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ABSTRACT

This paper describesstaged simulation, a technique for
improving the run time performance and scale of discr
event simulators. Typical wireless network simulations a
limited in speed and scale due to redundant computatio
both within a single simulation run and between success
runs. Staged simulation proposes to reduce the amo
of redundant computation within a simulation by restru
turing discrete event simulators to operate in stages
precompute, cache, and reuse partial results. This pa
presents a general and flexible framework for staging, a
identifies the advantages and trade-offs of its applicat
to wireless network simulations. Experience with applyin
staged simulation to the ns2 simulator shows that it c
improve execution time by an order of magnitude in typic
scenarios and make feasible the simulation of large sc
wireless networks.

1 INTRODUCTION

The design and evaluation of distributed systems and netw
protocols relies to a large extent on network simulation. T
ditional network simulators, however, do not run efficient
or scale well with increasing simulation size.

A significant source of inefficiency in discrete eve
simulators is redundant computation. We identify two d
ferent classes of redundancy in traditional discrete-ev
simulators. The first class of redundant computation occ
within a single run of the simulator. Traditional networ
simulators reevaluate complex functions whenever their
sultsmayhave changed, even though in reality the resu
may have changed very little, if at all, since the last tim
they were evaluated. A second class of redundant com
tation stems from a lack of retained information betwe
multiple runs of the simulator. Executing each simulatio
independently and without the benefit of past runs leads
computing many functions from scratch in each run. The
two sources of redundancy pose significant bottlenecks
,
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wireless network simulations, where network paramet
change frequently.

This paper introducesstaged simulation, a general tech-
nique to improve the scale and performance of wirele
network simulation by exposing, identifying, and elimina
ing sources of redundant computation. Staging involv
restructuring the events in a discrete-event simulator in
an equivalent set of sub-computations, caching their resu
and reusing them whenever matches are identified.
introduce three techniques, calledfunction decomposition,
refinement, and batching to complement function caching
and improve its effectiveness. We apply these techniq
both within a single simulation, a technique calledintra-
simulation staging, and between multiple similar runs o
the simulator, calledinter-simulation staging.

We have applied staging to the event processing eng
of ns2 (VINT 1995), a well-established simulator whos
design is typical of many discrete event simulators. Stag
improved execution time by an order of magnitude over t
standard ns2 implementation under typical simulation s
narios. As a natural consequence of eliminating redund
computation, staging in ns2 also reduced the running ti
fromO(n2) in the size of the simulated wireless network t
O(n), making feasible large scale simulations with tens
thousands of nodes. Staging maintains strict compatibi
with existing simulation scripts and extensions, with n
loss in simulator generality or accuracy. More advanc
and specialized simulation engines can benefit equally fr
staging. Specifically, we expect to see a comparable spee
and improvement in scalability in parallel and distribute
wireless network simulators.

The contributions of this paper are as follows. Firs
we identify and expose a general technique for improvi
discrete event simulator performance. Second, we sh
how common simulation scenarios can benefit substantia
from our optimization techniques. These benefits inclu
drastically reduced simulator run time and good scalabil
without changing the simulator interface or degrading res
accuracy. Finally, we validate our technique through syste
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atic application to wireless simulation in a well-establishe
network simulator.

2 THE STAGING APPROACH

The goal of staging is to eliminate redundant or nearly r
dundant computations in simulations. Traditional wireles
simulators perform many redundant computations with
a single run. Examples of common redundancies inclu
sending packets along a particular path or computing neig
bor sets. Similarly, across multiple runs of a simulator w
find a large overlap in computation, especially when nume
ous runs of a simulation are made with only slightly varyin
parameters. For example, studies of proposed ad hoc ro
ing protocols typically call for several sets of simulation
runs, each set evaluating the effect of a single protocol
topology parameter (see, for example, Broch et al. 1998 a
Royer and Toh 1999). In all, many dozens or hundreds
runs might be executed with very similar input parameter

The simplest, most fundamental technique for elim
nating redundant computations is function caching. Th
space-for-time trade off involves caching the results of idem
potent functions and later reusing those results whenever
same function is invoked with the same inputs. While func
tion caching forms the foundation for staging, it, by itself, i
not sufficient to realize performance gains in practice. Typ
ical events in discrete event simulators have time-varyin
continuous inputs, which preclude matching function inpu
between calls.

