, Akkermans et al. 1997), the Col-
laborative Device Modeling Environment (CDME) devel-
oped by Iwasaki, Farquhar et al. (1997), a LEGO assembly 
ontology (Kopena, Peysakhov et al. 2002), and taxonomies 
for function representations (Szykman, Racz et al. 1999; 
Stone and Wood 2000; Hirtz, Stone et al. 2001). 

4 OWL CLASSES AND PROPERTIES 

In this section, we explain the principles and OWL con-
structs needed to design and define the port ontology.  For 
a more in-depth overview of the OWL language, refer to 
(Dean, Connolly et al. 2002). 

Ontologies in OWL consist of concepts and relations. 
The concepts of the knowledge domain are defined as 
OWL classes, while the relations are defined as properties. 
For instance, a generic port is defined by the OWL class 
expression:  

 
<owl:Class rdf:ID=“port”/> 

 
Several other OWL constructs are provided to define 

necessary and/or sufficient axioms for a class. For instance, 
we can define a LEGO-port subclass using the “subClas-
sOf” axiom: 

 
<owl:Class rdf:ID=“LEGO-port”> 
 <rdfs:subClassOf rdf:resource=“#port”/> 
</owl:Class> 

 
Similarly, the “equivalentClass” and “unionOf” axi-

oms can be used to express that a LEGO-male-port is the 
union of a stud port and a pin port: 

 
<owl:Class rdf:ID=“LEGO-male-port”> 
  <owl:equivalentClass> 
    <owl:Class> 
      <owl:unionOf df:parseType=“Collection”> 
        <owl:Class rdf:ID=“#LEGO-stud-port”/> 
        <owl:Class rdf:ID=“#LEGO-pin-port”/> 
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      </owl:unionOf> 
    </owl:Class> 
  </owl:equivalentClass> 
</owl:Class> 
<owl:Class rdf:ID=“LEGO-stud-port”> 
  <rdfs:subClassOf 
    rdf:resource=“#LEGO-male-port”/> 
</owl:Class> 

 
A third way to describe a class uses the “disjointWith” 

axiom to disallow, for instance,  a port instance to belong 
to both the pin and stud classes simultaneously:   

 
<owl:Class rdf:ID=“LEGO-pin-port”> 
  <rdfs:subClassOf  
 rdf:resource=“#LEGO-male-port”/> 
  <owl:disjointWith  
 rdf:resource=“#LEGO-stud-port”/> 
</owl:Class> 

 
Once the classes are defined, the corresponding port 

instances are instantiated as follows:  
 
<LEGO-stud-port rdf:ID=“stport1”/> 
<LEGO-pin-port rdf:ID=“pinport2”/> 

 
In addition to concepts defined as classes, OWL in-

cludes properties that describe relationships between con-
cepts. One can think of properties as directed links between 
concept nodes. The starting node is the domain element; 
the ending node is the range element.  For instance, a port 
(domain) may be related to a feature (range) through the 
property “hasFeature.” 

There are two types of properties: object properties 
and datatype properties. For object properties, the range 
element is an instance of a class, while for datatype proper-
ties, the range element is a primitive data type such as a 
byte, date, or number: 

 
<owl:ObjectProperty  
rdf:ID=“hasFeature”/> 
<owl:DataTypeProperty 
rdf:ID=“ManufactureDate”/> 

 
To impose constraints on the types of classes that can 

be related by a particular property, one can use the “do-
main” and “range” constructs: 

 
<owl:ObjectProperty rdf:ID=“hasFeature”> 
  <rdfs:domain rdf:resource=“#port” /> 
  <rdfs:range  rdf:resource=“#feature” /> 
</owl:FunctionalProperty> 
<owl:DatatypeProperty 
 rdf:about=“#manufacturDate”> 
  <rdfs:domain rdf:resource=“#artifact”/> 
  <rdf:range rdf:resource=“&xsd;dateTime”/> 
</owl:DatatypeProperty> 

 
In this example, we specify that the range element of 

the Datatype property, “manufactureDate,” is the XML 
schema “dateTime” type. Once we add these constraints, 
the “hasFeature” property can only relate features to ports, 
while the “manufactureDate” property is limited to relating 
“dateTime” instances to artifacts. 

