Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sanchez, D. Ferrin, and D. J. Morrice, eds.

SIMULATION OF LARGE-SCALE NETWORKS USING SSF

David M. Nicol
Jason Liu
Michael Liljenstam

Guanhua Yan

Department of Computer Science
Dartmouth College
6211 Sudikoff Laboratory
Hanover, NH 03755, U.S.A.

Department of Electrical and Computer Engineering
Coordinated Science Laboratory
University of lllinois at Urbana-Champaign
1308 W. Main St.
Urbana, IL 61801, U.S.A.

ABSTRACT cases where the consequences of multiple different control
decisions must be computed and compared. An example
Some applications of simulation require that the model state of this is given in Ye, Kaur, Kalyanaraman, Kenneth, Vas-

be advanced in simulation time faster than the wall-clock tola, and Yadav (2002), where real-time simulation is used

time advances as the simulation executes. Tddter than to decide how to select inputs for the OSPF (Moy 1998)

real-timerequirement is crucial, for instance, when a simu-
lation is used as part of a real-time control system, working

routing protocol.
Network defense is an area ripe for application of faster

through the consequences of contemplated control actions, than real-time simulation. It is easy to imagine a control

in order to identify feasible (or even optimal) decisions.

system that considers re-routing, partitioning, and/or quar-

This paper considers the issue of faster than real-time sim- antining decisions as evidence of a cyber-attack mounts.
ulation of very large communication networks, and how A simulation model can work through cost/benefit/risks
this is accomplished using our implementation (in C++) of assessments of considered actions, using potentially sophis-
the Scalable Simulation Framework (SSF). Our tool (called ticated metrics to find an effective response. However, faster
iISSF) uses hierarchical levels of abstractemdparallelism, than real-time simulation darge network models requires

to achieve speedups akarly four orders of magnitude, aggressive techniques both in modeling, and in execution
enabling real-time execution rates on large network models. strategy.

We quantify the effects that choice of hierarchical abstrac- We will discuss simulator performance in terms of a
tion has on the simulation time advance rate, and show “baseline” packet-oriented simulation. Here the majority
empirically how changing the abstraction mix affects the of the workload involves ascribing delays to packets as
execution rate on a large network example. they move through a network, the delays being functions of
queuing at routers and processing through protocol stacks.
Our unit of model activity then might be a “packet-event”,
which reflects either sending or receiving a packet (or both,
Discrete-event simulation is a powerful computational if that occurs in the same computation). A packet sent
paradigm that allows a modeler to explore the potential between two hosts, across 4 routers, would account for at
behavior of many kinds of discrete systems. Some appli- least 6 packet events from initial transmission to final receipt
cations of discrete-event simulation require that the models (one send-only event, four receive-followed-by-send events,
be evaluated very quickly. For instance, when simulation and one final receive event). In a strictly packet oriented
is used at the heart of an optimization solution, the faster simulation a packet event is implemented within the simula-
a model can be evaluated the richer the solution space cantion kernel as one discrete event, involving a computational
be explored. Even more critical are applications where action applied to the member of the event list with least fu-
the discrete-event simulation is used in a real-time control ture time-stamp. We consequently use as a baseline metric
system. Not only must the simulation advance the model of simulator performance the rate at which the simulation
state in simulation time as fast as wallclock time (in the kernel executes “kernel-events”, on a large network model.
same units), more often it must advance the model state at We recognize that this figure depends on the problem size,
a rate significantly faster than wallclock time, such as in insofar as the cost of a priority heap access depends on

