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ABSTRACT

Some applications of simulation require that the model sta
be advanced in simulation time faster than the wall-cloc
time advances as the simulation executes. Thisfaster than
real-timerequirement is crucial, for instance, when a simu
lation is used as part of a real-time control system, workin
through the consequences of contemplated control actio
in order to identify feasible (or even optimal) decisions
This paper considers the issue of faster than real-time si
ulation of very large communication networks, and how
this is accomplished using our implementation (in C++) o
the Scalable Simulation Framework (SSF). Our tool (calle
iSSF) uses hierarchical levels of abstraction,andparallelism,
to achieve speedups ofnearly four orders of magnitude,
enabling real-time execution rates on large network mode
We quantify the effects that choice of hierarchical abstra
tion has on the simulation time advance rate, and sho
empirically how changing the abstraction mix affects th
execution rate on a large network example.

1 INTRODUCTION

Discrete-event simulation is a powerful computationa
paradigm that allows a modeler to explore the potenti
behavior of many kinds of discrete systems. Some app
cations of discrete-event simulation require that the mode
be evaluated very quickly. For instance, when simulatio
is used at the heart of an optimization solution, the fast
a model can be evaluated the richer the solution space c
be explored. Even more critical are applications wher
the discrete-event simulation is used in a real-time contr
system. Not only must the simulation advance the mod
state in simulation time as fast as wallclock time (in the
same units), more often it must advance the model state
a rate significantly faster than wallclock time, such as i
,

-

.

n

t

cases where the consequences of multiple different con
decisions must be computed and compared. An exam
of this is given in Ye, Kaur, Kalyanaraman, Kenneth, Va
tola, and Yadav (2002), where real-time simulation is us
to decide how to select inputs for the OSPF (Moy 199
routing protocol.

Network defense is an area ripe for application of fast
than real-time simulation. It is easy to imagine a contr
system that considers re-routing, partitioning, and/or qu
antining decisions as evidence of a cyber-attack moun
A simulation model can work through cost/benefit/risk
assessments of considered actions, using potentially sop
ticated metrics to find an effective response. However, fas
than real-time simulation oflarge network models requires
aggressive techniques both in modeling, and in execut
strategy.

We will discuss simulator performance in terms of
“baseline” packet-oriented simulation. Here the majori
of the workload involves ascribing delays to packets
they move through a network, the delays being functions
queuing at routers and processing through protocol stac
Our unit of model activity then might be a “packet-event
which reflects either sending or receiving a packet (or bo
if that occurs in the same computation). A packet se
between two hosts, across 4 routers, would account for
least 6 packet events from initial transmission to final rece
(one send-only event, four receive-followed-by-send even
and one final receive event). In a strictly packet orient
simulation a packet event is implemented within the simul
tion kernel as one discrete event, involving a computation
action applied to the member of the event list with least f
ture time-stamp. We consequently use as a baseline me
of simulator performance the rate at which the simulatio
kernel executes “kernel-events”, on a large network mod
We recognize that this figure depends on the problem si
insofar as the cost of a priority heap access depends
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the number of elements in the heap; we likewise recogni
that it depends on the computational effort associated
average with each event executed. Nevertheless the conc
provides a useful baseline that, within the context of a give
simulation kernel, may be only slowly sensitive to problem
size if the priority list mechanism is optimized.

Traffic intensity is a good measure of model “size”—the
problem of simulating a 10K device network in faster tha
real time under very light traffic load is very different from
that of simulating that same network under heavy load. Th
aggregate packet-event rate demanded of a workload m
on a given topology, describes the rate (in simulation time
at which the network state is being modified. An implemen
tation is faster than real time if those state modification
are made at a wallclock rate that exceeds the aggreg
packet-event rate, using the same units of time. For e
ample, consider a model with 500 traffic flows, where th
offered load per flow is 10 packets/second, and an avera
flow crosses three routers. This implies an packet-event ra
of 50 packets/sec/flow, for an aggregate packet-event ra
of 25,000 packet-events/sec. This model can be run fo
times as fast as real-time on a simulation kernel capable
executing 100K kernel-events per second.