Similar to the “subClassOf” axiom, OWL also pro-
vides the “subPropertOf” axiom.  For example: 

 
<owl:ObjectProperty  
 rdf:about=“conveyMechanicalEnergy”> 
  <rdfs:subPropertyOf  
 rdf:resource=“#conveyEnergy”/> 
  <rdfs:domain rdf:resource=“#port”/> 
  <rdfs:range rdf:resource=“#mechanical”/> 
</owl:ObjectProperty> 
<owl:ObjectProperty rdf:about=“conveyEnergy”> 
  <rdfs:domain rdf:resource=“#port”/> 
  <rdfs:range rdf:resource=“#energy”/> 
</owl:ObjectProperty> 

 
Here we define the “conveyMechanicalEnergy” prop-

erty as a sub-property of “conveyEnergy”. This states that 
any port conveying mechanical energy can be treated as a 
port conveying energy.  If we want to search for all the 
ports conveying energy, then the inference engine will re-
turn all the port instances that have relations with either 
energy or mecahnical energy.  

OWL also provides the “inverseOf “ axiom that allows 
instances to be associated with each other. For example: 

 
<owl:ObjectProperty rdf:ID=“hasArtifact”> 
  <owl:inverseOf  
  rdf:resource=“#hasInterface”/> 
</owl:ObjectProperty> 

 
When a “hasArtifact” property individual <interface1, 

artifact1> is instantiated, a reversed instance pair <arti-
fact1, interface1> will also be instantiated and added as a 
property individual of the “hasInterface” property.  

To improve the readability of the ontology statements, 
we will henceforth use a graphical representation rather 
than OWL statements, as shown in Figure 3, where nodes 
represent classes or individuals and directed labeled links 
represent properties. 

 

Interface1Artifact1

hasArtifact

hasInterface  
Figure 3: The Graphical Representation of OWL State-
ments 

5 DESIGN AND DEFINITION OF  
THE PORT ONTOLOGY 

As pointed out in the previous section, an ontology consists 
of classes and properties.  In the port ontology, the classes 
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include the ports themselves as well as the attributes that 
allow us to define the ports. These classes are a subset of 
the artifact ontology, which can not only describe the inter-
face but also the internal characteristics of components and 
sub-systems. 

5.1 Attribute Classes 

The attributes are lower-level concepts for defining ports. 
We have divided the attributes into three main categories: 
form, function and behavior. The form attributes describe 
the structural, geometrical, topological, and part-whole in-
formation of an artifact.  In this context, attributes are often 
referred to as features.  There exists already a large number 
of concepts for defining form from which we can borrow 
(ISO 1994).  However, it is often useful to introduce new 
form attribute classes for specific standardized port geome-
try.  For example, rather than defining the detailed form 
features of an RJ-45 connector every time one is used, one 
could refer to the entire geometric specification for such a 
connector with one label, for instance, RJ-45-male.  In the 
next section, we will use the same approach for standard-
ized LEGO features. 

In addition to form, ports are defined by function at-
tributes.  These attributes describe the intended use of the 
port. Artifact functions have also been researched exten-
sively, and here also, we will leverage the concepts defined 
by others (Hirtz, Stone et al. 2001).  Since ports, by defini-
tion, refer to locations of intended interaction, the functions 
that can apply to ports are limited to different types of in-
teraction, such as: 

• 
• 
• 

transfer (of energy, material, or signals) 
connect (fasten or attach) 
support (secure and position). 

Finally, ports are characterized by behavioral attrib-
utes.  Again due to limited range of functions that can be 
performed by ports, their behavioral attributes are also lim-
ited to characterizations of energy flow, material flow, or 
signal flow.  For example, a port that is intended to estab-
lish a rigid connection with another port can be character-
ized by vectors for position and orientation combined with 
vectors for forces and torques.  For the definition of behav-
ioral attributes, we build on the Modelica simulation lan-
guage (Elmqvist and Mattsson 1997). 

