
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SIMULATING QUANTUM COMPUTING: QUANTUM EXPRESS

Kareem S. Aggour
Renee Guhde

Melvin K. Simmons

GE Global Research
One Research Circle

Niskayuna, NY 12309, U.S.A.

 Michael J. Simon

Lockheed Martin Space Systems Company
P.O. Box 179

Denver, CO 80201, U.S.A.

ABSTRACT

Quantum Computing (QC) research has gained a lot of
momentum recently due to several theoretical analyses that
indicate that QC is significantly more efficient at solving
certain classes of problems than classical computing.
While experimental validation will ultimately be required,
the primitive nature of current QC hardware leaves practi-
cal testing limited to trivial examples. Thus, a robust simu-
lator is needed to study complex QC issues. Most QC
simulators model ideal operations, and thus cannot predict
the actual time required to execute an algorithm or quantify
the effects of errors in the calculation. We have developed
a novel QC simulator that models physical hardware im-
plementations. This simulator not only allows the accurate
simulation of quantum algorithms on various hardware im-
plementations, but also takes an important step towards
providing a framework to determine their true performance
and vulnerability to errors.

1 INTRODUCTION

As transistors get smaller, conventional computation will
encounter fundamental limits of size, time, and energy. It
is anticipated that the effects of statistical thermodynamics
and quantum mechanics will be encountered in hardware
designed in the next decade. Some efforts have already
been made to reduce these effects in conventional architec-
tures. However, Quantum Computing (QC) has significant
advantages that other researchers are seeking to employ in
new computational devices. QC is an emerging technol-
ogy that could overcome conventional hardware size and
speed limitations, but with hardware, algorithms, and pro-
gram designs completely unlike those in use today.
 Enthusiasm for quantum computing has exploded over
the past few years. An important driving force behind this
enthusiasm has been proof of the theoretical capabilities of
quantum computers to solve problems generally believed
to be too compute-intensive for conventional computing

approaches. These theoretical capabilities are potentially
important to security, where a quantum computer could
break cryptography systems in wide use today. However,
apart from certain problems of interest to theoretical scien-
tists, there is little understanding of benefits that quantum
computers could offer to other problem domains. Gaining
such understanding will require the invention and evalua-
tion of new algorithms for those domains.
 The objective of this work is to design and develop a
simulator in software that can test and quantify the per-
formance of such quantum computing algorithms. This in-
cludes simulating both the input of data and the reading of
the output of a quantum computer. In addition, it is neces-
sary to be able to determine the amount of time required to
complete an operation based on the physical properties of
the hardware (as opposed to performing idealized opera-
tions) to allow for performance studies. Since no single
quantum hardware implementation has been identified as
the best, it is important to understand the trade-offs be-
tween different implementations. The simulator must also
be capable of simulating noise and quantum decoherence
(state deterioration due to environmental factors), to sup-
port error robustness analysis.
 Section 2 provides a background of related work in
quantum computing and simulation. Section 3 then re-
views how a quantum algorithm is executed. Section 4
provides an overview of the simulator, named Quantum
eXpress (QX). Section 5 gives some initial results from a
quantum algorithm simulated using QX. Finally, Section 6
describes future research efforts.

2 BACKGROUND AND PRIOR ART

Quantum computing can theoretically solve certain prob-
lems much more efficiently than classical computing be-
cause of the intrinsic parallelism of quantum phenomena,
parallelism that does not require hardware duplication. For
example, while a classical N-bit register can hold any one
integer between 0 and 2N–1, an N-quantum bit (qubit) regis-

Aggour, Guhde, Simmons, and Simon

ter can simultaneously hold all (or any given subset) of these
2N integers in the form of a quantum superposition (combi-
nation) of states. However, there is a catch—the result of
the computation is also in the form of a superposition and
any attempt to read out (measure) the result causes the su-
perposition to collapse into just one of the 2N integer states.