1 INTRODUCTION

650

Nicol, Liu, Liljenstam, and Yan

the number of elements in the heap; we likewise recognize classes define communication endpoints; instances of the
that it depends on the computational effort associated on Event class are sent to instances of hanoetChannel ob-
average with each event executed. Nevertheless the concepiects, which appear (after a user-defined simulation delay)
provides a useful baseline that, within the context of a given through one or more instances iafChannel objects. The
simulation kernel, may be only slowly sensitive to problem full APl may be obtained atvww.ssfnet.org
size if the priority list mechanism is optimized. SSF defines a low level view of common capabili-
Traffic intensity is a good measure of model “size"—the ties of a simulation kernel. Users can (and do) develop
problem of simulating a 10K device network in faster than models directly using this API, however it is also possi-
real time under very light traffic load is very different from ble to define frameworks which provide domain-specific
that of simulating that same network under heavy load. The abstractions, and implement those abstractions in common
aggregate packet-event rate demanded of a workload mix, libraries which interface with the SSF kernel while a user
on a given topology, describes the rate (in simulation time) will not. Such frameworks have been developed for do-
at which the network state is being modified. Animplemen- mains such as ad-hoc wireless communication networks,
tation is faster than real time if those state modifications and high-performance computer architecture. SSFNet is a
are made at a wallclock rate that exceeds the aggregateframework specialized for simulation of wireline commu-
packet-event rate, using the same units of time. For ex- nication networks. Modularity and object-orientation are
ample, consider a model with 500 traffic flows, where the characteristics that support scalable simulations. SSFNet
offered load per flow is 10 packets/second, and an average uses the Domain Modeling Language (DML) to describe
flow crosses three routers. This implies an packet-event rate and configure network simulations. DML is simply a list
of 50 packets/sec/flow, for an aggregate packet-event rate of attribute-value pairs, defined recursively. A “keyword”
of 25,000 packet-events/sec. This model can be run four (attribute) which will be recognized by a domain-specific
times as fast as real-time on a simulation kernel capable of parser is followed either by a string which associates a value
executing 100K kernel-events per second. with that keyword, or by a list (demarked by left and right

However, if we limit ourselves to pure packet-based
representation on a purely serial simulation kernel, our
ability to simulate networks faster than real-time is limited
by the kernel-event rate of the serial simulation kernel. In

brackets) of attribute-value pairs, which is itself considered
to be a list structured value. So a network can be described
as a list of devices, each device may have lists of attributes
such as identity and capabilities, hosts have lists of traffic

order to handle larger models it is necessary to use more descriptions, each traffic description is a list of flows, and
abstract model representations that can affect the model each flow has attributes that describe such things as the
state with less effort per inherent packet-event than can a source and destination (normally in coordinates that refer-
packet-oriented simulator, and it may be necessary to also ence DML structure—these are converted by SSFNet into
use parallel execution. automatically assigned IP addresses), input flow rate, sched-
This paper describes how our implementation of the ules of input rate changes (in the case of UDP). Within DML
SSF interface (called iSSF) can meet faster than real-time the level of abstraction associated with a flow can also be
challenges, using a combination of model abstraction and identified with a few simple attributes. The default attributes
parallelism. We develop simple analytic models that help describe a flow (UDP or TCP) as a packet-oriented flow,
guide choices of abstraction to achieve faster than real-time which behaves from end-to-end exactly as packet-oriented
goals, and demonstrate its faster than real-time capabilities flows do in many different simulators. One non-default
on a large network model. attribute, when included, indicates that the traffic is to be
represented as a fluid. Internally this means the flow will be
represented with a set of piece-wise constant rate functions.
To determine how many bytes of traffic flow pass a certain
The Scalable Simulation Framework (SSF) defines an APl point in the network over simulation time intervat,],
for simulation kernels capable of high-performance, large- one integrates the rate function observed at that point, over
scale system simulation. SSF has definitions in Java and time epochla, b]. As discussed in Kesidis, Singh, Cheung,

2 SSF

in C++, with multiple implementations in both languages.
The APl is simple, and defines five base classes. Hritity

and Kwok (1996), Nicol, Goldsby, and Johnson (1999),
and Nicol (2001), this representation can be computation-

class serves as a container for model state variables, compu-ally more efficient than a pure packet oriented approach.

tational processes, and communication endpoints.Prbe

Discrete events occur only when a flow’s rate has to change,

cessclass defines a computational thread, which suspends e.g. because of queuing or loss. The computational effi-

and reactivates in a process-oriented fashionPrAcess
may suspend waiting for input on a named communication

ciencies occur when the rate does not change much, for
there is only one event per rate change. In the case of

channel (or set of channels), it may suspend for a prescribed TCP this occurs after the flow has gotten into congestion

epoch of simulation time. Th|eChannel andoutChannel

651

avoidance mode and the congestion window is large.

