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ABSTRACT ski, and Nicol 2002) can be used on topologies of up to
100,000 network elements, although this can be time con-
When designing a network simulation environment intended suming. The creation of larger—scale simulation topologies
specifically for modeling large—scale topologies, a number often consumes excessive amounts of CPU time and system
ofissues must be addressed by the simulator designer. Mem-memory, making this type of experimentation more daunting
ory requirements for network simulation engines can grow and therefore less common.
guadratically with the size of the simulated topology and As the size of the simulated topology (and the number
can easily exceed available memory on modern worksta- of data flows being modeled) grows to very large scales,
tions. The number of outstanding simulation events grows computer resources in the simulation environment become
linearly with the number of packets in flight being modeled, the most critical issue, and generally are the limiting factor
and can lead to performance bottlenecks when managing afor the topology size of the network model. These resources
sorted event list of millions of events. Tracking the results include memory constraints, disk space constraints and and
of the simulation using a packet-level log file can result in CPU time. See Riley and Ammar (2002) for a detailed
excessive usage of disk space. We discuss the design of theanalysis of the overhead in all three of these areas using
Georgia Tech Network Simulat¢GTNet$ with emphasis the populams2 simulation environment. This analysis in-
on howGTNetSaddresses these issues. We give results from dicates that, to achieve moderate to large—scale simulations
performance experiments showing the reduction in memory for computer networks, the simulator must be designed

and event list size as a result of our design decisions. from the beginning with scalability in mind. Th&eorgia
Tech Network SimulatoiRiley 2003) was designed in this
1 INTRODUCTION way, and has demonstrated good scalability and efficiency

with network models consisting of several million network
Computer based simulation is widely used in almost all elements.GTNetSis designed to utilize distributed simu-
areas of networking research. A number of high—quality lation techniques, enabling linear scalability on a low—cost
simulation tools exist and are in widespread use. These network of workstations. Here, we focus on efficiencies in
tools allow researchers to test and validate new and existing a single sequential simulation only.
protocols under a variety of conditions. An experimental The remainder of this paper is organized as follows.
protocol can be shown to work correctly in the presence Section 2 gives an overview of some of the network simula-
of packet losses, packet re—ordering, lengthy delays, and tion tools presently in use. Section 3 discusses the tradeoffs
lengthy round—trip times. This type of protocol validation is and design decisions used in t8d NetSdesign that led to
typically done on fairly small scale topology models, since memory and CPU efficiency when simulating large—scale
the objective at this point is protocol correctness. networks. Section 4 gives some performance results using

Once these protocols are known to be correct, the be- GTNetS Finally, section 5 summarizes this work.

havior of these protocols must be demonstrated in realistic
size networks to insure that the performance of the protocol 2 RELATED WORK
will be acceptable when deployed on a large scale. The
venerable and widely usets2(McCanne and Floyd 1997)  There are a number of existing network simulation tools in
can comfortably model networks of a few hundred to a existence that are in widespread use within the networking
few thousand network elements. Tools suclpdss(Riley, research community. Each of these has strengths and weak-
Fujimoto, and Ammar 1999) an8SFNet(Cowie, Ogiel- nesses, and no single simulation environment is suitable for
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all possible simulation requirements. In this section, we
discuss briefly several existing simulators, and indicate the
approximate level of scalability achieved by each.

The ns2 Network Simulator. The venerablens2
simulator (McCanne and Floyd 1997) is certainly the most
popular and widely used simulation environment for net-
working research. It includes detailed models of a number
of TCP variations, a large number of queuing disciplines,
several application models (such as HTTP web traffic), and
extensive logging and tracing support. In additioa2 has
support for both wired fixed networks, and wireless ad—
hoc networks. In the wireless domain, there are models
for a number of ad—hoc routing protocols, includiby-
namic Source RoutingDSR (Johnson and Maltz 1996),
Ad-Hoc On-Demand Distance Vect&ODV) (Perkins and
Royer 1999); as well as a very detailed model of the IEEE
802-11bMAC protocol specificationns2 can comfortably
model network topologies up to about 1,000 network ele-
ments with the default routing methods, and about 16,000
network elements using olx—\Vector(Riley, Ammar, and
Fujimoto 2000) routing method.

Furthermore, by using parallel and distributed simula-
tion methods, we have shown good scalability fis2 by
extending the basic simulation model to run on a network
of workstations. OuParallel/Distributed ns(pdng (Riley,
Fujimoto, and Ammar 1999), has been shown to scale to
a network topology of 250,000 network elements (Riley,
Ammar, and Fujimoto 2000).