However, if we limit ourselves to pure packet-base
representation on a purely serial simulation kernel, ou
ability to simulate networks faster than real-time is limited
by the kernel-event rate of the serial simulation kernel. I
order to handle larger models it is necessary to use mo
abstract model representations that can affect the mod
state with less effort per inherent packet-event than can
packet-oriented simulator, and it may be necessary to al
use parallel execution.

This paper describes how our implementation of th
SSF interface (called iSSF) can meet faster than real-tim
challenges, using a combination of model abstraction an
parallelism. We develop simple analytic models that hel
guide choices of abstraction to achieve faster than real-tim
goals, and demonstrate its faster than real-time capabiliti
on a large network model.

2 SSF

The Scalable Simulation Framework (SSF) defines an AP
for simulation kernels capable of high-performance, large
scale system simulation. SSF has definitions in Java a
in C++, with multiple implementations in both languages
The API is simple, and defines five base classes. TheEntity
class serves as a container for model state variables, com
tational processes, and communication endpoints. ThePro-
cessclass defines a computational thread, which suspen
and reactivates in a process-oriented fashion. AProcess
may suspend waiting for input on a named communicatio
channel (or set of channels), it may suspend for a prescrib
epoch of simulation time. TheinChannel andoutChannel
pt
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classes define communication endpoints; instances of t
Event class are sent to instances of namedoutChannel ob-
jects, which appear (after a user-defined simulation dela
through one or more instances ofinChannel objects. The
full API may be obtained atwww.ssfnet.org .

SSF defines a low level view of common capabili-
ties of a simulation kernel. Users can (and do) develo
models directly using this API, however it is also possi-
ble to define frameworks which provide domain-specific
abstractions, and implement those abstractions in commo
libraries which interface with the SSF kernel while a use
will not. Such frameworks have been developed for do
mains such as ad-hoc wireless communication network
and high-performance computer architecture. SSFNet is
framework specialized for simulation of wireline commu-
nication networks. Modularity and object-orientation are
characteristics that support scalable simulations. SSFN
uses the Domain Modeling Language (DML) to describe
and configure network simulations. DML is simply a list
of attribute-value pairs, defined recursively. A “keyword”
(attribute) which will be recognized by a domain-specific
parser is followed either by a string which associates a valu
with that keyword, or by a list (demarked by left and right
brackets) of attribute-value pairs, which is itself considere
to be a list structured value. So a network can be describe
as a list of devices, each device may have lists of attribute
such as identity and capabilities, hosts have lists of traffi
descriptions, each traffic description is a list of flows, and
each flow has attributes that describe such things as t
source and destination (normally in coordinates that refe
ence DML structure—these are converted by SSFNet int
automatically assigned IP addresses), input flow rate, sche
ules of input rate changes (in the case of UDP). Within DML
the level of abstraction associated with a flow can also b
identified with a few simple attributes. The default attributes
describe a flow (UDP or TCP) as a packet-oriented flow
which behaves from end-to-end exactly as packet-oriente
flows do in many different simulators. One non-default
attribute, when included, indicates that the traffic is to be
represented as a fluid. Internally this means the flow will b
represented with a set of piece-wise constant rate function
To determine how many bytes of traffic flow pass a certai
point in the network over simulation time interval[a, b],
one integrates the rate function observed at that point, ov
time epoch[a, b]. As discussed in Kesidis, Singh, Cheung,
and Kwok (1996), Nicol, Goldsby, and Johnson (1999)
and Nicol (2001), this representation can be computation
ally more efficient than a pure packet oriented approach
Discrete events occur only when a flow’s rate has to chang
e.g. because of queuing or loss. The computational effi
ciencies occur when the rate does not change much, f
there is only one event per rate change. In the case
TCP this occurs after the flow has gotten into congestio
avoidance mode and the congestion window is large.
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Our experience with fluid TCP (Nicol 2001, Nicol and
Yan 2003) indicates that under typical conditions a flu
approach may reduce the computational workload by
order of magnitude. Perhaps we should sayonly an order
of magnitude, because our attention to detail in the TC
mechanics costs work, at the very least, at the beginn
and end of each TCP round. The workload reduction wi
UDP flows can be more significant, at least for long-live
flows. However, in congestion conditions it is still possibl
to get many rate change events from a few flows. Secti
3 discusses this phenomenon in more detail.

