
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

SPECIFYING THE BEHAVIOR OF COMPUTER-GENERATED FORCES WITHOUT PROGRAMMING

Daniel Fu

Randy Jensen

Stottler Henke Associates, Inc.
1660 S. Amphlett Blvd.

Suite 350
San Mateo, CA 94402, U.S.A.

 Ryan Houlette

Stottler Henke Associates, Inc.
280 Broadway

Arlington, MA 02474, U.S.A.

ABSTRACT

The behavior of automated forces in military training simu-
lations is frequently hard-coded by a software developer
after conferring with subject matter experts. These experts
do not directly participate in the development process, in-
stead relying on the developer to correctly implement ap-
propriate behavior. This dependency can result in in-
creased simulation development time and cost.

We present a visual behavior representation and ac-
companying authoring tool that is meant to accelerate the
development process by enabling experts to participate in
development, while not hindering software developer pro-
ductivity. An author using this tool constructs behaviors
by assembling flowchart-like diagrams from a set of build-
ing blocks. The resulting behaviors can be directly exe-
cuted in a simulation using a simplified yet powerful com-
putational model, also described in this paper.

We also discuss the application of this visual behavior
representation to the creation of automated players for the
Counter-Strike computer game.

1 INTRODUCTION

Traditionally, the implementation of automated forces be-
havior has resided in the domain of the software developer.
Recognizing the potential for subject matter experts to par-
ticipate in the development process, we have investigated
ways in which the representation of behavior could be ac-
cessible to non-technical personnel. The result is an alter-
nate approach to specifying simulation behaviors: a visual
behavior representation – embodied in a software editor
and runtime engine – that opens the authoring process to
non-programmers.

In this paper, we discuss our visual representation and
the corresponding computational model that operational-
izes behavior. The visual representation consists of visual
building blocks that an author assembles using standard di-
rect-manipulation idioms. These blocks are modular such

that they (1) can be decomposed into simpler, more easily
comprehensible subcomponents, and (2) can be reused re-
peatedly for easier authoring.

An authoring and runtime innovation we describe here
takes the notion of functional polymorphism from object-
oriented programming and applies it to simulation behavior.
This form of “behavioral polymorphism” enables the author
to define multiple versions of the same behavior, where each
version is associated with particular attributes of a simula-
tion entity. During a simulation run, the appropriate version
of the behavior will dynamically be selected and invoked
based on the current state of the entity. Polymorphism
streamlines the authoring process when faced with different
types of entities that share high-level behaviors.

We discuss the visual representation and computa-
tional model in the context of a team-level implementation
of behavior for Counter-Strike, a multiplayer “first-person
shooter” computer game.

2 OVERVIEW

In our methodology, behaviors for simulation entities are
articulated in terms of four basic constructs: actions, which
define all the different actions an entity can perform; other
behaviors previously created (any behavior can invoke any
other behavior, which allows for the construction of a li-
brary of behaviors that can lead to increased efficiency in
the form of easy reuse); conditions, which specify the cir-
cumstances under which each action and behavior will
happen; and connectors, which control the order in which
conditions are evaluated and actions and behaviors take
place. These four constructs allow subject matter experts to
create AI behavior that mimics behavior experienced or
observed in the real world.

Behaviors for simulation entities are essentially cre-
ated by “drawing” them as flowchart-like diagrams in an
editing window. This intuitive visual approach allows sub-
ject matter experts to see a behavior’s logic at a glance, and

Fu, Jensen, and Houlette

quickly spot potential flaws, logical errors, or other diffi-
culties. A visual flowcharting paradigm is consistent with
design and specification methods naturally used in many
domains, and helps to enforce a structured approach to de-
veloping the preliminary formalization that experts nor-
mally sketch out in the behavior modeling process.

Behaviors created visually are then interfaced with a
simulation by a runtime engine. Figure 1 shows the high
level architecture for this approach.

Simulator

Authoring Runtime

Runtime
Engine

Interface

Behavior
Editor

Predicate &
Action

Declarations

Behavior
Library

Predicate &
Action

Definitions

Figure 1: High-Level Architecture

The authoring component generates a behavior library

for a simulation entity; the runtime component contains the
engine which controls entities within the simulation. The
Behavior Editor provides the visual environment for build-
ing behaviors from a basic vocabulary of predicates and
actions. These may include primitives that are available or
easily implemented from the simulation API. The runtime
component references the Behavior Library to direct enti-
ties in the Simulation via an Interface module that provides
a common communication layer with the Simulation API.