Staging significantly improves on function caching b
introducing three techniques, calledfunction decomposition,
refinement, andbatching. These techniques restructure com
putations such that their results are reusable even whe
change in inputs would normally preclude reuse.

Function decompositionsplits a large computation is
split into several smaller sub-computations that are ea
dependent on only a subset of the inputs to the origin
computation. By carefully choosing the decomposition, w
can reduce or eliminate the dependency on frequently varyi
inputs. For example, replacing a functionf (x, y, t) with
an equivalent, decomposed versionf ′(g(x, y), t) can allow
g(x, y) to be cached and reused even when the parame
t varies between calls.

Refinementfurther expands the applicability of function
caching by taking advantage of the continuity of the physic
model underlying the computation. When a small chang
in inputs is expected to lead to little or no change in th
computed results, computing bounds then refining the
to precise results can be more efficient than computing t
same result from scratch. For instance, computing upper a
lower bounds on node mobility may allow the simulator t
eliminate costly computations to determine neighborhood
In this case, the upper and lower bounds are computed su
s
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that they are valid for a range of inputs and so can be cach
and reused even when inputs vary slightly between calls

The third staging technique,batching, reorders the com-
putations within the simulator so that many independen
fine-grained computations can be executed more efficient
in a single pass. Function decomposition and refineme
both transform the event stream in a simulator into a
equivalent, but much finer grained, sequence of comput
tions. Many of these computations are not time dependen
and so can be reordered without affecting simulation acc
racy. Batching groups related computations together, an
replaces them with a single computation which compute
all the needed results efficiently in a single pass. Batchin
not only allows the utilization of more efficient global algo-
rithms instead of independent local computations, but ca
also improving processor and memory cache performan
by improving locality.

Staging fundamentally involves a space-time trade of
For staging to be worthwhile, the target computation mus
be more expensive than the cost of storing and fetchin
cached results from a potentially large table. Additionally
the cached results will likely increase the amount of memor
required for the simulation, due to the cost of storing th
cached results. Although this increase in memory use m
increase virtual memory paging by increasing the workin
set, it may conversely reduce the working set by eliminatin
memory intensive computations.

The remainder of this paper illustrates the use of stagin
in a widely used network simulator under typical usag
scenarios. We give examples of existing, ad hoc applicatio
of staging in current state of the art simulators, identify new
opportunities for staging, and evaluate the effectiveness
both intra- and inter-simulation staging in a ubiquitous an
mature network simulation engine.

3 TRADITIONAL WIRELESS SIMULATION

Efficient and scalable wireless network simulators are critica
to network research, but present unique challenges in th
implementation. They differ from other simulators in severa
key ways, each of which introduces redundant computatio
at runtime. As a result, many commonly used wireles
simulators are slow and do not scale gracefully with networ
size.

The fundamental reason redundant computation
prevalent is that wireless mobile networks have highly dy
namic characteristics, which imply that simulation state mu
be recomputed dynamically and often. As nodes move abo
a simulated field, the network-level topology may chang
rapidly. Link characteristics, routing information, and net
work topologies must be maintained and recomputed durin
the simulation, and mobile nodes must continually upda
their positions in order to provide accurate information to
the network model. In addition, complex physical model
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make wireless simulation expensive. Since wireless is
broadcast medium, a straightforward simulation approac
treats the network as a single broadcast LAN, incurrin
O(n2) run time in a network withn active nodes.