Nicol, Liu, Liljenstam, and Yan

Our experience with fluid TCP (Nicol 2001, Nicol and
Yan 2003) indicates that under typical conditions a fluid
approach may reduce the computational workload by an
order of magnitude. Perhaps we should sajy an order
of magnitude, because our attention to detail in the TCP
mechanics costs work, at the very least, at the beginning
and end of each TCP round. The workload reduction with
UDP flows can be more significant, at least for long-lived
flows. However, in congestion conditions it is still possible
to get many rate change events from a few flows. Section
3 discusses this phenomenon in more detail.

A third level of abstraction is suitable for the aggregate
description of many many background flows. These are
flows which, in the aggregate and at the appropriate time-
scale, aren't notably affected by flows we might choose
to represent more exactly. However, as the low-resolution
flows represent the bulk of the traffic, they should have a
definite affect on higher resolution flows. This effect can be

captured at routers, by the simple mechanism of subtracting

available bandwidth on links carrying low-resolution traffic.

and rate are théarget 's attributes. Aschedule is a

list of target s, which indicates a start-time for the flow
rates described by thiarget s. A pattern identifies

(in DML coordinates) a host, and a list sthedules
associated with that host. #affic list describes a list

of patterns. There is normally one traffic list in a network.
schedule lists implicitly describe UDP flows. Therefore

all we need to do to indicate that a flow is fluid, and in-
sensitive, is to add to a target description attributes such as

target [# one @ dest
dest 11:1:0 # dest host
rate 300 # flow (Mbps)
fluid on

insensitive on

]

3 MIXED LEVEL SIMULATION

In SSFNet different levels of traffic abstraction meet in the

So, rather than simulate 1000 packet-oriented flows across router. SSFNet routers contain forwarding tables which

a link, we might account for the bandwidth consumption of
990 of them-on average and possibly with some synthet-
ically introduced variation—by periodically changing the
bandwidth available to the 10 high-resolution flows, by an
amount designed to reflect the bandwidth consumption of
the 990 flows in the background.

There are a variety of ways one might express this low

support the forwarding of any legal packet address the
simulation might generate. Explicit packets, and those
fluid flows with the sensitive attribute all describe their

destinations explicitly. The router models the influence that
packets have on the sensitive fluid flows, and the influence
that the sensitive flows have on packets. This two-way
influence is captured through computed latency and loss

resolution model. For the purposes of comparison against characteristics.

flows of other resolutions we adopted a means whereby an

individual flow is named in the DML input as being fluid,
and alsoinsensitive The DML file contains a schedule of

SSFNet models a router’s buffer space as being asso-
ciated with an output port, and models the link serving that
port and the traffic enqueued at that port as a FCFS fluid

rate changes injected by a host into the network. Consider buffer. Inthis modelthere is an available bandwidth yate

the snippet below:

traffic [
pattern [
src host (NHI coordinates)
server 10:0:0

schedule [# one @ update
time 0 # update time
target [# one @ dest

dest 11:1:0 # dest host
rate 300 # flow (Mbps)

]

target [...] # other dest

]
other update scheds

schedule [...]

]
]

Working from the inside-out, garget describes a desti-
nation and a flow rate to that destination. The destination

652

set of time-dependent input flow rateg(r), .. ., A,(¢), and

a set of time-dependent output flow raj@sz), ..., o, ().

A; (1) describes how quickly bits associated with flowar-
rive at the buffer at time, andp; (t) describes how quickly
bits for flow i are being sent out at time A fluid buffer
has a capacityC, and a time-dependent levél(z), with

0 < L(r) < Cforallz. No congestion exists whein(r) = 0
and) . A;(t) < u, in which casep;(r) = ;(¢) for all i.

If L(r) > 0 at timer, then)_, p; (t) = . The bandwidth
giir = pi(t) allocated to flowi at this instant is such that
the fractiong; of the available total is the fraction of total
input flow contributed by flowi at some instant in the
past. To see how this works, imagine that at tige (the
instant just beforeg) L(tp—) = 0, and that atg one or
more of the flows increase the arrival rate so much that
the aggregate arrival rate exceadsA backlog begins to
build, and so long as the buffer level is less t@mnd no
input flow rate changes, a volume of fluid representing a
particular mix of input flow rates is defined. During this
period the fractiony; of the bandwidth allocated to flow