3 BEHAVIOR REPRESENTATION

The visual behavior representation we have presented is
based upon a generalization of finite state machines
(FSMs) that we call behavior transition networks (BTNs).
BTNs have current states and transitions like finite state
machines, but also hierarchically decompose, can have
variables, and can execute arbitrary perceptual or action-
oriented code. A large number can run in parallel.

Figure 2 below shows a sample BTN containing ac-
tions, conditions, behaviors, and connectors. The visual
artifacts (rectangles, ovals, and connectors) are the same as
those used in standard flowcharting, and also map directly
to the visual elements provided to subject matter experts
making use of our approach.

This BTN describes a fairly simple combat patrol be-
havior that causes a simulated soldier to move toward a
specified destination, keeping an eye out for enemy sol-
diers. If an enemy is seen or heard, the entity will engage
and attempt to kill him; if injured, the entity will take
cover. The BTN in this example contains simple primitive
actions like TurnTo(sound), as well as references to other
behaviors defined elsewhere, such as TakeCover().

The TakeCover() sub-behavior is non-trivial in itself
because it involves an assessment of the source of the
threat which just caused an injury to the current entity, as
well as an analysis of the surrounding physical environ-

Figure 2: Sample BTN

Fu, Jensen, and Houlette

ment in the simulation in order to find useful cover. But
these are independent activities that lend themselves well
to abstraction, so that they may be applied elsewhere as
components of other behaviors. By doing so, the combat
behavior can use the abstracted TakeCover() sub-behavior,
resulting in a simpler visual representation, which is easier
for a new reader to understand.

3.1 Hierarchical Behaviors

The visual behavior representation we have described per-
mits the construction of arbitrarily intricate sequences of
actions and decisions. As with most complex systems,
however, it is generally good - for reasons of both main-
tainability and understandability - to break large behaviors
down into smaller, more easily digestible subcomponents.
For this reason, our representation supports a stack-based
hierarchical behavior model wherein each behavior is free
to invoke other behaviors in the library just as it would in-
voke an action. When this occurs, the invoked BTN is in-
stantiated and run as a fully independent behavior, with its
own data separate from the invoking BTN. Each simula-
tion entity stores its chain of currently-instantiated BTNs in
a stack, where only the topmost BTN is “active” (that is,
controlling the entity’s actions). When the topmost BTN
reaches a final state, it is popped from the stack, and the
new topmost BTN becomes active.

By taking advantage of this capability, an author can
decompose an overly-complex behavior into a few high-
level behaviors, each of which encapsulates some distinct
and functionally consistent portion of the original behav-
ior. The result is a set of nested behaviors that is much
easier to understand and modify.

Hierarchical behaviors have other advantages as well.
By permitting authors to break behaviors down into their
logical functional components, hierarchical decomposition
promotes reuse rather than reinvention. Once a behavior
has been added to the behavior library, it is henceforth
available as a ready-made building block for other, future
behaviors. And since each particular bit of functionality
need only be implemented once in the library, sweeping
modifications to a simulated entity's behavior can be made
by editing a single low-level behavior (effectively propa-
gating to all higher-level behaviors that invoke it).

3.2 Polymorphism

As the behavior library grows, it often becomes desirable to
create behaviors that differ only slightly from existing be-
haviors. Because of the references made in a behavior to
other behaviors as part of a behavior hierarchy, these minor
changes introduced at an abstract level often entail necessary
changes in lower-level behaviors. For example, a user may
decide to model the morale and fatigue of an opposing force
and have those attributes affect behavior. Thus, when the
force is in conflict with friendly forces, the CombatPatrol()
behavior would then dispatch a specialized version of a be-
havior based on, say, low morale and high fatigue. The in-
voked behavior, then, would be named “Com-
bat_LowMorale_HighFatigue().” Likely, the lower-level
behaviors will also need specialized versions as well. The
unfortunate result is a bigger behavior library with no par-
ticular way for the user to simplify it through refactoring.

To handle the growth of the behavior library while at
the same time simplifying the construction of specialized
behavior, we created a polymorphic extension so that a
single CombatPatrol() behavior could entertain multiple
versions. Exactly which version gets invoked depends on a
set of hierarchical entity descriptors defined by the author.
In this case, “Morale” and “Fatigue” descriptors are intro-
duced, each with the possible values shown in Figure 3.