Existing wireless network simulators address some o
the challenges of wireless networks. These range fro
general-purpose simulators, such as ns2 and OpNet (Cha
1999), to special-purpose and custom simulators includin
SWiMNet (Boukerche et al. 1999), MobSim++ (Liljenstam,
Rönngren, and Ayani 2001), DaSSF (Liu et al. 2001)
and GloMoSim (Zeng, Bagrodia, and Gerla 1998). Thes
simulators have widely varying designs, including parallel o
distributed event engines and specialized language featur
Distributed simulators achieve scalability and performanc
by recruiting multiple simulator hosts. Even in such systems
each simulator host may perform a large amount of redunda
computation that can be eliminated to improve efficiency

We chose to study wireless simulation in the ns2 networ
simulator because it is widely used in academic researc
and because it is has a well-established and validated set
protocols. The protocol implementations in ns2 total ove
150,000 lines of code, and provide accurate models for nod
mobility, wireless energy consumption, radio propagatio
and MAC-layer protocols.

Ns2 tends to be slow and scale poorly with increasin
number of nodes. As we show in the following sections
staged simulation can drastically reduce the amount of wo
required to simulate a wireless system by reducing redunda
computation. These results are not specific to ns2, but c
be applied likewise to more advanced simulation engine
as well.

4 STAGED SIMULATION IN NS2

In the baseline ns2 implementation, the wireless phys
cal layer and mobility models are the largest consumers
processing time in typical simulation scenarios. These com
ponents pose the most significant bottlenecks to efficienc
and scaling. Consequently, we focus on staging comp
tations related to node mobility and the wireless physica
layer.

We incrementally describe four different types of stag
ing, each employing a different approach to eliminating
redundant computation. The first is an example of reusin
common intermediate results across function calls. Th
second demonstrates the use of restructuring to enlarge
overlap in computation across calls. The third optimizatio
illustrates precomputation as a staging technique, and t
final one demonstrates inter-simulation staging by reusin
results across multiple runs of the simulator.
ce
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4.1 Grid-Based Neighborhood Computation

For staging to be effective, redundant computations nee
be readily identifiable. The monolithic structure of the d
fault ns2 implementation, however, obscures the redund
computations it performs at runtime. Specifically, ns2
particular, and wireless network simulators in general, p
form numerous calculations to ultimately determine the
of nodes that will receive a given packet. These calculatio
depend on the positions of sending and receiving nod
packet transmission and detection power levels, geogra
and radio and antenna models. We note that many of th
inputs will be identical or similar across computations, a
show in Section 5 that the resulting redundant operati
are significant and lead to non-linear scaling with netwo
size.

To expose parts of this redundancy, we first apply
very simple grid-based staging approach where we re
previously computed power levels for nearby nodes. W
first divide the coordinate space into a grid of buckets, w
each bucket holding a list of nodes positioned within t
corresponding grid rectangle. This data structure can t
be used to quickly determine if a group of nodes falls entir
outside the possible transmission range of a node, ther
eliminating the need to perform individual calculations f
each node. Nodes in the remaining buckets, which may
may not be in range, are checked individually as befo
In order to maintain the grid as nodes move during t
simulation, we compute all of the times at which a no
will cross a grid boundary, scheduling events at these tim
to update the grid as needed.

While grid-based decomposition in simulators is n
novel, it serves as an initial application of staging th
enables us to identify and eliminate other redundant ap
cations through more advanced applications of staging
the subsequent sections. Nevertheless, grid-based ne
borhood computation employs staging in two distinct wa
First, by grouping nodes into buckets, the simulator c
reuse a single computed result for all nodes within t
bucket. Furthermore, since the grid data structure will
main fixed across many packet transmissions, we can s
and reuse a single global grid structure. We assume h
as is typical typical in ad hoc network research, that
nodes use uniform and constant transmission and recep
parameters. This assumption does not present a limitatio
the staged simulation approach, but simplifies our examp
considerably.

4.2 Neighborhood Caching

Variations on the grid approach allow more advanced ap
cations of staging using auxiliary computations to redu
redundancy in computation across packet transmissions
typical simulation scenarios, inter-packet spacing is ve
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short in comparison to the speed at which nodes mov
Depending on node mobility and traffic patterns, man
hundreds or thousands of packets may be transmitted fr
a single node before nodes move a significant distance. T
is, we should expect the inputs to, and hence the resu
of, the neighborhood computation for a node to be reusab
across many packet transmissions.