is precisely the fraction of total input flow contributed by

Nicol, Liu, Liljenstam, and Yan

flow i. Now the rate for some input may change, which
means that a new volume with a different description of
input flow mixes begins to build. Because the buffer is
modeling FCFS processor sharing, none of that volume is
output before all of the earlier output is served. This process
can continue, with a potentially large number of input-mix
volumes being enqueued. If the input rates drive the buffer
level up to capacityC then loss takes place. An important
point to remember is that in this scheme one change in
an input flow rate when the buffer is congested can cause
everyflow’s output rate to change, at the point one input-
mix volume is completely served and a new one (defined
by the input rate change) starts to be served. This is the
source of the so-called ripple effect (Kesidis, Singh, Che-
ung, and Kwok 1996, Nicol, Goldsby, and Johnson 1999),
and is one for which we provide a solution. We observe
that flows traveling from one router to another typically
have a latency delay between transmission and full receipt
of the packet. This delay represents a period of time after
the packet is sent where the receiving entity is unaware
and unaffected by it. This means that during this period
of insensitivity it is possible to revise flow rate changes
that are “on the way”, between the time they were sent
and the time they affect the recipient. We do this in a way
that bounds the number of fluid events that traverse a link
per flow, while preserving the total traffic delivered by the
fluid. This is illustrated in Figure 1. Before smoothing we
have a situation that a fluid change event will reach the
receiver at timerq, and will change the rate te,. There

is another rate change for that flow scheduled, at tigne
which will cause the implementation of rate Yet another
rate change is scheduled for timg Duration [1, 73] iS
within the latency of the link between sender and receiver.
Over that epoch a total ofi (r2 — 1) + r2(t3 — 1) fluid will

when theoutChannel is created, a delay specified when
an outChannel is mapped to annChannel, and a delay
specified when th&vent written to theoutChannel. The

key point is that the content of th&vent is determined

at the instant it is sent. In the example of Figure 1 all of
the rate changes shown are in transition between their send
and receive times. We wish to delay the rate reported to
the recipient until the receive time,. Our implementation

of SSF contains some API extensions, including one that
handles cases like this. The extension is calle@gpoint-
ment outChannel When an appointmendutChannel is
constructed, a call-back function is identified. Essentially,
when anEvent is written to theoutChannel, a call to the
callback function is scheduled at the time theent is to

be received. The callback function returns the data content
of the Event, which is what is delivered to the receiving
entity.

The dynamics described above give sensitive fluid flows
latency due to queueing, and loss (precise description of
the loss calculations are given in (Nicol and Yan 2003).
SSFNet routers cause flows described by packets to affect
senstive fluid flows by describing the aggregate packet flows
as an virtual fluid flow that feeds into the normal fluid
computations, and so represent to the fluid system the claims
on bandwidth made by the packet flows. The packet flows
are handled separately, in such a way that when a packet
arrives its final departure time (queueing plus transmission)
is computed as a function of the known unserved packets
in front of it, and the backlog of actual fluid flows at the
time of arrival. Details, again, are in (Nicol and Yan 2003).
In this way the sensitive fluid flows affect the packet flow
behaviors.

The insensitive fluid flows are easily augmented into
this framework. If A(z) describes the sum of the arrival

flow. This means that we can remove the rate change eventrates of insensitive flows to the router at timethen the

scheduled for time,, and change the rate to be reported
to the receiver at time; in such a way that by times
exactly the same amount of fluid will have been delivered.
The precise rate to report at timgto effect this change is
rg = (ri(tz — 11) + ra(t3 — 12))/(t3 — 11).

It happens that we cannot implement this smoothing
technique if we adhere strictly to the SSF API. Under that
API, when anEvent is written to anoutChannel at time
t, a bit-for-bit copy of thatEvent is delivered to a re-
ceipient at some time in the future (the delay between the
send time and receive time is the sum of a delay specified

4 Ty

t; 1.3 ty
pit) after smoothing

T.3 ty i
pit) before smoothing

Figure 1. Smoothing Fluid Events Over a Link Latency
Time

653

available bandwidth for the sensitive fluid flows and the
packet flows it — A(¢). A(t) changes at time-scales much
larger than the time-scale of packet arrivals and sensitive
fluid flows input rates. Thus, for long periods of time, the
effects of insensitive flows on the rest of the system can be
represented simply, but with no significant computational
effort.