The measurement of a particular quantum state will
not deterministically collapse to the same state. The col-
lapse to different states is probabilistic. Therefore, to get
more information on the quantum state being measured,
one must freshly prepare the superposition many times and
perform the measurement each time. The outcomes of
each of these “trials” will allow one to build a detailed un-
derstanding of the likelihood of the quantum state to col-
lapse to each of the different possible states. For many ap-
plications, the inefficiency of these repetitions outweighs
the efficiency of the original quantum parallelism. How-
ever, for some applications, there is a net gain, even a tre-
mendous gain, in efficiency.
 So far, only a few problems are known for which QC
offers a net gain in efficiency. One class of these is the
Abelian hidden subgroup problem (Lomonaco & Kauff-
man 2002), which can be solved by QC using exponen-
tially fewer operations than the best known classical algo-
rithm. This class of problem includes Shor’s famous code-
breaking algorithm (Shor 1997), which is the motivation
for much of the current funding for QC research. See Rief-
fel & Polak (2000) and Ekert et al. (2001) for additional
information on quantum computing.

2.1 Quantum Simulation

Even where QC is theoretically more efficient, it is impor-
tant to understand just how much time a quantum computa-
tion would require in practice. Not only does each opera-
tion take time, but there is also overhead before and after
each computation. Especially important is the overhead
due to quantum error correction, which protects the quan-
tum superposition from decoherence. In the absence of de-
coherence, a state vector (i.e., a general superposition) ψ
evolves in time during a single operation according to a
Schrödinger equation (Griffiths 1995):

 ψψ H
dt
di == (1)

where the matrix H is known as a Hamiltonian, which is
some linear Hermitian operator, and = is a physical con-
stant known as Planck’s constant. An operator (repre-
sented as a matrix) is called Hermitian if it is equal to its
own transposed complex-conjugate. The vector ψ ,
known as a ‘ket’, is the complex vector associated with
state ψ. In the presence of decoherence, and with some

approximations, the evolution is described more generally
by a “master equation” such as (Louisell 1973):

]],[,[],[ρρρ VVHi
dt
d −−== (2)

where square brackets denote commutators (the commuta-
tor of two operators A and B is denoted [A,B] and is de-
fined as [A,B] = AB – BA) and ρ is a density matrix, a
natural way of representing a statistical distribution of
states (see section 3.2 for details). For a pure state (a com-
pletely known superposition), the density matrix has the
form (Louisell 1973):

 ψψρ = (3)

where |ψ〈 is the complex conjugate (also referred to as the
‘bra’) of 〉ψ| . | |ψψ 〉〈 denotes the outer product of the ket
and bra. A state remains pure (no decoherence) if V=0 in
Equation 2, in which case the master equation is equivalent
to the Schrödinger equation (Equation 1). Otherwise, the
master equation describes, in a statistical sense, the deco-
hering influence of the environment.
 Most QC simulators deal only with pure states and
thus cannot accommodate evolution according to a master
equation. Our simulator uses the density-matrix represen-
tation, allowing us to naturally simulate the effects of de-
coherence. The simulator’s ability to accommodate deco-
herence does come at a price, however. In the density-
matrix representation, a state of N qubits is represented by
a 2Nx2N square matrix instead of a 2N-element vector. Be-
cause our simulator uses the density-matrix representation,
it cannot handle as many qubits as a pure-state simulator
could. Nevertheless, the density-matrix representation is
the most straight-forward way to properly accommodate
decoherence in the simulation. See Nielsen & Chuang
(2000) for additional information on quantum simulation.

2.2 Existing Simulators

A number of quantum simulators exist that vary in com-
plexity, purpose, state representation and implementation.
This is by no means an exhaustive list. The study of quan-
tum simulation began when Deutsch (1985) introduced the
notion of a Quantum Turing Machine (QTM). Many QTM
simulators have been implemented, including the Quantum
Turing Machine Simulator (QTS) developed by Hertel
(1999) using Mathematica. The major drawback of using
QTMs is finding an appropriate step operator T. The step
operator of a QTM is similar to the transition function of a
classical TM. Also, the runtime complexity of QTMs can
be devastatingly large in comparison to the problem size.
Therefore, QTMs are useful when studying quantum com-
plexity theory, but have little importance outside this area.