Since inputs will vary slightly, we should not expec
the neighborhood set to be identical to that computed duri
the previous packet transmission. However, a conservat
upper-bound, or superset, of the neighborhood set will r
main valid for some time after it is computed, dependin
on the amount of node mobility and the tightness of th
bound. This holds similarly for a lower-bound or subset o
the neighborhood set. We therefore restructure the neig
borhood set computation to first compute upper and low
bounds on the result, then refine these bounds into an ex
result. After restructuring the computation, intra-simulatio
staging is used to cache and reuse the common intermed
results, the two bounds, across many packet transmissio

This restructuring introduces one additional paramete
1t , to control the caching policy. This parameter fixe
the desired epoch duration for which the bounds on th
neighborhood set will be valid. Ifsmax is the maximum
possible node speed in the movement scenario, then
maximum change in distance between two nodes in
epoch is just1r = 2smax1t . If two nodes are within
distancer −1r at some time, then they will remain within
ranger for 1t seconds into the future. Similarly, nodes
beyond distancer +1r need not be considered at all for
1t seconds into the future.

We maintain a cache to capture the upper and low
bounds on the neighborhood set of each node. At most o
cache entry is maintained for each node in the networ
A cache entry, illustrated in Figure 1, is composed of a
expiration time and two sets,Nr−1r andNr±1r , containing
lists of the nodes within a ball of radiusr−1r and those in
the annulus with radiir ±1r. During packet transmission,
the cache manager computes the set of nodes within ran
of a given node by first looking for a valid cache entry
Finding an entry that has not yet expired, it can immediate
consider all nodes in the listNr−1r to be within range.
The second listNr±1r is then scanned, and each nod
found to be within range is appended to the final resu
At the same time, it can cheaply but conservatively upda
the lists, moving some nodes fromNr±1r to Nr−1r and
eliminating others fromNr±1r entirely. If, on the other
hand, no cache entry is found during packet transmissio
the cache manager consults the underlying mobility (gri
manager and constructs a cache entry with expiration1t

seconds into the future.
In the above caching scheme, there is some addition

overhead during cache misses, when computingNr±1r ,
since a larger radius is considered than previously necess
t
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Nr−1r
Nr±1r

Figure 1: Computing Bounds on Node Movement Enabl
the Simulator to Examine Only the Nodes Located in a
AnnulusNr±1r During Packet Transmission by Node a
Center

This overhead is controlled directly with the parameter1t ,
which fixes the longevity and the accuracy of cache entri
In addition, there is overhead associated with scanning
list of nodes inNr±1r during each cache hit, but this is
also limited by appropriately choosing the1t parameter.
We analyze these overheads in Section 5.

4.3 Perfect Caching

There is a large overlap in computation when constructi
cache entries for nodes using the neighborhood cach
scheme. We use precomputation to address this redunda
by computing many cache entries simultaneously. Wh
constructing a cache entry, a node normally examines
nodes within a potentially large radius. If many nodes in
reasonably dense network are active, and each periodic
construct cache entries on-demand and independently, e
pair of nodes will eventually be considered twice.

A staged simulation approach, which we termper-
fect caching, eliminates redundancy by precomputing a
cache entries simultaneously. This approach maintains
same data-structures as neighborhood caching. But, ra
than calculating cache entries on-demand, it precomputes
cache entries at the beginning of every1t epoch. All normal
queries for neighborhood information are then guarante
to hit the cache. There are several possible advantage
precomputation. First, we only need to examine each p
of nodes at most once, rather than twice, to compute
of the entries. Second, the positions of all nodes can
updated a single time at the start of the generation proce
Previously, it was necessary to update the positions of
nodes within range of the sender during each cache m
Finally, memory locality should improve when precompu
ing all entries simultaneously as compared to individual
on-demand.

The overhead of this technique is a scheduled eve
during each1t epoch, and possibly some wasted comp
tation if some nodes do not send packets during an epo
and thus do not use their cache entries. In a sparse
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quiet network, perfect caching might construct more entrie
than needed during the simulation. This problem can b
addressed directly by appropriately choosing the1t epoch
parameter.