To summarize then, SSFNet provides three levels of
traffic model abstractions, and conducts simulations with
all three levels of abstraction, concurrently. Packet oriented
flows involve computational work every time a packet arrives
to and departs from a device. Network sensitive fluid
flows can provide some aggregation of a fluid in time,
over epochs when the transfer rate behavior of a flow is
constant. The computational work occurs when somewhere
in the network a flow’s rate changes. Such changes may
be caused by queuing at a router, or even loss of traffic
at a router. When a fluid’s rate changes a description of
that change percolates downstream, triggering computation

Nicol, Liu, Liljenstam, and Yan

at every device that receives the rate change descriptor. time

The most aggressive form of aggregation is of network >
insensitive flows. The effect of these on the other flows is
manifested by simply claiming the bandwidth they consume O O O
from the links over which they are mapped. Updates to

these flows are infrequent relative to the time-scale of packet —O

and sensitive fluid flows.

4 MODEL @)

We now develop a simple analytic model that explains O

how simulation execution workload is affected by the mix

of abstraction levels. In this model we concentrate on

the state-eventrate in simulation time. A state-event is

a computational activity associated with one event on the Figure 2: Branching Process Describes Fluid Rate Event
simulation kernel's event list, an activity which may change Propagation

the simulation model’s state. This isto be distinguished from

the model-eventate, which we define to be the state-event aren't smoothed can themselves causes additional events
rate from a model in which every flow is a packet flow. We when they are processed. We model the total effect of a

develop formulae to describe the aggregate state-event rate fluid rate change in terms of a construct called a branching
When that rate is less than a simulation kernel's kernel-event process (Ross 1983). This is illustrated in Figure 2. Here

rate (the rate at which the kernel is able to implement these we denote a fluid event with a circle, whose horizontal
state changes imallclock time), the simulation engine is orientation reflects its position in simulation time. If the

executing the model in faster than real-time. execution of a fluid event causes the scheduling and execution
To simplify the mathematics we suppose that there are of new fluid events at other routers, a line is drawn from the
N UDP total flows and no TCP flows. Each floivis originating event to the subsequent events. At the leftmost
“on” long enough to generate; packets, is off for a time, side we have a single event whose execution creates a tree
and then repeats. The average period between successivesf subsequent executions.
on times isP;. Of the N flows, we assume thav, are Every time the host of a sensitive fluid changes the
packet-orientedV, are fluid and sensitive, any; are fluid input rate of that flow, the rate change event describing
and insensitive. this change will propagate from the source, through every
router on the path, to the destination. Each time this event
4.1 Packet Flows is received en-route, it serves as root to a branching process

_ of events, as described above. To enumerate the number
Suppose that packet-oriented floerosseg; routers. Aswe of state-events executed as a result of the host changing
have seen already, every packet injected into the network the input rate, we need to count the number of state-events

from the source host gives rise to at ledstt- 2 state- in each of the trees rooted in the flow-change event as it
events. The state-event rate associated with flag/thus traverses its path.
ni(ki +2)/ P;. We see that the aggregate state-event rate of In order to estimate the number of events in a branching
packet-oriented flows is process tree, consider the effects ofcandational rate
change event at a router, that is, one of the rate change events
Ap = Z ni (ki + 2), that propagate directly along a flow’s path to effect a rate
iel, P change at the source. If the output port is not congested, the
foundational rate change passes through without causing rate
where1, is the set of flow indices of packet flows. changes to any other flows. If the foundational rate change
event is processed at a congested port, then potentially all
4.2 Sensitive Fluid Flows of the flows through that port with non-zero flow rates will

eventually have rate-change events scheduled as a result.

A sensitive fluid flow has rather a different effect on the state- Of these, some may be smoothed away. Of the changes
event rate. As we have discussed, the arrival and processingreémaining we name all those for flows other than the one for
of a fluid rate change event at a router may future rate- theé causing evertonsequential Each consequential event
change events (at other routers) for other sensitive fluid May likewise cause multiple consequential events, but for
flows passing through that same router port. Some of these _th_e_se_ we do count the event associated with the flow of the
may be smoothed away before being executed. Ones that!Nitiating event.