The GloMoSinYParsec Simulation Engine. An-
other well known and popular simulator@oMoSim(Zeng,
Bagrodia, and Gerla 1998), which is built on top of the
Parsec(Bagrodia, Meyer, Takai, Chen, Zeng, Martin, Park,
and Song 1998) simulation enginé&loMoSimhas been
designed specifically to model wireless networks, and is
designed to run in a parallel environment on a tightly cou-
pled symmetric-multiprocessor system. It has very detailed
models of the 802-11MMAC protocol, a number of rout-
ing protocols (including Bellman/Ford, AODV (Perkins and
Royer 1999), DSR (Johnson and Maltz 1996), and others),
TCP, and various application models.

GloMoSimwas designed from the beginning to run in
parallel, and thus can achieve good parallel performance in
some cases. However, t#oMoSimsimulator uses tightly
coupled shared memory for inter—process communication,
which leads to limited scaling. In large—scale simulations,
main memory is often the first resource to become exhausted.

The dependence on shared—memory message passing limits

the scale of a5loMoSimsimulation to a single computing
system, with the corresponding limits on available memory.
Additionally, the original design criteria for th@loMoSim
product were focused mainly on performance rather than
scalability. Experiments by the developers ®foMoSim
have demonstrated scalability up to about 1000 nodes.
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The Scalable Simulation Framework SSFNej.
The SSFNe{Cowie, Nicol, and Ogielski 1999, Cowie, Liu,
Liu, Nicol, and Ogielski 1999) simulator was originally de-
veloped at Rutgers University (DIMACS), in collaboration
with Dartmouth University, and is presently maintained and
distributed by Renesys Corp. The product was designed
from the beginning to be scalable and to give good perfor-
mance across a wide range of topology scales. The product
is available both in @avaenvironment, as well as @++
implementation. Like&sloMoSim SSFNets designed to run
on a tightly coupledSMP system, relying on a custom de-
signed thread scheduler and efficient memory—to—memory
message passing to achieve good parallel performance. Un-
like GloMoSim the SSFsimulator was designed from the
beginning with scalability in mind, and thus is careful about
limiting memory consumption wherever possible. T38F
simulator has been demonstrated by the developers on net-
work topologies as large as 100,000 network elements.

The OpNet Network Simulator. The Op-
Net(Bertolottiand Dunand 1993) simulator is a widely—used
commercial software product developed by OpNet Technolo-
gies Inc. This simulator contains very detailed models of
a large number of network devices, including most com-
mercial routers, switches, and hubs; as well as a number
of wireless devices and MAC protocols. The product is
commercially successful, and has a large installed customer
base. The product is presently limited to a single process
running on a single computing platform, but a version able
to execute on parallel processors in under development. Op-
net also includes High Level ArchitecturéHLA) interface,
but this interfaces supports interoperability with other tools
such as traffic generators, rather than distributed execution.
Furthermore, efforts to model large networks using OpNet
have had only limited success, primarily due to the limita-
tions of single process execution. As part of our existing
COMPASSesearch effort, we developed a rudimentary dis-
tributed version of this product (Wu, Fujimoto, and Riley
2001), but achieved only limited success.

3 GTNetSDESIGN

In this section, we discuss the design decision&@orgia
Tech Network Simulatathat allowed more efficient simu-
lation of very large—scale networks. These efficiencies fall
into three basic categories:

1. Reducing Event List Size

2. Managing Memory

3. Reducing Log File Size

Each of these areas are discussed in more detail below.

3.1 Reducing Event List Size

We have three optimizations that substantially reduce the
overall size of the pending event queue. Since insertions
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Since each packet transmission requires two events, the
count of pending events, assuming all links are active, is at
least 2V (N is the number of simplex links defined in the
simulated topology). In reality, it is often several tim¥s
if there is a significant propagation delay on the link. For
a simulation of 1 million full duplex links, the event queue
can easily exceed 10 million pending events. Since the
time to insert an event in a sorted queueddgN) in the
general case, this can result in significant CPU overhead.
We point out that th€alendar QueuéBrown 1988) (which
is the default event scheduler ms2 can in some cases
realize O (1) insertions, but degenerates @(n) insertions
in extreme cases. F@&TNetSwe chose arO (IgN) event
scheduler based on ti@++ standard template librafylap
Consider the simple network topology shown in figure 1. container, which works consistently in all cases.