Aggour, Guhde, Simmons, and Simon

 Most quantum simulators use complex numbers to
represent quantum states. Other approaches have been
used. QDD, a C++ library developed by Greve (1999),
uses binary states which are represented using a Binary
Decision Diagram (BDD). This allows QDD to model
relatively large quantum states, although this factor limits
QDD to representing a “digital” quantum computing model
versus an “analog” model. Quantum Bayesian Nets are
another common representation of quantum states and are
used by Quantum Fog and Qubiter (Tucci 1998). Using
Bayesian Nets, quantum systems can be graphically repre-
sented. Quantum Fog is used to write quantum computer
programs in a high level visual language and Qubiter trans-
lates this language to qubit-level instructions. Simulators
such as Quantum Fog and Qubiter were built to study
quantum Bayesian Nets and explore the possible use of
such systems in AI applications on quantum computers.
 Quantum Computing Language, developed by Ömer
(1998), was the first architecture-independent program-
ming language for quantum computers. It is a quantum
computer simulation language designed to work with any
qubit-based quantum computer architecture. It is useful in
studying quantum computing theory, but cannot capture
hardware-specific phenomena.
 The Parallel Quantum Simulator, developed by
Obenland and Despain (1997), was specifically designed to
examine the effects of errors during quantum computation.
The simulator was built to analyze the feasibility of quan-
tum computation, as well as its scalability. It only simu-
lates Shor’s and Grover’s algorithms, and was specifically
designed to model an Ion Trap quantum computer as pro-
posed by Cirac and Zoller (1995), making this simulator
hardware-specific.
 Most quantum computing simulators are designed to
simulate a single algorithm on a single type of hardware,
most commonly Shor’s quantum factoring algorithm and
the algorithms needed to implement it (such as the Fourier
Transform). Quantum eXpress, on the other hand, can be
used to implement any quantum algorithm running on any
type of hardware, and can report projected algorithm exe-
cution times on a quantum computer. Due to its flexible
architecture and use of the density-matrix state representa-
tion, QX can easily be augmented to simulate hardware-
specific decoherence effects.

3 QUANTUM ALGORITHM EXECUTION

The execution of any algorithm can be divided into three
steps: input, evaluation, and output.

3.1 Input

Quantum eXpress requires two primary inputs: (1) a state
file and (2) an algorithm file. In the state file a ‘base’ must
be specified, indicating whether the states of the system
represent qubits (base 2), qutrits (base 3), or more. While
this document will always refer to qubits (2N), it should be
understood that QX can also handle qutrits (3N) and other
higher base states, at the user’s discretion. The initial state
of the system is represented by a vector of 2N elements
(base 2), where N is the number of distinct qubits.
 The base and initial states of Quantum eXpress are
specified in an eXtensible Mark-up Language (XML) file
using the World Wide Web Consortium’s (W3C 2001)
Mathematical Mark-up Language (MathML) specification.
This file contains sets of vectors defining both the initial
states and ‘states of interest’. These states are effectively
identical in construction, except the initial states also have
probability values associated with them indicating the
probability that the initial system is in that state. States of
interest are defined for the purpose of allowing QX to
‘watch’ certain states. At any time during the execution of
an algorithm, the system can be evaluated to determine the
probability of it being in each of these ‘watched’ states. At
the end of the execution of an algorithm, the probabilities
of each of the states of interest are displayed to give an in-
dication of the final superposition of the system.
 The other required input is a second XML file that de-
scribes the quantum algorithm to be executed. The algo-
rithm includes what gate operations to run and on which
qubits those operations are performed. This file is kept
separate from the initial state file, so that a single algorithm
can be easily executed with various initial states.

3.2 Evaluation

Quantum simulators need a succinct method for describing
quantum systems and their operations. Since a state is rep-
resented as a vector (ket), a statistical ensemble of states is
naturally represented as a matrix, referred to as a (probabil-
ity) density matrix. The density matrix describes the cur-
rent state of a quantum system. The execution of a quan-
tum algorithm can be viewed as the multiplication of a
system’s density matrix with other matrices that represent
quantum operations.
 The initial states and their probabilities determine the
initial density matrix of the system using the equation:

 (4) ∑
=

〉〈=
states
init

k
kkkp

#

1
||)(ρ

where p(k) is the probability of state k. Equation 4 allows
us to define the initial density matrix ρ of the system.
 A typical quantum algorithm can be seen graphically
in Figure 1. Each of the lines in Figure 1 represent a dis-
tinct qubit, and each box represents an operation performed
on those qubits. Each of the operations can also be re-
ferred to as a quantum ‘gate’.

mmons, and Simon
Aggour, Guhde, Si

Figure 1: Graphical Representation of an Algorithm

A third input into the system is a set of ‘gate’ XML files
that define the structure of these operations. Each gate is a
unitary operator, which is defined by a Hamiltonian matrix
and a time ∆t over which it is applied. This is described by
the following equation:

 (5) =/)(tiHetU ∆−=∆

where U is the unitary operator and H is the Hamiltonian
for the gate. As the algorithm is executed, these operators
are applied to the density matrix ρ according to the follow-
ing equation (ignoring decoherence for simplicity):

 . (6) ∓)()()()(tUttUtt ∆∆=∆+ ρρ

Here is the Hermitian conjugate of U . The gate
XML file contains the matrix H and ∆t in MathML format.
Each gate may act on a different number of possible qubits,
as some apply to single qubits (ex., Not), some apply to
two (ex., CNot {Conditional Not} and Swap), and some
apply to more. The exact Hamiltonian to apply and for
how long depend on (a) the type of gate operation and (b)
the type of hardware. For example, a ‘Not’ gate may have
different Hamiltonians depending on the type of hardware
modeled.

∓U

 The exponentiation of the matrix H in Equation 5 is
evaluated using the Taylor Series expansion of ex:

 ...
!

...
!3!2

1
!

32

0
++++++==∑

∞

= k
xxxx

k
xe

k

k

k
x (7)

Combining Equations 5 and 7, the unitary operator U may
be written as:

 32/)(

!3
)(

!2
1)(

===
= tHitHtiHIetU tiH ∆+∆−∆−≈=∆ ∆− . (8)

Note that the approximation of e-iH∆t/ħ uses the Taylor Se-
ries expansion of the exponent up to the third (cubic) ele-
ment. This could be increased to improve the numerical
accuracy of the simulator (though it would negatively im-
pact its efficiency). Using the cubic expansion produces
numerical errors on the order of 10-5, which for most
evaluations is quite sufficient. Equations 4 through 8 illus-
trate, using the no-decoherence case for simplicity, how the
simulator evaluates quantum algorithms.
3.3 Output

At the completion of the evaluation of an algorithm, we
wish to understand the final superposition that the system
is in. The states of interest are measured against the final
density matrix to determine the probability that the system
is in each state using the following equation:

)|(|)(ρkktracekp 〉〈= (9)

where p(k) is the probability that the final superposition is
in state k described by ket | . 〉k

4 SYSTEM ARCHITECTURE

Quantum eXpress has been developed entirely in Java
1.3.01 using Object-Oriented design paradigms. It is plat-
form independent, and has been successfully executed in
Windows and UNIX environments. The architecture is di-
vided into four modules: (1) Gate, (2) Software Interface,
(3) Quantum Algorithm and (4) Simulator Engine. Figure
2 shows these components and how they interact. Each of
the components, described in detail in the following sec-
tions, is responsible for a subset of QX functionality.

4.1 Gate Module

The Gate module, (1) in Figure 2, is responsible for read-
ing quantum gates (unitary operators) from XML files and
for maintaining those gates for the Software Interface Uni-
tary Operator class to access. When a gate is specified in
an algorithm XML file, that gate’s name is passed to the
Gate Manager class, which is responsible for maintaining
in memory all of the available gates. Gate Parser loads the
content from gate XML files, interprets them, and creates
individual Gate objects based on those file’s contents. The
Gate classes, initialized by Gate Parser and maintained in
Gate Manager, store each gate’s Hamiltonian matrix and
the time necessary to apply the Hamiltonian for it to have
the effect of the desired unitary operator.
 When a request for a gate is made, Gate Manager op-
erates as follows:

if the requested gate is not in local memory
read the gate from XML using Gate Parser
store the new Gate object in local memory

return the Gate from local memory

The Gate object that is returned supplies interfaces to the
Hamiltonian matrix in two parts: a two-dimensional array
containing the real part of the matrix and another two-
dimensional array containing the imaginary part.
 The Gate module is independent of the other modules.
Gate Manager can be executed stand-alone, in which case
it will use Gate Parser to read the structure of a gate speci-

Aggour, Guhde, Simmons, and Simon

Software
Interface

Density Matrix
Interface

Ket
Interface

Algorithm
Parser

Quantum
Algorithm

Algorithm Initializer

State
XML

Algorithm
XML

Unitary Operator
Interface

Gate Manager

Gate

Gate
XML

2

Software Initializer

Quantum
Simulator

Engine
4

3 1

Quantum
Simulator

Gate Parser

Figure 2: Quantum Simulator Architecture
fied in an XML file, display the composition of the created
Gate class, and then exit.
 If a new gate is required (either due to implementing a
new operator or due to modeling a different type of hard-
ware), a new gate XML file must be written. If this file is
written in accordance with the standards specified for Gate
Parser, then the new gate will automatically be available to
the rest of the simulator through the Gate Manager class.
Thus, adding new gates to the simulator requires no code
writing or compilation.