5.2 Port-Attribute Properties 

The relationships between ports and attributes are ex-
pressed as properties in OWL. In general, the relationship 
can be expressed as: 
 

<owl:ObjectProperty 
     rdf:about=“#has-attribute”> 
  <rdfs:domain rdf:resource=“#port”/> 
  <rdfs:range rdf:resource=“#attribute”/> 
</owl:ObjectProperty> 
However, it would be confusing to use the same OWL 
property, “has-attribute,” to define the relationships be-
tween all possible ports and attributes.  Instead, we use 
OWL sub-properties to define specific categories of  rela-
tionships such as has-function, has-form-feature, and has-
behavior-connection. The general “has-function” property 
can then be used to refer to any function attribute or its 
sub-classes, for instance, either “transfer”, “transfer-
energy”, or “transfer-signal” (Figure 4). We define the 
“transfer” function as a subclass of the function attribute 
with two child classes: transfer-signal and transfer-energy. 
In addition to these general properties, more specific prop-
erties are defined if the restrictions for a particular relation-
ship are different.  OWL allows both restrictions on the 
cardinality and the value of a property. 

 

attributeport
has-attribute

transfer

transfer-signal

subClassOf

form-featureport
has-form-feature

functionport
has-funciton

transfer-energy

subClassOf

subClassOf

subPropertyOf

subPropertyOf

 
Figure 4: Partial Port-Attribute Properties and Attribute 
Hierarchy 

5.3 Port Classes and Hierarchies 

Once the attributes for form, function, and behavior are de-
fined, they can be used to describe all the ports.  As with 
attributes, ports can be defined at different levels of detail, 
in a hierarchical fashion.  Although one could describe this 
hierarchy explicitly using the “subClassOf” property, such 
a representation has the disadvantage that it duplicates the 
information that is already captured in the attributes.  
Through a process of subsumption,  one can consider Class 
A to be the child of Class B if A contains all the attributes 
of B and possibly more.  When adding attributes to a port 
class, the class definition becomes more detailed resulting 
in a child class.  Through the process of subsumption, it is 
possible to derive the inheritance relationships from the at-
tributes of the port classes without having to specify the 
parent-child relationships explicitly. 
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6 LEGO PORTS: AN EXAMPLE 

LEGO Ports are standardized with fixed dimensions and 
compatible shapes. We have identified 24 common ports 
some of which are illustrated in Figure 5. The circled areas 
are the ports on the LEGO parts: (a) rail-port, (b) stud-port, 
(c) circular-hole-port, (d) TECHNIC-stud-port, (e) 
TECHNIC-tube-port, (f) axle-hole-port, (g) channel-port, 
(h) tube-port, (i) friction-pin-port, and (j) axle-port. Most of 
them can be connected to each other by snapping together 
male and female ports. For example, studs (male ports) at 
the top of a LEGO brick snap into tubes (female ports) at the 
bottom of another LEGO brick. Some LEGO ports are com-
patible with multiple other ports.  For example, a cross-
shaped shaft can fit into a cross-shaped hole, but can also fit 
into a circular hole with the same circumscribed radius. 
 

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)  
Figure 5: LEGO-Ports 

 
As pointed out earlier, one could represent the hierar-

chy of ports explicitly starting with a top-level generic port 
class from which every port class inherits, as is shown in 
Figure 6.  One could further refine this top-level LEGO-
port into a snapping-port and two disjoint subclasses, male-
port and female-port, followed by a geometric and func-
tional classifications (pin-ports with or without friction). 
However, without also defining the attributes of each of 
these ports, such an explicit hierarchy is of limited use.  By 
considering the attributes, one can, through subsumption, 
create many different taxonomies based on the order in 
which the attributes are considered.  For instance, compare 
Figure 6 and Figure 7, in which each classifier contains the 
unique set of form-feature attributes, which group ports 
with similar features together. 