This consists of two nodes} and B, a simplex link con- Our design for packet transmission and receipt process-
necting the nodes, and a packet queue associated with theing in GTNetSreduces the number of pending events from
link. To model the correct behavior of this topology, the two events per packet in—flight to one event per simplex
simulator typically needs two pending simulation events |ink, using two optimizations described below. While the
for each packet transmitted. Each packet transmission will number of packets in—flight and number of simplex links
schedule one simulation event to indicate that the packet have the same “Big—O” limit, in practice the packet in—flight
is received by the receiver, and a second event to indicate count is several times the simplex link count.

that transmission is completed at the sender. Note that We observed that the timestamps for packet transmis-
these two events are at different simulation times due to the sjons on a single simplex link are strictly in increasing order
speed-of-light propagation delay on the link. Pseudo—code of simulation time. A packet transmitted on link A->B must

Link A->B

Node A Node B

Oueue

Figure 1: Simple Network Topology

into sorted queues ar@(IgN), reducing the size of this
gueue results in improved execution time.

3.1.1 FIFO Receive Queues

for a packet transmission action is similar to the following:

PROCEDURE TransmitPacket
/* Process Packet Tx Event */
IF (Link Not Busy) THEN
/* Calculate time to transmit */
TransmitTime
PacketSize / LinkBandwidth;
/* Schedle Rx Event at Receiver */
SchedulePacketRxEvent
(TransmitTime + PropogationDelay);
/* Schedule Link Free Event */
ScheduleLinkFreeEvent(TransmitTime);
Set Link Busy;
ELSE
[* Link is busy */
/* Enque the packet for later Tx */
EnquePacket();
END IF;
END Transmitpacket;

PROCEDURE LinkFreeEvent
/* Process a LinkFree Event */
Set Link Not Busy;
IF (Queue Not Empty)
Remove Packet From Queue;
TransmitPacket;
END IF;
END LinkFreeEvent;
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always be sent at a simulation time greater than that of the
previous packet transmitted on that link. With this in mind,
we replaced the scheduling of receive events for all pack-
ets in—flight with a singldirst—in—first—outqueue at each
receiver. ThisFIFO queue has a constant insertion and
removal time. At any point in time, there is only one event
in the sorted event queue for each simplex link with packets
in—flight, which will process the packet receipt evémtthe
earliest pending packet on that link onljll other pending
packets for that link are simply stored in thé¢FO queue

at the receiver. When the packet receive event for a given
link is removed from the sorted event queue and processed,
another pending event is scheduled for the next packet, if
one is present in thEIFO queue. For simplex links with
significant propagation delays and potentially large numbers
of packets in—flight, this optimization results in a substantial
reduction in the size of pending event list.

3.1.2 Abstract Packet Queues

Secondly, we noted that in many cases the queuing delay
for a packet in a&FIFO queue (such as a simple DropTail
style packet queue) can be deterministically calculated when
the packet is inserted in the queue. This fact allows us to
reduce the size of the pending event list by a factor of two
by eliminating the need for theinkFree event, as follows.
When a packet is transmitted on a non-busy link, the
packet receipt event is created normally, either by scheduling
the event in the sorted event queue, or by appending it in the
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FIFO event queue as described above, and the link is set to specifying a user configurable timer buckets interval, which

busy However, theLinkFree event is not created. Instead,
we maintain & IFO data structure at the transmitting link,
called theAbstract Queue Info Dequ@QID), that stores

defaults to ten milliseconds. We then create a simple vector
data structure, with each entry in the vector representing all
pending timeout events for a fixed timer buckets interval

the transmission start time, transmission end time, and the in the future. For example, the zeroth entry in the vector
size of the packet. When another packet is later transmitted contains all timeout events scheduled for ten milliseconds

on the same link, we first remove any stale packets from the
AQID (packets that have already completed transmitting),
and the number of bytes in the DropTail queue is reduced
accordingly. If there are still remaining entries in th@ID,
we calculate the time that the packet is to be received at
the receiver by adding the packet transmission time and
propagation delay to theeansmission end timef the most
recentAQID entry, and schedule the packet receipt normally.
If the AQID is empty, the link is no longer busy and the
packet transmission is handled normally. We call this method
Abstract Queuingsince packets are never actually queued at
the transmitter, but rather forwarded directly to the receiver
with the appropriate queuing delay accounted for in the
packet receipt time.