654

Nicol, Liu, Liljenstam, and Yan

For simplicity we assume that all branching trees rooted This equation ignores branching trees that are introduced
in a consequential rate change are stochastically identical, when a port buffer transitions between the “filling” state,
meaning that each port has the same numlgy,; of the “full” state, and the “uncongested” state.
sensitive flows mapped to it, and each such flow has the The overall rate at which sensitive fluid flows generate
same probabilityp,. of having a consequential rate change events in the simulation is
event scheduled for it as a result of a consequential rate

change event being processed at that port. To quaptify ki x (1 + %) +2
let p. be the probability that a flow rate change arriving at a As = P -
port buffer finds it congested, lgt, be the probability that iely !

a flow is active (e.g., has non-zero flow rate) conditioned on

the buﬁ:er being Congested' and mtbe the probabmty that where Is is the set of flow indices of sensitive fluid flows.

a rate change isotsmoothed as it transits a link, given that

the port buffer is congested. Then the probability that an 5 INSENSITIVE FLUID FLOWS

arbitrary sensitive flow has a rate change scheduled as aresult

of an arriving rate Change ﬁc = pe X Pa X Ds. According We suppose that the aggregate insensitive fluid flow band-
to the theory of branching processes, the expected numberWidth demand at each router is updated simultaneously,
of events in a branching tree rooted in a consequential event €very A units of simulation time. These changes can af-
is finite if and only if the product,«N o < 1. If this is fect sensitive fluid flows. We can model that effect as if,
the case then the average number of events in that tree isSimultaneously, one fluid input to every port changed rate.
1/(1 = preNport)- If preNpors > 1 then in this model, the That is,_ every change of avai_lable bandwidth may trigge_r_a
explosion of rate change events triggered by the root of the branching tree of consequential events, through the sensitive
tree does not die away. There is a limit to this’ we have fluid flows. As a result of the bandwidth Changes, the pI‘Ob-
proven elsewhere that our smoothing technique ensures thatability p. of a consequential event finding congestion at a
no more than 2 rate change events cross a link per link Port has changed. We therefore denote the new probability
latency time. Nevertheless the point is made—to avoid rate ©of & flow having a rate change event scheduled on jias
change event explosion, the average number of rate-changelf the model hasM ports, then the rate at which changes
events caused by a consequential rate change event needé0 insensitive fluid flows cause events is

to be less than 1. 1
The average number of events in a branching process A = M x 1-p}Npori
rooted in a foundational event is = A '
1 Pre(Nport — 1) Note that this expression is independent of the number of
+ 1= preNpore insensitive fluid flows.

Figure 3 illustrates the power of abstraction to reduce
The fraction’s numerator is the average number of events execution costs. The scenario depicted scales up a model in
caused by the foundational evewther than one on that which the characteristics given in Table 1 are held constant.
same flow This is multiplied times the average size of a

tree rooted in a consequential event. The expected total Model-event rate ‘ —
le+12 r Total state-event rate e
number of events related to a rate change for float the Packet state-event rate
h . Sensitive fluid state-event rate a
ost is thus 1e+10 | Insensitive fluid state-eventrate -
Q
ki x <1+ Pre(Nport — 1)) 12 % 1e+08 //
1- prchort §
w 1e+06 J";f4/>V>i,,:‘i—3§jjiiffirt3
. 3 Q B e 8
recalling thatk; is the number of routers on the path (and £ R ¥
s 10000 f--= 47008 }
we add 2 to account for the events at source and destination e
hosts). Recalling that expected simulation duration between 100 | e o
successive “on” periods for this flow 8, then the rate at
which this flow generates rate change events is, accounting 1 : : :
le+04 le+05 le+06

for one “start” and one “stop” event per period Number of Flows

Pre(Npori—1) Figure 3: Breakdown of State-Event Rates Predicted by an
ki x (1 + 1-preNport) +2 Analytic Model, as a Function of Model Size, on a Log-Log
P; ' Scale

655

Nicol, Liu, Liljenstam, and Yan

Table 1: Model Characteristics 4,000,000 ‘
Hops per flow 5
Packets per flow per second 100
Sensitive flows / Packet flows 66.66
Insensitive flows / Sensitive flows 10
Sensitive flows / router port 50
Prc 0.01
A 60 seconds
#flows / #routers 550.5