7 USE OF THE PORT ONTOLOGY 

In this section, we demonstrate the usage of the LEGO port 
ontology. We assume that the target users will be system 
designers who want to integrate a set of product models 
(subsystems). They integrate the subsystems at the product 
model level instead of at the behavior model level in order 
to make sure that the system satisfies not only behavior 
constraints but also function or form constraints.  The port  
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Figure 6: A Different LEGO Port Taxonomy Obtained 
by Using the Subsumption Mechanism 
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TECHNIC-tube-port

TECHNIC-stud-port

 
Figure 7: A Partial View of One of Many Possible LEGO-
port Taxonomies  
 
ontology is used in a design environment to represent the 
ports of the product model and to constrain the connections 
between ports. The first example shows how one can use 
the port ontology to represent and verify compatibility be-
tween the ports in a connection. The second example illus-
trates how one can reason with port ontologies to select in-
teraction models automatically. Both compatibility 
checking and interaction model selection are prerequisites 
for automated model composition. 

Please, note that this is ongoing work.  The ideas pre-
sented here are our vision of how the field of simulation 
can benefit from semantically-rich port representations. 
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7.1 Port Compatibility in Connections  

A system can be defined as a configuration of components 
by connecting the components at their ports.  However, to be 
connected two ports need to be compatible: a 110V plug 
does not fit in a 220V outlet, or a square plug does not fit a 
round hole.  In this section, we illustrate how a port ontology 
can be used to define general rules for port compatibility. 

The port ontology that we have defined so far does not 
include the concept of compatibility.  One could include a 
property “is-compatible-with” to identify the port types 
that are compatible with each other.  In Figure 8, for in-
stance, we define the compatibility for a circular-hole-port 
in LEGO.  The rule explicitly specifies that only the axle-
port and pin-port can connect to the circular-hole-port. 

 

LEGO-circular-hole-port
is-compatible-with LEGO-axle-port

LEGO-pin-port

unionOf

 
Figure 8: A Compatibility Rule for Circular-Hole-Ports 

 
This compatibility rule is solely based on port names. 

The disadvantage of using only port names is that when a 
new port class is added to the port ontology, many com-
patibility rules also need to be updated. Even adding a port 
with the exact same usage but a different name will require 
updating the compatibility rules. 

A more general approach is to use attributes to de-
scribe the compatibility constraints. A circular-hole-port 
can be connect to all ports with certain geometric features. 
One could express this rule using low-level geometric con-
straints on the type and dimensions of port features. How-
ever, in the case of LEGO, with its standardized port ge-
ometry, we can use the names of form-attributes instead.   

In Figure 9(a), we restate the compatibility of the cir-
cular-hole-port in terms of form-attributes.  Figure 9(b) list 
several ports that satisfy the compatibility constraint.  The 
unlabeled classes in Figure 9(a) are called anonymous 
classes; they match any class for which the specified prop-
erties hold.  When adding a new port type such as a  
LEGO-TECHNIC-pin-port, we only need to specify that it 
has a LEGO-pin-shape form-feature to define its compati-
bility properties. Compatibility checking occurs when two 
product models are connected. The OWL description of the 
ports can be processed by the description logic reasoner. 
The reasoner will verify that all the attributes of the two 
ports satisfy the compatibility requirements specified in the 
port ontology. Consider the example in Figure 9. In a de-
scription logic reasoner, the port definitions and compati-
bility rules are stored in the T-box (Donini, Lenzerini, et al. 
1996). The T-box is a collection of axioms describing the 
true conditions of the port connection domain. When a port 
connection is established, the system queries the reasoner 
to verify that the connected port instances satisfy all the 
axioms in the T-box. For example, the axiom in Figure 9 
 

LEGO-circular-hole-port

is-compatible-with

LEGO-axle-shapeLEGO-pin-shape

unionOf

has-form-feature

LEGO-pin-port 

LEGO-pin-shape

has-form-feature

LEGO-TECHINC-pin-port 
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Figure 9: (a) A Circular-Hole-Port Compatibility Rule and 
(b) Three Possibly Satisfied LEGO Ports  
 
expresses that to connect to a LEGO-circular-hole-port, a 
LEGO port must have either a pin-shape or an axle-shape 
form attribute. Note that this compatibility checking is dif-
ferent from Ptolemy II (Liu 2001), which enforces 
compatibility at the behavior model level; ours enforces it 
at the product model level. 