By eliminating the scheduling and processing_ofk-

in the future, the next entry is all timeouts for twenty
milliseconds, and so forth. Each of these entries is called a
Timer Bucket We note that, for each timer bucket, entries
are scheduled in strictly increasing timestamp order, and
thus a simpleFIFO queue, with constant insertion and
removal time, can be used to maintain all pending timeouts
for each bucket. When scheduling a new timeout event,
we simply append the event to the tail of tRH-O queue

for the appropriate timer buckets, which is a constant time
operation. If the bucket was empty prior to the insertion, we
schedule an event in the sorted event queue that represents
the earliest timeout for any event in that bucket. When a
timeout event is canceled (which does not necessarily occur
in FIFO order), we do not remove the event from €O
gueue unless it is the earliest pending event for that bucket.

Freeevents, we reduce the total number of events processed Rather, we simply mark it as canceled. When a timeout
due to packet transmissions by a factor of two. We hasten event is scheduled for processing, it will by definition be
to point out that thiAbstract Queuingnethod can only be the earliest pending event for its bucket. At that time,
used in cases where the queuing delay of a packet can deter-it is removed from the head of theElFO queue. If the
ministically be calculated when the packet is enqueued. For new head is marked as canceled it is also removed (as are
links with collision detection or avoidance methods, such as all consecutive canceled events that become the head of
Ethernet LANs or 802.11 wireless links, this optimization the queue). If the resultin§lFO queue is non—-empty, a
cannot be used. Further, this optimization has little effect new sorted event list entry is scheduled for the appropriate
on the instantaneous event list size, since at any one time simulation time for later processing.
there would be at most ongnkFreeevent for each simplex The timer buckets optimization reduces the size of the
link in the topology. event list fromO (k) wherek is the number of active TCP
flows, to O(j) where j is the number of timer buckets.
The number of timer buckets is a function of the computed
TCP round trip times and cannot be known precisely in
Finally, we observed that for simulations modeling TCP advance. However, assuming a ten millisecond bucket size,
data flows, there is always at least one pending event in the number of buckets in a reasonable simulation is no
the event queue for every active TCP connection. Every more than a few hundred. Interestingly, this optimization
active TCP flow has at least one pendifigneoutevent also results in a more realistic simulation, since real TCP
for the most recently transmitted sequence number. These implementations schedule and process timeouts in coarse
events are almost always later canceled and removed from grain clock tickintervals which are analogous to our timer
the pending event queue when an acknowledgment packetbucket interval.
is received. Timeout events are only actually scheduled and
acted upon when data packets are lost along the path from 3.2 Managing Memory
the sender to the receiver. Further, we observed that in a
simulation environment, these timeout events are typically A second area where care must be taken in simulator design
created and processed with a high degree of accuracy in theis in memory management. While tl@TNetSdesign is
timestamp of the event. Timeout events are scheduled and careful with memory usage in almost all areas, we present
processed with nano—second accuracy or better, resulting inthree particular memory management design decisions that
a somewhat unrealistic simulation. In actual end—systems, result in substantial savings in the overall memory footprint
timer events are processed on more gran@hock Tick of the simulation.
intervals, which are typically on the order of milliseconds.

With these issues in mind, we design&d NetSusing
the concept ofTimer Bucketsas follows. We start with
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3.2.1 Routing Tables

The amount of memory required to create and maintain sim-
ulated routing tables in a large—scale simulation can become
excessive. In order to route packets through a network, each
node must make a routing decision to determine Nest
Hop node that represents the shortest path (or some other
routing metric) to the ultimate destination. This decision
typically involves referencing &outing Tablethat has, in
the extreme, one entry for every possible packet destination
at each possible routing decision point. This routing table
lookup method results in memory requirementsaiv?),
where N is the number of nodes in the simulated topol-
ogy. The populans2simulator uses a hash—based routing
lookup by default, which reduces this limit somewhat by
ignoring unused entries. TI®SFNesimulator uses routing
aggregation methods based bbh prefixes, which also re-
duces the overall memory requirements GfiNetSwe use
two optimizations which reduce or eliminate the memory
requirements for routing tables.

First is the use of the on—demaitdx—Vectorrouting
method by default. This method does not use routing

tables at all, but rather uses a source—based routing method

whereby routing information is contained in each packet.