4.4 On-Disk Caching

A final inter-simulation staging application improves on per-
fect caching, and demonstrates how staging can be appli
across multiple similar runs of the simulator. The intra-
simulation examples above reduce the amount of compu
tation significantly, but also add some additional events t
the event queue leading to more work in the event sched
uler. Event queue management is a well-studied problem
especially in the particular case of the Calendar Queu
used in ns2. However, we can eliminate the work done b
many events by looking at a set of simulation runs togethe
This application of inter-simulation staging therefore builds
on the previous optimizations by reducing the number o
scheduled events generated by the grid manager and the c
of constructing neighborhood cache entries in the perfec
caching scheme.

First note that, by itself, perfect caching generate
strictly more events than the on-demand caching approac
and may actually compute results that are not used in an
particular simulation run. But, also observe that perfec
caching will perform identical work during multiple simu-
lation runs using the same mobility scenario. In the secon
and subsequent runs of the simulator we can eliminate the
extra events, as well as most cache maintenance, by writin
all cache entries to disk every1t seconds during the first
simulator run. Subsequent runs can obtain cache entri
from disk rather than maintaining an underlying cache man
ager or grid. This technique then introduces two phase
Thegeneration-phaseis identical to perfect caching except
that all cache entries are spooled to disk. Theuse-phase
does not maintain a grid, does not need to track changes
node positions, and requires no scheduler events. Instea
cache entries are read from disk serially as needed durin
packet transmission. A set of runs with the same mobility
model will use the more expensive generation-phase for th
first run, and the less expensive use-phase for all remainin
runs.

5 EVALUATION

We have implemented each of the optimizations detailed i
Section 4 in the ns2 simulator. We find that even the simples
application of staging reduces the run time of the simulato
significantly, and allows for practical simulation of much
larger network sizes than previously feasible. We show tha
more advanced intra-simulation techniques improve stabilit
and robustness of the simulator, while the application o
inter-simulation staging improves performance yet further
d
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With the latest staged implementation, we regularly simula
networks of over 1000 nodes in the time it previously too
to simulate networks of hundreds of nodes.

In addition to evaluating total simulation run time using
our techniques, we also characterize the effect of ea
parameter we have introduced. For staging to be effectiv
it must be possible to easily or automatically find nea
optimal choices for these parameters and, at the very lea
avoid parameter choices that would lead to run time behav
worse than the default, non-staged implementation. We fir
describe our test environment and changes required to a
staging to the simulator, then present the results of o
staging techniques.

5.1 Evaluation Platform and Environment

We take as our baseline a modified ns2 version 2.1b9a sim
lator. All simulations were completed on a single-process
machine equipped with 1.7GHz Pentium 4 processor a
256MB of physical memory. Physical memory is an impor
tant constraint in ns2; more generous machines can simul
proportionally larger networks before becoming memory
limited. Before implementing our staging techniques, w
made a few non-standard modifications to improve the bas
line ns2 code. Most notably, we disabled all unused pack
headers to reduce packet sizes and improve memory loc
ity, and implemented more efficient packet tracing. Thi
improved run time by 85% for a 250 node network. Th
performance results detailed in the this paper are compu
relative to this optimized ns2 baseline implementation.

Staging can impact the performance of a simulato
by introducing fine-grain events and changing the eve
distribution observed by the event scheduler. Calend
queue schedulers are particularly sensitive to such pert
bations (Oh and Ahn 1999). To counteract the sensitivity o
the calendar queue scheduler to the event distribution, w
modified the calendar queue event scheduling algorithm
re-optimize the event queue after 30 seconds of simulat
time, effectively avoiding occasional mis-predictions by th
scheduler.