A third level of abstraction is suitable for the aggrega
description of many many background flows. These a
flows which, in the aggregate and at the appropriate tim
scale, aren’t notably affected by flows we might choos
to represent more exactly. However, as the low-resoluti
flows represent the bulk of the traffic, they should have
definite affect on higher resolution flows. This effect can b
captured at routers, by the simple mechanism of subtract
available bandwidth on links carrying low-resolution traffic
So, rather than simulate 1000 packet-oriented flows acr
a link, we might account for the bandwidth consumption o
990 of them–on average and possibly with some synth
ically introduced variation—by periodically changing the
bandwidth available to the 10 high-resolution flows, by a
amount designed to reflect the bandwidth consumption
the 990 flows in the background.

There are a variety of ways one might express this lo
resolution model. For the purposes of comparison agai
flows of other resolutions we adopted a means whereby
individual flow is named in the DML input as being fluid
and alsoinsensitive. The DML file contains a schedule of
rate changes injected by a host into the network. Consid
the snippet below:

traffic [
pattern [

# src host (NHI coordinates)
server 10:0:0
schedule [ # one @ update

time 0 # update time
target [ # one @ dest
dest 11:1:0 # dest host
rate 300 # flow (Mbps)
]
target [ ... ] # other dest

]
# other update scheds
schedule [ ... ]

]
]

Working from the inside-out, atarget describes a desti-
nation and a flow rate to that destination. The destinati
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and rate are thetarget ’s attributes. Aschedule is a
list of target s, which indicates a start-time for the flow
rates described by thetarget s. A pattern identifies
(in DML coordinates) a host, and a list ofschedules
associated with that host. Atraffic list describes a list
of patterns. There is normally one traffic list in a network.
schedule lists implicitly describe UDP flows. Therefore
all we need to do to indicate that a flow is fluid, and in-
sensitive, is to add to a target description attributes such

target [ # one @ dest
dest 11:1:0 # dest host
rate 300 # flow (Mbps)
fluid on
insensitive on
]

3 MIXED LEVEL SIMULATION

In SSFNet different levels of traffic abstraction meet in the
router. SSFNet routers contain forwarding tables which
support the forwarding of any legal packet address th
simulation might generate. Explicit packets, and thos
fluid flows with the sensitive attribute all describe their
destinations explicitly. The router models the influence tha
packets have on the sensitive fluid flows, and the influenc
that the sensitive flows have on packets. This two-wa
influence is captured through computed latency and los
characteristics.

SSFNet models a router’s buffer space as being ass
ciated with an output port, and models the link serving tha
port and the traffic enqueued at that port as a FCFS flu
buffer. In this model there is an available bandwidth rateµ, a
set of time-dependent input flow ratesλ1(t), . . . , λn(t), and
a set of time-dependent output flow ratesρ1(t), . . . , ρn(t).
λi(t) describes how quickly bits associated with flowi ar-
rive at the buffer at timet , andρi(t) describes how quickly
bits for flow i are being sent out at timet . A fluid buffer
has a capacityC, and a time-dependent levelL(t), with
0 ≤ L(t) ≤ C for all t . No congestion exists whenL(t) = 0
and

∑
i λi(t) ≤ µ, in which caseρi(t) = λi(t) for all i.