Routes are computed as needed, and are cached at packe

sources for later reuse. Théix—\ectorrepresentation for
the routing information is very compact and introduces
little overhead in the packet routing decisions. Thikx—
Vector routing approach was previously published (Riley,
Ammar, and Fujimoto 2000) as part of our work wjibng

so details of this method are omitted her@TNetSalso
supports the creation of static routing tables (based on a
all-pairs shortest—path—first algorithm) if the presence of
routing tables is required for the simulation results desired.

Nextis the elimination of any routing information (either
the NIx—\Vectorcreation or the static routing tables) laaf
nodesn the simulation. Consider the two simple topologies
shown in figures 2 and 3. Figure 2 shows a portion of a
topology with fiveleaf nodes, connected to the remainder
of the topology by a single gateway using point—to—point
links. Figure 3 shows a similar topology, with five leaf
nodes on an Ethernet LAN and a single gateway.

For the case of the point—to—point links in figure 2 it
is easy to observe by inspection that routing decisions at
the leaf nodes are trivial. In all cases, any packet generated
by a leaf node is unconditionally forwarded to the gateway,
excepting packets addressed to the leaf node itself. The
GTNetSrouting computations will never calculate routing
information for leaf nodes with a single point—to—point
link, resulting in a substantial memory savings when using
the static routing method. Surprisingly, the popute2
simulator does not implement this simple optimization.

The Ethernet LAN case shown infigure 3isless obvious,
but in fact can use the same optimization. When creating an
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Figure 2: Point—to—Point Leaf Nodes

Ethernet LAN inGTNetS$an optionakingle gatewagan be
:?pecified which denotes the gateway node as shown. Packets
generated at the leaf nodes can either be destined for another
leaf on the same LAN, or somewhere else in the network.
GTNetSchecks for local routes usinP Addressesand
Network Masksnuch like real network implementations. If

a local route is found, then no routing decision is needed. If
a local route is not found, then the packet is unconditionally
forwarded to the gateway as described above. In neither
case is any routing information required, and thus route
computations can be skipped for these leaf nodes.

3.2.2 Representing Packets

In a large—scale simulation with millions of nodes and flows,
the number ofPacketsflowing through the network can be
tens or hundreds of millions. Thus, careful attention must
be given to efficient representation of simulated packets in
order to keep the overall memory footprint manageable.
However, there are design tradeoffs to be considered which
may result in less flexibility and ease of use if memory
usage is the only consideration.

A typical packet inGTNetSis shown in figure 4. The
packet consists of two parts. First are three fixed position
fields identifying the packet, followed by theDU Stack
The first three fields are included for ease of use of the
simulator, and have no correspondence to real network
packets. The unique identifier is a 32 bit value unique to this
packet, and can be used in the simulator to track individual
through the network. The timestamp field indicates the
simulation time when this packet was created. The size
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example at théPV4 layer at interior routers) and prevents
an unnecessargeleteand new operation.

It is clear that this approach is somewhat memory
efficient in that each packet contains information for only
those protocol data units that are present in the packet. In
contrasths2packets have data fields for all possiBIBUS,
regardless of whether th®DU is actually present in each
particular packet. However, we could have gained additional
/\ memory efficiency by bit—packing and byte—packing, as is
\__/ Rest of Network specified by RFC 760 (Postel 1980a) for example. We

made the design decision in this case to sacrifice some
memory efficiency for ease—of—use and flexibility. Since
one use of network simulators is to study the affect of
changes or additions to existing protocols, our method of
PDU representation allows easy addition of new fields in
protocol headers while at the same time maintaining an
accurate representation of the actual size of a packet to be
transmitted on a communications link.

Gateway

YO

Leaf Nodes 3.3 Reducing Log File Size

Figure 3: Ethernet Leaf Nodes . _ . ' .
Network simulations typically create a log file which traces

GTNetS Packet the flow of packets through the simulated network. In the
Unique ID extreme case, every packet transmission and receipt on ev-
Packet Size ery link, plus every packet enqueue and dequeue operation

Crestion Time at every queue is logged to a disk file. With moderate sized
PDU Stack A‘ HTTP H TcP H P H 8023 ‘ simulations of a fevy hundred network elements, this method

PDU Stack Top ) of packet logging is reasonable. However, when attempt-

ing to model millions of network elements and potentially
billions of packet transmissions, this method becomes un-

wieldy. Our GTNetSdesign addresses this issue in two
field indicates the size, in bytes, of the packet including all ways.