7.2 Selecting Interaction Models 

Ports allow an analyst to define a particular system as a 
graph of components or sub-systems connected through 
their ports.  When generating a corresponding simulation 
model for such a component configuration, one needs to 
consider not only the simulation models for the individual 
components but also the models that capture the dynamics 
at the interaction points—the interaction models. For in-
stance, the behavior of a system consisting of a car driving 
over a road is determined not only by the behavior of the 
car and the road individually, but also by the interaction 
model between the tires and the road (i.e. contact friction). 

Often the component interaction models are trivial and 
correspond to Kirchhoff’s voltage and current laws.  For 
instance, most electrical connections can be modeled suffi-
ciently accurately by setting the voltages equal 
(Kirchhoff’s voltage law) and making the currents add up 
to zero (Kirchhoff’s current law).  Similarly, a rigid me-
chanical connection can be modeled by setting the veloci-
ties of the components equal and making the forces/torques 
add up to zero.  In most object-oriented modeling lan-
guages, these trivial interaction models correspond to the 
default port-connections and can therefore be omitted 
(Mattsson and Elmqvist 1998). However, in general an al-
gebraic or differential algebraic model or even a partial dif-
ferential equation model is needed to describe the physical 
phenomena taking place at the point of interaction. 

Unlike component models, interaction models have 
the property that their parameters cannot be encapsulated.  
The models of components depend only on parameters of 
the component itself (geometry, material properties, etc.) 
but do not depend on any parameters of other components 
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or systems—all the parameter relationships are internal to 
the component object. Component interaction models, on 
the other hand, are not tied directly to a physical instantia-
tion from which its parameters can be derived.  Instead, the 
simulation parameters depend on the physical properties of 
the two interacting components.  These components may 
be different for each instantiation of the interaction model.  
For example, a tire component has certain dynamic proper-
ties that depend on the physical parameters of the tire and 
the tire only (size, type of rubber, pressure, etc.)  However, 
when this tire interacts with the road, the interaction model 
(friction) depends on the physical parameters of both the 
tire and the road surface. 

To automate the process of instantiating interaction 
models, we somehow need to determine first which set of 
parametric models is appropriate for modeling a certain in-
teraction.  To establish a this association with an interac-
tion model, we introduce a connection class. 

A connection class defines which ports are connected, 
the type of the connections, and the possible simulation 
models that can be used for modeling such a connection. For 
instance, Figure 10 illustrates the definition of a revolute 
connection between a circular-hole-port and an axle-port. 
The connection specifies the interaction model that can be 
used to describe the revolute behavior. Note that this con-
nection class is different from the circular-hole compatibility 
rule. The compatibility rule specifies whether the ports are 
compatible, while the connection class relates the port con-
nection to the applicable simulation models for the interac-
tion. The Modelica model class in Figure 10 associates the 
connection class with the underlying behavior model. The 
query and retrieval of interaction models from a model re-
pository are still  part of our ongoing research. 
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connection

LEGO-circular-hole-port LEGO-axle-port

connectTo

is-compatible-with

type
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useModel
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Figure 10: Definition of Revolute Connection Class and 
Possible Simulation Models 

8 SUMMARY 

This paper investigated the concept of ports as useful ab-
stractions for system configuration and simulation.  To 
take full advantage of ports, we introduced an ontology 
that can specify in an unambiguous, computer-interpretable 
fashion the attributes of and relationships between ports.  
The attributes are divided into three major categories: 
form, function, and behavior attributes.  By combining 
these attributes in integrated port representations, one can 
represent and store diverse knowledge about ports in a 
knowledge base.  This knowledge can then be used to rea-
son about port connections and the corresponding simula-
tion models.  We illustrated this with examples for port 
compatibility checking and interaction model selection.  
This concludes our preliminary investigation of explicitly 
representing port concept for system configuration and 
simulation. The goal of our current research is to extend 
this work towards the automated composition of simulation 
models from port-based system configurations.  
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