If L(t) > 0 at time t , then
∑
i ρi(t) = µ. The bandwidth

qiµ = ρi(t) allocated to flowi at this instant is such that
the fractionqi of the available total is the fraction of total
input flow contributed by flowi at some instant in the
past. To see how this works, imagine that at timet0− (the
instant just beforet0) L(t0−) = 0, and that att0 one or
more of the flows increase the arrival rate so much tha
the aggregate arrival rate exceedsµ. A backlog begins to
build, and so long as the buffer level is less thanC and no
input flow rate changes, a volume of fluid representing
particular mix of input flow rates is defined. During this
period the fractionqi of the bandwidth allocated to flowi
is precisely the fraction of total input flow contributed by
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flow i. Now the rate for some input may change, whic
means that a new volume with a different description o
input flow mixes begins to build. Because the buffer i
modeling FCFS processor sharing, none of that volume
output before all of the earlier output is served. This proce
can continue, with a potentially large number of input-mi
volumes being enqueued. If the input rates drive the buff
level up to capacityC then loss takes place. An importan
point to remember is that in this scheme one change
an input flow rate when the buffer is congested can cau
everyflow’s output rate to change, at the point one inpu
mix volume is completely served and a new one (define
by the input rate change) starts to be served. This is t
source of the so-called ripple effect (Kesidis, Singh, Ch
ung, and Kwok 1996, Nicol, Goldsby, and Johnson 1999
and is one for which we provide a solution. We observ
that flows traveling from one router to another typically
have a latency delay between transmission and full rece
of the packet. This delay represents a period of time aft
the packet is sent where the receiving entity is unawa
and unaffected by it. This means that during this perio
of insensitivity it is possible to revise flow rate change
that are “on the way”, between the time they were se
and the time they affect the recipient. We do this in a wa
that bounds the number of fluid events that traverse a li
per flow, while preserving the total traffic delivered by the
fluid. This is illustrated in Figure 1. Before smoothing we
have a situation that a fluid change event will reach th
receiver at timet1, and will change the rate tor1. There
is another rate change for that flow scheduled, at timet2,
which will cause the implementation of rater2. Yet another
rate change is scheduled for timet3. Duration [t1, t3] is
within the latency of the link between sender and receive
Over that epoch a total ofr1(t2− t1)+ r2(t3− t1) fluid will
flow. This means that we can remove the rate change ev
scheduled for timet2, and change the rate to be reporte
to the receiver at timet1 in such a way that by timet3
exactly the same amount of fluid will have been delivere
The precise rate to report at timet1 to effect this change is
r4 = (r1(t2− t1)+ r2(t3− t2))/(t3− t1).

It happens that we cannot implement this smoothin
technique if we adhere strictly to the SSF API. Under tha
API, when anEvent is written to anoutChannel at time
t , a bit-for-bit copy of thatEvent is delivered to a re-
ceipient at some time in the future (the delay between t
send time and receive time is the sum of a delay specifi

Figure 1: Smoothing Fluid Events Over a Link Latenc
Time
t

when theoutChannel is created, a delay specified when
an outChannel is mapped to aninChannel, and a delay
specified when theEvent written to theoutChannel. The
key point is that the content of thatEvent is determined
at the instant it is sent. In the example of Figure 1 all o
the rate changes shown are in transition between their se
and receive times. We wish to delay the rate reported
the recipient until the receive time,t1. Our implementation
of SSF contains some API extensions, including one th
handles cases like this. The extension is called anappoint-
ment outChannel. When an appointmentoutChannel is
constructed, a call-back function is identified. Essentiall
when anEvent is written to theoutChannel, a call to the
callback function is scheduled at the time theEvent is to
be received. The callback function returns the data conte
of the Event, which is what is delivered to the receiving
entity.

The dynamics described above give sensitive fluid flow
latency due to queueing, and loss (precise description
the loss calculations are given in (Nicol and Yan 2003
SSFNet routers cause flows described by packets to aff
senstive fluid flows by describing the aggregate packet flo
as an virtual fluid flow that feeds into the normal fluid
computations, and so represent to the fluid system the clai
on bandwidth made by the packet flows. The packet flow
are handled separately, in such a way that when a pac
arrives its final departure time (queueing plus transmissio
is computed as a function of the known unserved packe
in front of it, and the backlog of actual fluid flows at the
time of arrival. Details, again, are in (Nicol and Yan 2003
In this way the sensitive fluid flows affect the packet flow
behaviors.