Overall, our simulation runs closely resemble thos
discussed in Broch et al. (1998), a very common setu
We used standard CMU Monarch mobility and commun
cation model generators from the standard ns2 distributio
As an exemplar of typical wireless network research, w
chose the AODV ad hoc routing protocol implementatio
included with ns2. Our results are not specific to thes
choices of application, mobility model, or communication
pattern. These system parameters, summarized in Table
closely follow the standard values used in ad hoc networkin
literature. Although the nominal reception radius for ou
antenna model is only 250 meters, we use the transmiss
detection radius of 551 meters for all optimizations in orde
to properly account for interference effects.
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Table 1: Default Simulation Parameters for Experiments

Network load
model Constant bit rate
concurrent data streams 30
packet size & rate 512 bytes× 8 packets/s

Node mobility
model random-waypoint
maximum node speed 5 m/s
pause time 10 s
field density ≈ 31 nodes / km2

Simulation
routing protocol AODV
simulation time 400 s

5.2 Simulator Performance

We first examine how the different applications of staging
affect total simulation execution time using a 1000 nod
network. In this experiment, we fix grid granularity at
250 meters and1t at 2 seconds, and later describe thei
selection and the sensitivity of staging to these paramete
We run our simulations with various applications of staging
enabled, as shown in Table 2. For each level of stagin
we run the simulator on five randomly generated network
and present the average of the execution times. The sam
standard deviation for each data point is less than 0.2%.

Table 2: Levels of Ns2 Optimization for Experiments

Level Optimizations
L0 Ns2 baseline: improved tracing and packet size

Intra-simulation staging
L1 L0 + Grid-based
L2 L1 + Caching
L3 L2 + Perfect caching

Inter-simulation staging
L4a L3 + On-disk caching (generation)
L4b L3 + On-disk caching (use)

The speedup achieved by increasing levels of stagin
relative to the baseline simulator is shown in Figure 2
These results, obtained using a 1000 node network, hig
light especially the benefits of the simplest intra-simulation
stagingL1 technique and of the inter-simulation staging
technique. Optimization levelL4b, the second phase inter-
simulation staging approach, improves simulation run tim
significantly in comparison to using only intra-simulation
techniques. Also, the one-time cost of the first phase,L4a is
no worse than the best possible intra-simulation techniqu
L3. Thus, in this case inter-simulation staging imposes n
additional cost during the first run of a series, but offers
significant speedup during subsequent runs.
n
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Figure 2: Speedup in Execution Time with Increasing Stag
ing Relative to Baseline Ns2 Implementation using a 1000
Node Network

5.3 Scaling with Network Size

In order to evaluate how staging affects simulation scale
we simulated networks with varying number of nodes while
holding the application-level load constant and increasin
the field size to maintain a constant node density.

Figure 3 shows that staging can improve the scalabil
ity of wireless simulators by reducing redundant compu
tations. This experiment also demonstrates the benefits
inter-simulation staging, which achieves 56% improvemen
over the intra-simulation staging techniques in 1000 nod
networks. Although the different intra-simulation staging
approaches show similar performance in this experimen
they exhibit different behaviors as optimization parameter
or network characteristics change. As we show in the nex
two sections, the more advanced optimizations offer in
creased robustness and stability, an advantage not evide
in Figure 3.

Additional experiments indicate similar performance
benefits using networks of varying density, up to more than
twice the density used above. Very dense networks, how
ever, expose a trade-off in our disk-based inter-simulatio
optimization. In our implementation, cache entries are
stored on disk during the first simulator run, and must be
read from disk and processed during each subsequent ru
While most of these disk accesses are easily pipelined an
dispatched in the background, there is still a non-negligible
CPU cost for dispatching and processing data stored o
disk. As network density increases, the cache entries gro
larger and cache processing may become more expens
than simply recomputing results from in-memory data.

This trade-off is present to some extent in any resul
caching scheme, and designers must be careful that cac
overhead is less than the cost of recomputation. But in prac
tice we find that only the disk-based caching optimization
might impose a significant processing overhead, for certai
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Figure 3: Effect of Network Size on Total Simulation Run
Time Holding Node Density Constant

networks, and that the optimization offers a net improveme
in performance for networks of reasonable density.

5.4 Optimization Parameters

It is important to characterize the effect of any new simula
tion parameters introduced by our optimization technique
We study simulation performance under various choices f
optimization parameters and examine the robustness a
stability of the different optimization levels. Recall that the
grid-based intra-simulation approach introduces a granula
ity parameter, and the caching intra-simulation approach
1t lookahead parameter.