Morale Fatigue

highlow highlow medium

Figure 3: Polymorphic Descriptor Hierarchies

A user specializes, or indexes, a behavior graph by as-
sociating it with exactly one node per tree. In this exam-
ple, there are twelve possible specializations (including the
roots of the trees).

Each entity possesses a set of descriptors as well. In
the case of the opposing force, that entity has “low” morale
and “high” fatigue. Behavior selection for an entity pro-
ceeds by always picking the most specific version accord-
ing to the degree of match between the entity and behavior
indices. For example, if there is a behavior version of
CombatPatrol() indexed with “low” morale and “high” fa-
tigue, then that version will be selected for the opposing
force. Note that if no more specific match can be found,
the “default” behavior indexed by the root of the descriptor
tree (e.g., “Morale”) will be selected.

Although here a total of twelve behavior specializa-
tions may be defined, in practice not all of these will actu-
ally be used. The descriptor tree affords the ability to se-
lectively customize behavior through the structured tree
hierarchies. In the above example, if a user wants to define
only one version of the CombatPatrol() behavior, it would
be indexed using the two roots. The opposing force would
use this version of the behavior because a more specific
version cannot be found. If the user wants to define a spe-
cial case relevant only when morale is low, then he indexes
the behavior by picking “low” from the first tree, and the
root for the second. The opposing force would then use
this version instead.

Entities may change their descriptors at any time. This
change affects all behavior invocations from that point on.
For example, an opposing force that switches its morale

Fu, Jensen, and Houlette

from low to high and its fatigue from high to medium would
select a different version of the CombatPatrol() behavior,
and hence would perform differently in the simulation.
Changes to an entity’s descriptors do not, however, affect
any behavior that that entity might already be executing.

3.3 Inter-Entity Communication

Most non-trivial simulations model the interaction of mul-
tiple entities, and coordination between those entities is of-
ten an important component of the model. Facilities are
thus provided in our behavior representation to allow
communication between entities. Two types of communi-
cation – message-passing and blackboards – are supported
via a set of built-in actions and predicates.

The message-passing system uses a straightforward
subscription-based addressing scheme. An entity may sub-
scribe to any number of pre-existing groups and may also
create and destroy groups at will. Messages, which consist
of a message type identifier and an optional data value, can
be sent to any group. Entities maintain individual message
queues, which they can poll on demand. Message-passing
is intended as a lightweight mechanism for synchronizing
behavior between multiple entities as well as for represent-
ing hierarchical command structures among entities.

The blackboard system, by contrast, provides a shared-
memory framework that entities can use to store and ex-
change team knowledge. A blackboard is essentially a
named collection of key-value pairs that has global visibil-
ity. Entities can post values to and read values from any
key on any blackboard. Entities can also create and de-
stroy blackboards as desired. Typically, blackboards
would be useful in simulations where groups of entities
need to share a common situational picture, or where enti-
ties need to publish information without knowing the iden-
tity of the recipients.

4 COUNTER-STRIKE

As an empirical trial of our behavior representation meth-
odology, we implemented a set of automated players for
the popular multiplayer game Counter-Strike, which is a
freely-available add-on, or “mod”, for the commercial
game Half-Life (Counter-Strike 2003). Counter-Strike de-
picts a hostage-rescue scenario where one team of soldiers
attempts to infiltrate an enemy base and rescue the hos-
tages held within, who are guarded by a team of opposing
soldiers. These soldiers are typically controlled by human
players, but it is also possible to construct computer-
controlled players, known as “bots,” that can play against
humans or other bots.

We chose Counter-Strike for our trial for several rea-
sons. First, it offered a 3D world that was continuous in
both time and space, which provided a rich and challenging
environment for our automated players to act in and respond
to. Second, it presented an interesting domain with opportu-
nities for complex tactics and team coordination between en-
tities. Finally, the Counter-Strike source code has been
made available to the public, which greatly simplified the
task of interfacing our runtime engine to the game.
 For our Counter-Strike bots, we developed a custom
C++ interface to the game that allowed the bots to interact
with the game engine in exactly the same manner as a hu-
man player. This permitted us to focus on authoring realistic
behaviors rather than on low-level implementation details.
Once the interface was complete, we were able to construct
behaviors for two opposing teams of three bots each in ap-
proximately four person-weeks. The resulting automated
teams were capable of successfully completing their objec-
tives of either rescuing the hostages or preventing them from
being rescued. In addition, they performed competently
when pitted against moderately skillful human players.