The insensitive fluid flows are easily augmented int
this framework. IfA(t) describes the sum of the arriva
rates of insensitive flows to the router at timet , then the
available bandwidth for the sensitive fluid flows and th
packet flows isµ−A(t). A(t) changes at time-scales much
larger than the time-scale of packet arrivals and sensiti
fluid flows input rates. Thus, for long periods of time, th
effects of insensitive flows on the rest of the system can
represented simply, but with no significant computation
effort.

To summarize then, SSFNet provides three levels
traffic model abstractions, and conducts simulations wi
all three levels of abstraction, concurrently. Packet orient
flows involve computational work every time a packet arrive
to and departs from a device. Network sensitive flui
flows can provide some aggregation of a fluid in time
over epochs when the transfer rate behavior of a flow
constant. The computational work occurs when somewhe
in the network a flow’s rate changes. Such changes m
be caused by queuing at a router, or even loss of traf
at a router. When a fluid’s rate changes a description
that change percolates downstream, triggering computat
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at every device that receives the rate change descrip
The most aggressive form of aggregation is of netwo
insensitive flows. The effect of these on the other flows
manifested by simply claiming the bandwidth they consum
from the links over which they are mapped. Updates
these flows are infrequent relative to the time-scale of pac
and sensitive fluid flows.

4 MODEL

We now develop a simple analytic model that explain
how simulation execution workload is affected by the mi
of abstraction levels. In this model we concentrate o
the state-eventrate in simulation time. A state-event is
a computational activity associated with one event on t
simulation kernel’s event list, an activity which may chang
the simulation model’s state. This is to be distinguished fro
the model-eventrate, which we define to be the state-eve
rate from a model in which every flow is a packet flow. W
develop formulae to describe the aggregate state-event r
When that rate is less than a simulation kernel’s kernel-eve
rate (the rate at which the kernel is able to implement the
state changes inwallclock time), the simulation engine is
executing the model in faster than real-time.

To simplify the mathematics we suppose that there a
N UDP total flows and no TCP flows. Each flowi is
“on” long enough to generateni packets, is off for a time,
and then repeats. The average period between succes
on times isPi . Of theN flows, we assume thatNp are
packet-oriented,Ns are fluid and sensitive, andNi are fluid
and insensitive.

4.1 Packet Flows

Suppose that packet-oriented flowi crosseski routers. As we
have seen already, every packet injected into the netw
from the source host gives rise to at leastki + 2 state-
events. The state-event rate associated with flowi is thus
ni(ki +2)/Pi . We see that the aggregate state-event rate
packet-oriented flows is

3P =
∑
i∈Ip

ni(ki + 2)

Pi
,

whereIp is the set of flow indices of packet flows.

4.2 Sensitive Fluid Flows

A sensitive fluid flow has rather a different effect on the stat
event rate. As we have discussed, the arrival and process
of a fluid rate change event at a router may future rat
change events (at other routers) for other sensitive flu
flows passing through that same router port. Some of the
may be smoothed away before being executed. Ones
r.

t

e

te.
t
e

e
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-
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Figure 2: Branching Process Describes Fluid Rate Eve
Propagation

aren’t smoothed can themselves causes additional eve
when they are processed. We model the total effect of
fluid rate change in terms of a construct called a branchin
process (Ross 1983). This is illustrated in Figure 2. Her
we denote a fluid event with a circle, whose horizonta
orientation reflects its position in simulation time. If the
execution of a fluid event causes the scheduling and executi
of new fluid events at other routers, a line is drawn from th
originating event to the subsequent events. At the leftmo
side we have a single event whose execution creates a t
of subsequent executions.

Every time the host of a sensitive fluid changes th
input rate of that flow, the rate change event describin
this change will propagate from the source, through eve
router on the path, to the destination. Each time this eve
is received en-route, it serves as root to a branching proce
of events, as described above. To enumerate the numb
of state-events executed as a result of the host changi
the input rate, we need to count the number of state-even
in each of the trees rooted in the flow-change event as
traverses its path.