We first evaluate the effect of varying grid granularity
on each level of staging. Intuitively, it is clear that a very
fine granularity will give rise to many grid-crossing events
as nodes move about in the topology, and also leads to mo
work in packet transmission, as many empty bins will b
scanned for nodes. Conversely, a very coarse granular
reduces to a single bucket and, essentially, a scan over
nodes during each packet transmission or cache miss.
reasonable choice is to use the node transmission radi
which requires a scan of roughly nine buckets during eac
transmission or cache miss.

We run the simulator on a single 250 node networ
with the same configuration as before and1t fixed at 2
seconds, but vary the grid granularity. Figure 4 verifie
our intuitive description of the effects of grid granularity.
Interestingly, we find that any choice of granularity othe
than the two extremes yields a substantial improveme
in run time underL1 staging, with only minor variation
between 500 and 2000 meters, with the optimum choic
approximately 1500 meters.

In this experiment, even the right-most extreme pe
forms much better than the ns2 baseline implementatio
since we avoid creating events and copies of the packet
nodes outside the transmission range. Further, much of t
degradation due to a poor choice in granularity is mitigate
t
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Figure 4: Effect of Varying Grid Granularity on Simulation
Run Time

by the use of the higher levels of staging. In these case
the poorly-tuned grid is consulted only in the rare case o
a cache miss.

The choice of grid granularity depends on the particula
choice of node mobility and load patterns. In practice, w
find that the optimal choice of granularity can be as low a
250 meters, but is rarely higher than 2000 meters. In all cas
we have examined, the trends are similar to those presen
above, making automatic tuning a feasible approach.

5.5 Caching Lookahead Parameter

The overhead of constructing cache entries is controlle
by the1t parameter to the neighborhood caching routine
Recall that1t specifies the desired expiration time when
constructing a cache entry. A larger value means that a larg
radius must be examined to build a cache entry, leadin
to a larger data structure, but allowing the cache entry
remain valid for longer. We set up our simulator as th
previous experiment, but fix the grid granularity at 250 m

Figure 5 shows how1t controls the cache hit rate
(top), and the sizes of the two neighborhoods setsNr−1r
andNr±1r stored in cache entries (bottom). We only show
the results forL2 caching; those forL3 perfect caching and
the first phaseL4a of intra-simulation staging are identical.
For reference, the actual average neighbor set size for que
is shown as constantNr .

The overheads associated with caching are limited b
the cache hit rate andNr±1r . A very small value for1t
leads to many cache misses, each of which is potentia
expensive. Conversely, a large value for1t forces both
cache hits and misses to process a larger setNr±1r . The
cache is effective for reasonable values of1t , roughly 2
to 4 seconds, with high hit rate but still reasonably size
Nr±1r . The curves for the neighborhood set sizes can b
explained geometrically based on the known transmissio
radius, and the average number of neighbors of transmitti
nodes. The cache hit rate is a function of the average inte
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packet spacing. While our implementation does not pick1t

automatically, the figure shows that a near-optimal value fo
parameter1t can be computed as a function of the packe
rate, node density, and transmission radius.

Surprisingly, even with such varying cache behavio
there is very little overall change in total simulation run
time. Further experiments indicate that over the entire ran
of values in Figure 5, run time varies by at most 5% ove
the range of1t values shown. TheL2, L3, andL4a staging
levels all perform similarly, while the second phaseL4b inter-
simulation approach improves run time by approximatel
30% as compared toL3, independent of the1t parameter.
As with the grid granularity, nearly any reasonable choice o
parameter will work well for the highest levels of staging

6 RELATED WORK

Several important examples of staging can be found
existing simulators. In our analysis of the ns2 implemen
tation, we identified applications of staging, but find tha
the technique of staging is not widely applied in the imple
mentation or recognized in the literature. There has be
no prior recognition or development of the technique o
staging as a general approach to simulation optimization

The NixVector (Riley, Ammar, and Fujimoto 2000)
approach improves wired-network routing efficiency in th
ns2 simulator by computing and caching routes on dema
rather than maintaining a complete routing table. Thi
approach has not been applied between multiple runs
the simulator, nor does it eliminate redundancy when inpu
vary slightly between computations.