T 5
real-time flows —_—

2,000,000

1,000,000

Real-time Number of Flows

500,000

The most important aspect of this configuration is the
high degree of aggregation. There is a 200:3 ratio of sensitive 250,000 - 02 oa 06 08 1
flows to packet flows, and a 10:1 ratio of insensitive flows Eraction of Sensitive Fluid Flows
to sensitive flows. This reflects an application where one
is interested in the detailed behavior of a small number of
applications. Sensitive flows add variation to the bandwidth
available to the application of interest. It is also important
to notice that the branching trees of rate-changes associated
with sensitive flows do not explode under these assumptions.
Figure 3 is plotted on a log-log scale, and shows the very
significant differences in state-event rates due to insensitive
flows. The reduction of effort due to abstraction is three
orders of magnitude. Despite the packet flows accounting for
only 1/6 of a percent of all flows their workload accounts for
66% of the whole execution budget. This reduction supports
faster than real-time simulation of very large models. Under
this particular mix of workload to abstraction levels, a
simulation engine capable of executing 2M state-events per
second can simulate a model with over 1.3M flows faster
than real-time. The figure of 2M state-events per second is
one we have achieved using parallelism.

Figure 4 graphs the largest model size (in numbers
of flows) which can be simulated faster than real-time,
assuming the parameters of Table 1, except for the mix
of abstractions. Throughout the experiments the packet
oriented flows account for 0.14% of the flows, the remaining
flows are partitioned among sensitive and insensitive fluid
flows according to the independent variable. Thus we see 45

Figure 4: Largest Model Size Capable of Simulation in

Real-Time, Predicted by the Analytic Model, as a Function
of the Fraction of Fluid Flows that are Sensitive, Assuming

a Simulation Engine Capable of Executing 2M State-Events
per Second

experiments, using 20 CPUs on each experiment. Like
Figure 3, Figure 5 uses the number of flows as the indepen-
dent variable (understanding that a complete specification
of the workload also needs specification of the average hops
per flowm—5—and the application traffic injection rate—100
packets per flow per second). The dependent variable is
slowdownr—the ratio of the execution time to the simulation
time. We consider experiments which vary the percentage
of sensitive flows from 0% to 50%.

Slowdown is a linear function of the number of flows,
which just means that the execution time scales linearly in
the number of flows. For any given mixture of insensitive
and sensitive flows we look for the largest model size which
can be executed faster than real-time. So, in the case when
all fluid flows are insensitive, a model representing 850,000
flows can be executed faster than real-time; when 12.5%
are sensitive then a model with something close to 450,000

that under the stated model assumptions, there is an order £, o o
magnitude difference in the number of flows that can be g o e
simulated as fast as wallclock time, and that the number of & >°[5% I
flows that can be simulated that fast is quite large. 5 3r x

£ 25t s ’
6 EXPERIMENTS = Ll " e
To demonstrate that faster than real-time simulation of very & *°[S #
large models is more than a theoretical possibility, we report § 1 === —
here on a set of experiments run on the iISSF system. These % os b P+++
experiments use the same parametric model constructionas © {——"" ‘ ‘
that which underlies Figure 3. However, for these experi- 1le+05 2.5e+05 5e+05 7.5e+05 1e+06
ments the ratio of sensitive flows to packet flows is smaller, Number of Flows

100:3, and the distribution of fluid flows among the sensitive Figure 5: Slowdown as Function of Traffic Composition
and insensitive classifications is an experimental variable. and Model Size. Faster than Real-Time Performance is
We use a distributed memory cluster computer to run the Achieved at Sizes Where the Slowdown is Less than 1

656

Nicol, Liu, Liljenstam, and Yan

flows can be executed faster than real-time. When the fluid AUTHOR BIOGRAPHIES

flows are evenly divided between sensitive and insensitive,

a model with 200,000 flows can be run faster than real-time. DAVID M. NICOL is Professor of Electrical and Com-
puter Engineering at the University of lllinois, Urbana-
Champaign, and member of the Coordinated Sciences Lab-
oratory. He is co-author of the textbodbiscrete-Event
The main pointto be taken from this paper is that using model Systems Simulatipmnd served as Editor-in-Chief at ACM
abstraction and parallelism, we are able to simulate very large TOMACS from 1997-2003. He will serve as the General
models faster than real-time. On the models described in Chair of the Winter Simulation Conference in 2006. From
this paper, abstraction reduces the computational workload 1996-2003 he was Professor of Computer Science at Dart-
by a factor of approximately 400, while parallelism reduces mouth College, where he served as department chair, and
execution time by a factor of 20. This gives an aggregate at the Institute for Security Technology Studies served as

7 CONCLUSIONS

acceleration factor o0800Q over the capabilities of a pure
packet simulator using only one CPU.