4.2 Software Interface Module

The Software Interface module, (2) in Figure 2, defines
common interfaces to be used by all classes that define the
structure for Density Matrices, Kets, and Unitary Operators
in QX. It also provides stub methods for executing unitary
operations on a system (Equation 6) and for measuring the
probabilities of certain states in the system (Equation 9).
The software interface is dependent only upon the Gate
module. This dependency is tied through the Unitary Op-
erator interface. The gates define the structures of the uni-
tary operators that act on the density matrix, so the Soft-
ware Interface module is responsible for converting gates
to usable unitary operators (Equation 8).
 Unlike the other modules, the Software Interface mod-
ule defines an interface and not a specific class implemen-
tation. Since the majority of the simulator’s computational
effort is expended in this portion of the code (primarily
through large matrix-vector and matrix-matrix multiplica-
tions), it is valuable to be able to try out multiple versions
of these classes to attempt to construct more efficient im-
plementations without impacting the rest of the code.
Therefore, the primary module, the Simulator Engine, is
only aware of the interface of the Software Interface mod-
ule. The class name of the specific Software Interface in-
stance to be used by the simulator is specified in the state
XML configuration file and the class is loaded dynamically
using Java’s reflection (runtime class loading) API.
 We have implemented pure Java instances of the
Software Interface components. In the future we can easily
implement other instances, such as classes that connect to
third party applications like Matlab or Mathematica. These
tools, which are better optimized than Java for performing
large matrix multiplications, could be used to improve the
performance of the simulator without having to impact the
other modules.
 The current pure Java implementation of the Software
Interface components required the creation of a number of
common mathematical data objects, including complex
numbers, vectors, and matrices, as well as a wide array of
methods to manipulate those objects.

4.2.1 Complex Numbers

Due to the heavy use of complex numbers in the simulator
(every matrix and vector element is a complex number), it
was decided not to create a complex number class to repre-
sent these objects. Instead, arrays of two Java ‘double’
values are used (one value for the real part, one for the
imaginary), as there is significantly less overhead for Java
to create an object of a known type. A custom, static
Complex class was developed to simplify the manipulation
of these objects by providing a set of methods for adding,
subtracting, and multiplying complex numbers, as well as
other required methods, but this class is not instantiated
and thus does not add overhead to the ubiquitous complex
number manipulation.

Aggour, Guhde, Simmons, and Simon

4.2.2 Vectors

Vectors are required to represent the initial states (kets) of
the system to produce the initial density matrix, and to rep-
resent the states of interest of the system. A custom Vector
class was developed to store and manipulate vectors, in-
cluding taking inner and outer products between vectors,
and multiplying vectors with matrices and scalars.

4.2.3 Matrices

Matrices are required to represent the density matrix as
well as unitary operators. A custom Matrix class has been
developed to store and manipulate matrices, including add-
ing and multiplying with other matrices and vectors.
 Matrix multiplication can take a significant amount of
time. The Strassen Algorithm described by Cormen et al.
(1989) replaces expensive multiplication operations that
occur during matrix multiplication with less-expensive ad-
dition and subtraction operations. Therefore, the Strassen
Algorithm with Winograd’s Variant was implemented in
QX to improve the speed of matrix multiplication over the
standard row-column multiplication algorithm. Because of
the structure of Strassen’s Algorithm, it is only really ef-
fective for matrices with dimensions greater than 64x64.
Also, a performance improvement may not be experienced
on all systems, as the algorithm requires more memory
than the standard multiplication procedure and so systems
with limited or shared memory resources may not experi-
ence any performance improvement.