Figure 4: TypicalGTNetSPacket

Protocol Data Units(PDUs) associated with this packet. First, we provide built—in statistics collection that in
This size is the actual size of the data being transmitted, some cases can obviate the need for the log file. In many
rather than the amount of memory used by@ieNetSacket cases, the log file is used as input into a post—processing
representation. For example, t&TNetS IPV4 PDUs a analysis program which further reduces the data and pro-
C++ class object with a total size of 32 bytes. However, duces statistics. For example, if the simulation is modeling
the size used to calculate the transmission time offetvet web browsing activities, the log file analysis program might
PDU is of course 20 bytes plus the size of dRyOptions produce statistics regarding web response time. Other met-

The PDU stack consists oPDUs which are appended  rics gathered by the log file analysis might include average
and removed from the packet as it moves down and up queue length, queuing delay, or loss rate. Built into the
the protocol stack. When a new packet is generated by GTNetSmplementation are a number of statistics gathering
an application (for example a browser creating an HTTP mechanisms which calculate these statistics as the simula-
request), the HTTP header is created and pushed on thetion is executing, if requested by the user. For example,
PDU stack. At the next lower layer (TCP for example), the web browsing models included wiBiTNetSwill gather
an appropriatePDU is again generated and pushed, and metrics for web response time, and will output these statis-
the packet continues down the stack. When a packet is tics as either a histogram or@DF. All queue models in
received from a link at a layer two processor (for example GTNetSwill keep statistics on average size and lost packets,
IEEE 802.3(IEEE 2000)), theDU is popped and examined.  and will log that information to a summary file if requested.

However, in our design we do not actually remove fizU Thus, in many cases, the need for a detailed packet log file
pointer from the data structure, but rather simply adjust a may not exist.
Top pointer. This allows for the case whereP®U that is Secondly, we provide very fine—grained control over

popped from the stack willimmediately pushed back on (for the logging of packet events, which leads to the logging of
only those events that are of interest, and ignoring others.
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Log file entries inGTNetSare optionally created at every 4 EXPERIMENTS
protocol stack layer, both when packets are requested from
a higher layer, and when packets are indicated from a lower We designed a set of experiments to demonstrate the effec-
layer. At each protocol layer, the logging of packets is tiveness of the efficiency optimizations previously discussed.

specified to be in one of three statesabled disabled or
default Additionally, each node in the simulated topology
has the same three packet logging states.

For these experiments, we used @&mpus Networkopol-
ogy (Nicol 2002) shown in figure 6 as the basic building

The state ofblock for the simulation. To scale the topology to larger

the logging at each protocol stack layer and at each node sizes, we replicated the campus network multiple times, and

is optionally specified individually when the topology is
created. By appropriate settings of the logging state at

nodes and protocol stack layers, the logging of packets at a

given node can either be always off (if the statdisabled,
always on (if the state isnabled or deferred to the decision
of the protocol stack layer if the state default Further,

it may be desirable for all packets for one or more data

connected the subnetworks with gateway links as shown in
the figure.

The first set of experiments demonstrates the reduction
in the pending event list size for the optimizations discussed.
These experiments used a fixed topology size 200 campus
networks, which results in 107,600 nodes and 100,800 flows.
The size of the pending event list was tracked at one second

flows to be logged regardless of the logging state at nodes intervals. These results are shown in figure 7. In this figure,

or layers. This can be accomplished byosce log packet
flag in the GTNetSpacket.

When a packet arrives at a particular protocol stack
layer at a particular node, the algorithm for determining if
the packet should be logged is as follows:

if (no log file) DO NOT LOG;

else if (force log packet) LOG

else if (node = disabled) DO NOT LOG
else if (node = enabled) LOG

else if (protocol = disabled) DO NOT LOG
else if (protocol = enabled) LOG

else DO NOT LOG

In addition to the selective logging of packet information
as described abov&TNetSallows detailed specification of
exactly what information should be logged at each protocol
stack layer.For example,RDU header for TCP irGTNetS
consists of eleven individual data items, corresponding to the
protocol information specified in RFC 761 (Postel 1980b).

the x—axis is the simulation time and the y—axis is the size
of the pending event list using a logarithmic scale. The
three individual plots on the figure represent the size with no
optimizations, with the=IFO receive queue optimization,
and with theFIFO receive queue plus timer buckets. We
can see that with none of the optimizations, the event list
grows to nearly 1.4 million events. TH@FO receive queue
reduces the event list size to a maximum of about 100,000
entries, and with both optimizations the maximum size of
the event list is only about 10,000. Figure 8 shows the total
number of events scheduled for the same simulations, with
the x—axis on a linear scale. This figure shows clearly the
reduction in total event count by using the abstract queuing
optimization, reducing the event count by nearly a factor of
two. Also the timer buckets optimization reduces the event
count slightly, since many timer events are canceled before
getting scheduled.