A second example from ns2 is a grid implementatio
very similar to ourL1 staging. A key difference is that we
expose and explore the parameter space of grid granulariti
while the previous attempt uses a hard-coded granularity o
meter. In typical scenarios, this choice leads to performan
worse than the baseline. Similarly, Wu and Bonnet (2002
propose an alternative packet transmission routine for ns
r
t

r
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f
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d
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1
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essentially equivalent to ourL1 staging with granularity
parameter∞. Again, we have shown that this choice of
granularity is particularly inefficient as compared to nearly
any other choice. These examples illustrate the importan
of properly characterizing staging parameters and relatin
them to system variables such as the transmission rad
and expected number of neighbors.

In the context of discrete event simulators, we find occa
sional use of staging or similar techniques to improve perfo
mance. Splitting (Glasserman, Heidelberger, Shahabudd
and Zajic 1996), cloning (Hybinette and Fujimoto 1997)
and updateable simulations (Ferenci et al. 2002) are thr
related techniques which eliminate identical computation
in multiple runs of the simulator. These techniques d
not exploit redundant computations within a single run o
the simulator, nor do they address computations which a
similar but not identical.

Boukerche et al. (1999) propose a two-phase design f
Personal Communications System (PCS) network simulatio
using SWiMNet. This design is used to facilitate various
lookahead optimizations in a parallel simulation engine
rather than to eliminate redundant computation or optimiz
multiple runs of the simulator.

A popular technique for improving scale and perfor-
mance uses distributed simulation (for example Boukerch
et al. 1999, Liu et al. 2001, and Liljenstam, Rönngren
and Ayani 2001), sometimes combined with specialize
language features (for example Zeng, Bagrodia, and Ge
1998). These approaches are complimentary to our op
mizations, since staged simulation can be applied equa
well to both distributed and centralized designs. Othe
techniques are used to reduce simulation run time, such
model abstraction and approximation (Huang, Estrin, an
Heidemann 1998, Gadde, Chase, and Vahdat 2002). O
approach differs from model abstraction in that we do no
alter in any way the final result of computations. Addition-
ally, abstraction may not be possible if the system of intere
has not yet developed stable or well-understood models

Finally, we note that staging as a concept is a gener
technique, employed most notably in compilers and ite
ative programming. Chambers (2002) discusses a stag
compilation technique that combines partial precompilin
of code coupled with dynamic optimizations at runtime. It
erative programming is a general framework for describin
computation. Like staged simulation, it relies on reusin
results, intermediate values, and extraneous values fro
previous iterations. Liu, Stoller, and Teitelbaum (1996) dis
cuss methods for automatically extracting this informatio
using program and data-flow analysis. We find this partic
ular approach unsuitable for large and complex simulato
implementations, where data-flow and simulation behavio
depend very heavily on the particulars of a simulation run
Additionally, the use of multiple languages compounds th
difficulty of low-level automatic program analysis.
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7 CONCLUSIONS

We propose a general technique, termed staged simulatio
for reducing the run time of discrete event simulators. Th
central idea is to eliminate redundant or partially-redundan
computations typical in simulations by caching and reusin
the results of computations. The technique consists o
identifying redundant computation both within single runs
as well as across consecutive runs of the simulator. Stagin
then relies on precomputing, caching and reusing partia
results to eliminate redundant computation. Our technique
general and applicable to a wide range of designs, includin
parallel and distributed simulation engines.

We show that staging is an effective technique for
reducing simulation run time without loss of accuracy, and
is effective in a wide range of simulation scenarios including
varying mobility and communication patterns, network sizes
and node densities. We implement three levels of intra
simulation staging and one level of inter-simulation staging
in the ns2 wireless networking simulation system. Simple
intra-simulation optimizations are found to reduce simulato
run time by a factor of 9 and to improve simulator scalability
from networks of hundreds of nodes to networks of ten
thousand nodes. An application of inter-simulation stagin
can reduce run time even further to a factor of 21 over th
non-staged implementation. We find that the techniques a
robust in the choice of parameters, and these paramete
appear easy to estimate automatically as a function of oth
simulation variables and observed runtime behavior.
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