4.3 Quantum Algorithm Module

The Quantum Algorithm module, (3) in Figure 2, is di-
vided into two components—Algorithm Parser and Quan-
tum Algorithm. Together, these classes are responsible for
reading in an algorithm XML file and storing the defined
algorithm. The gates to execute are defined in this file,
along with their order and the qubits they operate on,
which altogether make up the algorithm. Algorithm Parser
is responsible for parsing the XML file and then creating
an instance of the Quantum Algorithm class, which is used
to store the information found in the algorithm.
 By specifying another algorithm filename in place of a
gate name in an algorithm file, that algorithm will be exe-
cuted as a sub process of the primary algorithm. In this way,
separate algorithm files can be written to implement certain
functions, which then can be flexibly incorporated into larger
algorithms. For example, if algorithm A operates on N qubits
and algorithm B operates on M (M≥N), algorithm B can in-
voke A and cause it to operate on any combination N of the
M qubits in algorithm B. Thus, any algorithm of the same
qubit size or smaller can be invoked as a sub process of any
another algorithm. Figure 3 shows the algorithm that exe-
cutes a quantum Fourier Transform on three qubits. The dark
rectangles represent various one- and two-qubit transforma-
tions (Hadamards and Conditional-Conditional-Phase Shifts),
and the light rectangle represents another algorithm invoked
within this Fourier Transform algorithm. The included algo-
rithm (Swap-3) reverses the order of three qubits. As shown
in the file menu in Figure 3, both gates and algorithms can be
inserted into an algorithm.
 The Quantum Algorithm module is independent of the
other modules. Algorithm Parser can be run stand-alone,
in which case it will read in a quantum algorithm specified
via an XML file, display that algorithm, and then exit.

If a new quantum algorithm is to be implemented, a
new algorithm XML file must be written. If this algorithm
XML file is written in accordance with the standards speci-
fied for Algorithm Parser, then the new algorithm will
automatically be available for the simulator to execute.
Thus, testing new algorithms in the simulator requires no
code writing or compilation.

4.4 Simulator Engine Module

The Simulator Engine module’s role, (4) in Figure 2, is to
piece the other modules together. It is the main class that
is executed, and is responsible for loading the XML con-
figuration files and passing their contents to the appropriate
classes for initialization. Once all of the initialization is
complete, the engine executes the quantum algorithm.
Figure 3: Three Qubit Fourier Transform Algorithm

Aggour, Guhde, Simmons, and Simon

 The simulator engine is dependent upon all of the
other modules in Quantum eXpress. It takes as input ar-
guments the state and algorithm XML files, and then calls
the Software Interface module to initialize the states of the
system and the Quantum Algorithm module to initialize the
algorithm. The engine operates by performing the follow-
ing initialization procedure:

If missing a required input parameter
 (algorithm or state file)
Exit

Attempt to open each file
If either file is not valid
Exit

Use the state file to initialize the software
interface
Use the algorithm file to initialize the
quantum algorithm

After the initialization process is completed properly, the
Simulator Engine module executes the algorithm utilizing
the Gate module to load the gates identified in the algo-
rithm. The following procedure is followed to execute the
quantum algorithm:

Generate the initial density matrix from the
initial states and their probabilities
Display the density matrix
1: While there are steps remaining in the
quantum algorithm
If the present step is a gate
Read the required Gate specified in the
algorithm from the Gate Manager
Initialize a Unitary Operator for the Gate
Apply the Unitary Operator to the density
matrix
Sum the amount of time spent on the algo-
rithm so far plus the amount of time spent
performing the current operation

Else If the present step is an algorithm
Open and initialize the specified algo-
rithm file
GOTO 1 and iterate over the steps in the
new algorithm file

Display the final density matrix
Display the final amount of time required to
perform the entire algorithm
Evaluate and display the final probabilities
of all of the states of interest

4.5 Graphical User Interface

Also written purely in Java, a Graphical User Interface
(GUI) was created to facilitate the development and testing
of quantum algorithms. The QX GUI can be used to write
both state and algorithm configuration files, and run the
engine. It contains four basic components. The first is an
editor panel, a screen capture of which can be seen in Fig-
ure 4, used to build state configurations. Here users can
create a set of initial states, a set of interest states and can
specify a base and the number of qubits to use. The next
component allows users to build gate configurations by

Figure 4: GUI State Editor Panel

specifying Hamiltonian matrices and operating times. The
third component, shown in Figure 3, allows users to build
an algorithm by inserting gates and other algorithms into a
quantum algorithm. The last component allows for the
execution of a quantum algorithm, where the user can
specify both a state and algorithm configuration.
 The QX GUI can directly invoke a local instance of
the simulator engine or it can connect to a remote server
via the Simple Object Access Protocol (SOAP) to execute
the simulator engine on a shared server. Figure 5 displays
these two alternatives. Invocation of the engine is config-
ured via an XML properties file read by the GUI at initiali-
zation. After executing the algorithm, the simulator engine
returns a result set containing the final density matrix, the
time required to perform the entire quantum algorithm, and
the final probabilities of all of the states of interest. These
results are then displayed to the user through the GUI.