In order to estimate the number of events in a branchin
process tree, consider the effects of afoundational rate
change event at a router, that is, one of the rate change eve
that propagate directly along a flow’s path to effect a rat
change at the source. If the output port is not congested, t
foundational rate change passes through without causing r
changes to any other flows. If the foundational rate chang
event is processed at a congested port, then potentially
of the flows through that port with non-zero flow rates will
eventually have rate-change events scheduled as a res
Of these, some may be smoothed away. Of the chang
remaining we name all those for flows other than the one fo
the causing eventconsequential. Each consequential event
may likewise cause multiple consequential events, but fo
these we do count the event associated with the flow of th
initiating event.
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For simplicity we assume that all branching trees roote
in a consequential rate change are stochastically identic
meaning that each port has the same numberNport of
sensitive flows mapped to it, and each such flow has th
same probabilityprc of having a consequential rate change
event scheduled for it as a result of a consequential ra
change event being processed at that port. To quantifyprc,
let pc be the probability that a flow rate change arriving at
port buffer finds it congested, letpa be the probability that
a flow is active (e.g., has non-zero flow rate) conditioned o
the buffer being congested, and letp̄s be the probability that
a rate change isnot smoothed as it transits a link, given that
the port buffer is congested. Then the probability that a
arbitrary sensitive flow has a rate change scheduled as a re
of an arriving rate change isprc = pc×pa× p̄s . According
to the theory of branching processes, the expected numb
of events in a branching tree rooted in a consequential eve
is finite if and only if the productprcNport < 1. If this is
the case then the average number of events in that tree
1/(1− prcNport ). If prcNport ≥ 1 then in this model, the
explosion of rate change events triggered by the root of th
tree does not die away. There is a limit to this, we hav
proven elsewhere that our smoothing technique ensures t
no more than 2 rate change events cross a link per lin
latency time. Nevertheless the point is made—to avoid ra
change event explosion, the average number of rate-chan
events caused by a consequential rate change event ne
to be less than 1.

The average number of events in a branching proce
rooted in a foundational event is

1+ prc(Nport − 1)

1− prcNport .

The fraction’s numerator is the average number of even
caused by the foundational event,other than one on that
same flow. This is multiplied times the average size of a
tree rooted in a consequential event. The expected to
number of events related to a rate change for flowi at the
host is thus

ki ×
(

1+ prc(Nport − 1)

1− prcNport
)
+ 2

recalling thatki is the number of routers on the path (and
we add 2 to account for the events at source and destinat
hosts). Recalling that expected simulation duration betwe
successive “on” periods for this flow isPi , then the rate at
which this flow generates rate change events is, accounti
for one “start” and one “stop” event per period

ki ×
(
1+ prc(Nport−1)

1−prcNport
)
+ 2

Pi
.
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This equation ignores branching trees that are introduc
when a port buffer transitions between the “filling” state
the “full” state, and the “uncongested” state.

The overall rate at which sensitive fluid flows genera
events in the simulation is

3S =
∑
i∈Is

ki ×
(
1+ prc(Nport−1)

1−prcNport
)
+ 2

Pi

whereIs is the set of flow indices of sensitive fluid flows

5 INSENSITIVE FLUID FLOWS

We suppose that the aggregate insensitive fluid flow ban
width demand at each router is updated simultaneous
every1 units of simulation time. These changes can a
fect sensitive fluid flows. We can model that effect as
simultaneously, one fluid input to every port changed ra
That is, every change of available bandwidth may trigger
branching tree of consequential events, through the sensi
fluid flows. As a result of the bandwidth changes, the pro
ability pc of a consequential event finding congestion at
port has changed. We therefore denote the new probab
of a flow having a rate change event scheduled on it asp′rc.
If the model hasM ports, then the rate at which change
to insensitive fluid flows cause events is

3I =
M × 1

1−p′rcNport
1

.

Note that this expression is independent of the number
insensitive fluid flows.