Accuracy of results is of course an important consid-
eration in the abstraction-tradeoff consideration. We have
demonstrated elsewhere (Nicol and Yan 2003) that iSSF
models which mix packet flows and sensitive fluid flows

Associate Director for Research and Development, and fi-

nally as Acting Director. From 1987-1996 he was on the
faculty of the Computer Science department at the College
of William and Mary; 1985-1987 he was a staff scientist
at the Institute for Computer Applications in Science and
Engineering. He has a B.A. in mathematics from Carleton

are very accurate; we are working on establishing accuracy College (1979), an M.S. (1983) and Ph.D. (1985) in com-

results including insensitive flows as well.
ACKNOWLEDGMENTS

This research was supported in part by DARPA Contract
N66001-96-C-8530, NSF Grant ANI-98 08964, NSF Grant
EIA-98-02068, Dept. of Justice contract 2000-CX-K001,

and Department of Energy contract DE-AC05-000R22725.
Accordingly, the U.S. Government retains a non-exclusive,
royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S.

Government purposes.

REFERENCES

Kesidis, G., A. Singh, D. Cheung, and W. Kwok. 1996,
Nov.. Feasibility of fluid event-driven simulation for
ATM networks. INIEEE Globecom 1996

Moy, J. 1998.0SPF: Anatomy of an internet routing pro-
tocol. Addison-Wesley.

Nicol, D., M. Goldshy, and M. Johnson. 1999, Oct.. Fluid-
based simulation of communication networks using SSF.
In Proceedings of the 1999 SCS European Simulation
ConferenceErlangen, Germany.

Nicol, D. M. 2001, December. Discrete-event fluid modeling
of TCP. InProceedings of the 2001 Winter Simulation
ConferenceArlington, VA.

Nicol, D. M., and G. Yan. 2003. Discrete-event fluid mod-
eling of TCP for background traffic. Submitted for
publication.

Ross, H. 1983Stochastic processellew York: Wiley.

Ye, T., H. T. Kaur, S. Kalyanaraman, Kenneth, S. Vastola,
and S. Yadav. 2002. Dynamic optimization of OSPF
weights using online simulation.

657

puter science from the University of Virginia. His research

interests are in high performance computing, performance
analysis, simulation and modeling, and network security.
He is a Fellow of the IEEE.

JASON LIU is a post-doctoral student at the Coordinated
Sciences Laboratory, at the University of Illinois, Urbana-
Champaign. His research focuses on parallel discrete-event
simulation, performance modeling and simulation of com-
puter systems and communication networks, and large-scale
simulation of wireless ad hoc networks. He received B.A. in
Computer Science from Beijing Polytechnic University in
China in 1993, M.S. in Computer Science from College of
William and Mary in 2000, and Ph.D. in Computer Science
from Dartmouth College in 2003.

MICHAEL LILJENSTAM is a post-doctoral student at
the Coordinated Sciences Laboratory, at the University of
lllinois, Urbana-Champaign. His research interests include:
large scale network modeling, security, routing, traffic anal-
ysis, and modeling and simulation of wireless networks. He
received his M.Sc. and Ph.D. degrees in Computer Science
from the Royal Institute of Technology (KTH), Stockholm,
Sweden in 1993 and 2000, respectively.

GUANHUAYAN isaPh.D. studentinthe Computer Science
Department at Dartmouth College. His current research
focus is on large-scale network modeling and simulation,
and real-time network emulation. He received the B.E. in
Computer Science at Huazhong University of Science &
Technology in China in 1997, M.E. in Computer Science
at Beijing University of Posts & Telecommunications in
China in 2000.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 650
	02: 651
	03: 652
	04: 653
	05: 654
	06: 655
	07: 656
	08: 657