Local Server

GUI

Simulator
Engine

Simulator
Engine

Remote Server

Internet
(SOAP)

or

Figure 5: Alternatives for GUI
Connecting to Engine

5 SIMULATOR EXPERIMENTS

We have run several experiments with no decoherence to
confirm that the simulator functions properly under ideal

Aggour, Guhde, Simmons, and Simon

quantum circumstances. These tests included simulations
of the quantum Fourier Transform (a subroutine in Shor’s
code-breaking algorithm) on both 3 and 7 qubits (the 3
qubit algorithm can be seen in Figure 3). One of the more
interesting and complicated algorithms we have imple-
mented is a generalization of the Fourier Transform, simu-
lating a Nuclear Magnetic Resonance (NMR) device (Niel-
sen & Chuang 2000). This algorithm involved 333 gate
operations (from 5 distinct gates) acting on 7 qubits. In the
simulator, this algorithm was logically subdivided into 4
separate algorithm files and one driver file, resulting in a
total of 5 XML files used.

In this example, the input was the pure signal shown in
Figure 6 with a significant amount of noise added. The
signal and noise, which together formed the experiment’s
input, can be seen in Figure 7.

Figure 6: Pure Signal

Figure 7: Signal with Noise as Input

To verify the output of the simulator, we first imple-

mented the algorithm in Matlab using ideal unitary opera-
tors. The Matlab results can be seen in Figure 8. In Quan-
tum eXpress we used the Hamiltonians and operation times
to approximate the unitary operators. The QX output can
be seen in Figure 9. Clearly, Figures 8 and 9 are nearly
identical, indicating the extremely low numerical error
produced by the simulator. This and other examples were
implemented to validate QX’s execution, and all indicate
that the simulator is extremely accurate in its modeling of
quantum computing algorithms under ideal circumstances.

Figure 8: Matlab Output

Figure 9: Simulator Output

 This work prepares us to extend Quantum eXpress to
incorporate the effects of quantum decoherence in algo-
rithms, allowing us to explore the effects of decoherence
that are harder to anticipate in quantitative detail.

6 CONCLUSIONS AND FUTURE WORK

Quantum eXpress is a novel simulator that incorporates
elements of Object-Oriented software design with princi-
ples from quantum computing. Some of its key features
are allowing (a) the quantum system to be described via a
density matrix representation and (b) quantum operations
to be described by physical Hamiltonians. These capabili-
ties allow the execution times of quantum algorithms to be
accurately determined. They also allow the study of the
impact of errors and decoherence on the algorithms. Quan-
tum eXpress already has the capability to insert errors into
a quantum algorithm operation, simulating imperfections
in the hardware implementation and gate application dura-

Aggour, Guhde, Simmons, and Simon

tion. We will soon be extending QX to effectively simu-
late quantum decoherence within this framework.
 QX has a flexible architecture that can be configured
entirely through XML files. This enables researchers to
explore new algorithms and gate architectures in-silico be-
fore they can be physically realized, without having to
write any code. To our knowledge, no other quantum
simulator has these capabilities. In the future, we will ex-
plore porting Quantum eXpress to a reconfigurable com-
puting architecture. This might dramatically decrease
simulation run-times and allow for the possibility of proc-
essing algorithms in excess of 15 qubits. Future releases of
QX will also include visualization capabilities. This will
allow for intuitive analysis of quantum information and
easy interpretation of algorithm execution results.

We are also in the process of making Quantum eX-
press freely available to the public. For information on
gaining access to the simulator, please contact the authors.

ACKNOWLEDGMENTS

The authors would like to thank GE Global Research and
Lockheed Martin Space Systems Company for their sup-
port of this research. We would especially like to thank
Randall Schnathorst of Lockheed Martin for his advice and
direction. The authors would also like to thank the confer-
ence organizers and anonymous reviewers.

REFERENCES

Cirac, J.I. and P. Zoller. 1995. Quantum Computations
with Cold Trapped Ions, Physical Review Letters
74(20):4091-4094.

Cormen, T.H., C.E. Leiserson and R.L. Rivest. 1989. In-
troduction to Algorithms. New York: The MIT Press.

Deutsch, D. 1985. Quantum Theory, the Church-Turing Prin-
ciple and the Universal Quantum Computer, Pro-
ceedings of the Royal Society of London A 400:97-117.