The next set of experiments shows the affect of the
memory efficiency optimizations discussed. We used the

Each of those can be selectively enabled or disabled by same campus network topology as above, but this time used

the simulator user, allowing for the logging of only desired
information. Forexample, it may be the case that a particular
simulation has no use for source port and destination port

varying numbers of campus networks (from 10 to 400) and
tracked the maximum memory footprint of the simulation.
These results are shown in figure 9. In this figure, the

information for TCP packets, but needs the sequence number x_axis is the count of the total number of nodes in the
and acknowledgment numbers from each packet. Using the topology, and the y-axis is size of the memory footprint

selective enabling and disabling of individual protocol items,
only the desired information is logged to the disk file.

A sample excerpt from &TNetSlog file is shown in
figure 5. This shows a single TCP flow from node O to
node 4, with intermediate routers at nodes 2 and 3. The
TCP endpoint at node 0 creates t8&N packet at time
1.77891, which is routed by nodes 2 and 3, and arrives
at node 4 at time 1.88897. Node 4 creates $IYN|ACK
packet which is received at node 0 at time 1.99904. Node
0 responds with alCKpacket followed by 512 data bytes.
Each log file entry forlPV4 shows theTTL, the layer 4
protocol identifier (6 for TCP in this case), the source and
destinationlP addresses, and the packet unique identifier.
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in megabytes. The first plot is withlIx—Vector routing
enabled, the second is with static routing and the single
gateway optimization, and the last is with static routing.
The hardware that we used for these experiments had 2Gb
of main memory, which is the limiting factor for maximum
topology size. ThéNlx—Vectorrouting method can process
up to 330 campus networks (177,000 nodes) within this limit,
where the static routing method can only achieve 40 campus
networks (21,000 nodes). The single gateway optimization
with static routing shows an improvement over plain static
routing, achieving a maximum size of 150 campus networks
(80,000 nodes).
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1.77891 NO L4-TCP 10000 8 0 0 O SYN 0 0 L3-4 64 6 192.168.0.1 192.168.1.1 1
1.78391 N2 L3-4 63 6 192.168.0.1 192.168.1.1 1

1.88396 N3 L3-4 62 6 192.168.0.1 192.168.1.1 1

1.88897 N4 L3-4 61 6 192.168.0.1 192.168.1.1 1 L4-TCP 10000 8 000SYNOO
1.88897 N4 L4-TCP 80 1000 0 O O SYNJACK 0 0 L3-4 64 6 192.168.1.1 192.168.0.1 2
1.89398 N3 L3-4 63 6 192.168.1.1 192.168.0.1 2

1.99403 N2 L3-4 62 6 192.168.1.1 192.168.0.1 2

1.99904 NO L3-4 61 6 192.168.1.1 192.168.0.1 2 L4-TCP 80 1000 0 0 0 SYNJACK 0 O
1.99904 NO L4-TCP 10000 8 0 0 0 ACK 0 0 L3-4 64 6 192.168.0.1 192.168.1.1 4
1.99904 NO L4-TCP 10000 8 0 0 0 0 0 512 L3-4 64 6 192.168.0.1 192.168.1.1 5
2.00404 N2 L3-4 63 6 192.168.0.1 192.168.1.1 4

2.00409 N2 L3-4 63 6 192.168.0.1 192.168.1.1 5

2.10409 N3 L3-4 62 6 192.168.0.1 192.168.1.1 4

2.10456 N3 L3-4 62 6 192.168.0.1 192.168.1.1 5

2.10910 N4 L3-4 61 6 192.168.0.1 192.168.1.1 4 L4-TCP 10000 8 000ACKOO
2.10961 N4 L3-4 61 6 192.168.0.1 192.168.1.1 5 L4-TCP 10000 8 00O0O0 0 512
2.10961 N4 L4-TCP 80 10000 0 512 AC K 0 0 L3-4 64 6 192.168.1.1 192.168.0.1 7
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