Figure 3 illustrates the power of abstraction to redu
execution costs. The scenario depicted scales up a mode
which the characteristics given in Table 1 are held consta
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Table 1: Model Characteristics
Hops per flow 5
Packets per flow per second 100
Sensitive flows / Packet flows 66.66
Insensitive flows / Sensitive flows 10
Sensitive flows / router port 50
prc 0.01
1 60 seconds
#flows / #routers 550.5

The most important aspect of this configuration is th
high degree of aggregation. There is a 200:3 ratio of sensiti
flows to packet flows, and a 10:1 ratio of insensitive flow
to sensitive flows. This reflects an application where on
is interested in the detailed behavior of a small number
applications. Sensitive flows add variation to the bandwidt
available to the application of interest. It is also importan
to notice that the branching trees of rate-changes associa
with sensitive flows do not explode under these assumption
Figure 3 is plotted on a log-log scale, and shows the ve
significant differences in state-event rates due to insensiti
flows. The reduction of effort due to abstraction is thre
orders of magnitude. Despite the packet flows accounting f
only 1/6 of a percent of all flows their workload accounts fo
66% of the whole execution budget. This reduction suppor
faster than real-time simulation of very large models. Unde
this particular mix of workload to abstraction levels, a
simulation engine capable of executing 2M state-events p
second can simulate a model with over 1.3M flows faste
than real-time. The figure of 2M state-events per second
one we have achieved using parallelism.

Figure 4 graphs the largest model size (in numbe
of flows) which can be simulated faster than real-time
assuming the parameters of Table 1, except for the m
of abstractions. Throughout the experiments the pack
oriented flows account for 0.14% of the flows, the remainin
flows are partitioned among sensitive and insensitive flu
flows according to the independent variable. Thus we s
that under the stated model assumptions, there is an or
magnitude difference in the number of flows that can b
simulated as fast as wallclock time, and that the number
flows that can be simulated that fast is quite large.

6 EXPERIMENTS

To demonstrate that faster than real-time simulation of ve
large models is more than a theoretical possibility, we repo
here on a set of experiments run on the iSSF system. The
experiments use the same parametric model construction
that which underlies Figure 3. However, for these exper
ments the ratio of sensitive flows to packet flows is smalle
100:3, and the distribution of fluid flows among the sensitiv
and insensitive classifications is an experimental variabl
We use a distributed memory cluster computer to run th
d
.
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a Simulation Engine Capable of Executing 2M State-Even
per Second

experiments, using 20 CPUs on each experiment. Li
Figure 3, Figure 5 uses the number of flows as the indepe
dent variable (understanding that a complete specificati
of the workload also needs specification of the average ho
per flow—5—and the application traffic injection rate—10
packets per flow per second). The dependent variable
slowdown—the ratio of the execution time to the simulation
time. We consider experiments which vary the percenta
of sensitive flows from 0% to 50%.

Slowdown is a linear function of the number of flows
which just means that the execution time scales linearly
the number of flows. For any given mixture of insensitiv
and sensitive flows we look for the largest model size whic
can be executed faster than real-time. So, in the case w
all fluid flows are insensitive, a model representing 850,00
flows can be executed faster than real-time; when 12.5
are sensitive then a model with something close to 450,0
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and Model Size. Faster than Real-Time Performance
Achieved at Sizes Where the Slowdown is Less than 1



Nicol, Liu, Liljenstam, and Yan

id
e

e

in

s
e

-
e
F

c

t
t
,
.
,
d

n

,

b-

t-
d

s
-

e

-

e
.

nt

le

f
:

-

e

h
,

flows can be executed faster than real-time. When the flu
flows are evenly divided between sensitive and insensitiv
a model with 200,000 flows can be run faster than real-time

7 CONCLUSIONS

The main point to be taken from this paper is that using mod
abstraction and parallelism, we are able to simulate very larg
models faster than real-time. On the models described
this paper, abstraction reduces the computational workloa
by a factor of approximately 400, while parallelism reduce
execution time by a factor of 20. This gives an aggregat
acceleration factor of8000, over the capabilities of a pure
packet simulator using only one CPU.

Accuracy of results is of course an important consid
eration in the abstraction-tradeoff consideration. We hav
demonstrated elsewhere (Nicol and Yan 2003) that iSS
models which mix packet flows and sensitive fluid flows
are very accurate; we are working on establishing accura
results including insensitive flows as well.
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