Ekert, A., P. Hayden, and H. Inamori. 2001. Basic Con-
cepts in Quantum Computation [online]. Available via
<http://lanl.arXiv.org/abs/quant-ph/
0011013> [accessed July 1, 2003].

Greve, D. 1999. QDD: A Quantum Computer Emulation
Library [online]. Available via <http://qdd.
sourceforge.net/> [accessed July 1, 2003].

Griffiths, D.J. 1995. Introduction to Quantum Mechanics.
New Jersey: Prentice Hall.

Hertel, J. 1999. Quantum Turing Machine Simulator, The
Mathematica Journal 8(3):440-457.

Lomonaco, S.J. and L.H. Kauffman. 2002. Quantum Hidden
Subgroup Algorithms: A Mathematical Perspective
[online]. Available via <http://arxiv.org/
abs/quant-ph/0201095> [accessed July 1, 2003].

Louisell, W.H., 1973. Quantum Statistical Properties of
Radiation. New York: John Wiley and Sons.
Nielsen, M. and I. Chuang. 2000. Quantum Computation
and Quantum Information. New York: Cambridge
University Press.

Obenland, K. and A. Despain. 1997. A Parallel Quantum
Computer Simulator [online]. Available via <http:
//arxiv.org/abs/quant-ph/9804039> [ac-
cessed July 1, 2003].

Ömer, B. 1998. A Procedural Formalism for Quantum
Computing [online]. Available via <http://
tph.tuwien.ac.at/~oemer/doc/qcldoc/>
[accessed July 1, 2003].

Rieffel, E.G. and W. Polak. 2000. An Introduction to
Quantum Computing for Non-Physicists, ACM Com-
puting Surveys 32(3):300-335.

Shor, P. 1997. Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer, SIAM Journal of Computing 26:1484-1509.

Tucci, R. 1998. How To Compile a Quantum Bayesian Net
[online]. Available via <http://lanl.arXiv.org
/abs/quant-ph/9805016v1> [accessed July 1,
2003].

W3C. 2001. MathML version 2.0 [online]. Available via
<http://www.w3c.org/TR/MathML2/> [ac-
cessed July 1, 2003].

AUTHOR BIOGRAPHIES

KAREEM S. AGGOUR is a computer engineer at GE
Global Research. His research interests include quantum
computing and simulation, and the design of soft comput-
ing and artificial intelligence systems. He holds a Masters
in Computer and Systems Engineering from Rensselear
Polytechnic Institute (RPI) in Troy, NY. He can be
reached by e-mail at <aggour@research.ge.com>

RENEE GUHDE is a software engineer at GE Global Re-
search. She holds a Masters in Computer Science from
RPI. Her research interests include quantum simulation
and artificial intelligence. She can be reached by e-mail at
<guhde@research.ge.com>

MELVIN K. SIMMONS is a physicist at GE Global Re-
search. His interests include the physical limitations of ad-
vanced computation, biological signaling pathways and
simulation, and quantum computation. He holds a PhD in
physics from the University of California Berkeley. He
can be reached at <simmons@research.ge.com>

MICHAEL J. SIMON is a software and multimedia engi-
neer at Lockheed Martin Space Systems Company. His
research interests include quantum computation, recon-
figurable computing, scientific visualization and physical
simulation. He is pursuing a dual Masters in Computer
Science and Engineering at the University of Denver. He
can be reached at <michael.j.simon@lmco.com>

http://lanl.arxiv.org/abs/quant-ph/ 0011013
http://lanl.arxiv.org/abs/quant-ph/ 0011013
http://qdd. sourceforge.net/
http://qdd. sourceforge.net/
http://arxiv.org/abs/quant-ph/9804039
http://arxiv.org/abs/quant-ph/9804039
http://lanl.arxiv.org/abs/quant-ph/0011013
http://lanl.arxiv.org/abs/quant-ph/0011013
http://qdd.sourceforge.net/
http://qdd.sourceforge.net/
http://arxiv.org/abs/quant-ph/9804039
http://arxiv.org/abs/quant-ph/9804039
http://lanl.arXiv.org/abs/quant-ph/9805016v1
http://lanl.arXiv.org/abs/quant-ph/9805016v1
http://www.w3c.org/TR/MathML2/

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 932
	02: 933
	03: 934
	04: 935
	05: 936
	06: 937
	07: 938
	08: 939
	09: 940