4.1 Navigation and Pathfinding

Navigation is a fundamental challenge for any computer-
controlled entity in a complex world, and it is particularly
difficult in a continuous 3D environment such as that
found in Counter-Strike. Although the low-level sensory
perception and movement control necessary for navigation
pose interesting problems for the behavior author, these is-
sues were not the focus of our effort, which was targeted at
higher-level, more tactically significant entity behaviors.
We therefore implemented a navigation layer in C++ that
handles the low-level control of entity movement. A set of
special actions and predicates allow the high-level visual
behaviors to give high-level directions to the navigation
layer (for example, “go to destination waypoint X33”).
 The inclusion of the navigation layer enabled us to fur-
ther abstract our behaviors away from the specific imple-
mentation details of the game environment, leading to be-
haviors that were more concise and easier to author. In
addition, the navigation layer allowed us to avoid embed-
ding a pervasive parallelism into the entity behaviors,
which would have been otherwise necessary to deal with
the fact that in Counter-Strike, players often simultane-
ously move while taking other actions. While such paral-
lelism is possible in our current representation, it is consid-
erably more difficult to author and debug than normal
sequential behaviors.

4.2 Reacting to Possible Events

The behaviors developed for Counter-Strike include a vari-
ety of reactive mechanisms that make use of the stack-
based nature of the behavior representation. With the vis-
ual paradigm, this often results in a “flower” behavior
structure, by which a bot has a central state or activity
which is interrupted based on a variety of situational inputs
in the virtual environment. For example, in a navigation

Fu, Jensen, and Houlette

behavior for a “rescue” bot, the central node is a path-
following action. While performing this task, if the bot re-
ceives an enemy-inflicted bullet wound, the path-following
action is interrupted to follow one of the flower “petals”
branching out from the central node in the BTN. Petal
segments contain the predefined behaviors for reactions,
such as seeking cover or returning fire when injured.
When it is safe, the bot then returns to the path following
action by returning to the central node in the BTN. Simi-
larly, a “sniper” bot may have a sentry action as the central
node, which is interrupted when a target comes into view,
and resumed after the target is handled.

The “flower” BTN structure is helpful for the behavior
author, because it affords a simple visual representation for
the kinds of events that are significant in a given behavior.
If there are five kinds of key events that a bot should react to
while performing a task such as navigation, then it’s very
easy to see all five depicted with relative priorities in one
BTN. It is non-trivial to implement the same reactive func-
tionality in a traditional procedural programming environ-
ment, and such an approach also cannot provide the same
level of readability. So the visual BTNs are not only more
readable, they are immediately executable given the fact that
the runtime engine supports the underlying interrupt struc-
tures that are represented in the authoring environment.

4.3 Decomposing Complex Behaviors

The hierarchical structure of BTNs provides a means to
break down large or complex behaviors into more manage-
able, readable, and even re-usable components. In many
ways the hierarchical breakdown corresponds to levels of
decision-making. For our Counter-Strike bots, a high level
decision is reached about whether to navigate to a sniping
position, navigate to a strategic position such as the hos-
tage area, or patrol the map, and so on. Once this decision
is made, a second-level behavior for each of these kinds of
activities is initiated. Consider a “rescue” bot engaged in
performing the behavior for navigating to the hostage area.
At this point, the execution stack essentially has two levels,
the main top-level behavior and the second level naviga-
tional behavior. Within the navigational behavior, it is rea-
sonable to have sub-behaviors for handling enemies en-
countered while en route. At the lowest level under one of
those behaviors is a simple “shoot enemy” behavior, which
involves targeting the entity and firing the weapon. At this
point, the execution stack may be five or six levels deep.

By assembling behaviors in a hierarchy such as this,
each BTN can be relatively simple and easy to read, but the
amalgamation can represent very complex behaviors. Fur-
thermore, BTNs designed for modularity lend themselves
to reuse in different behaviors. For example, the same
weapon firing behavior that may appear at the lowest level
under a navigation behavior may also be used under a snip-
ing behavior or a patrolling behavior.
4.4 Team Cooperation

Through the use of the native blackboard system described
earlier, a number of cooperative behaviors were developed
for the Counter-Strike bots. The two teams in Counter-
Strike have different objectives. The rescue team must
navigate to where hostages are held, rescue them, and es-
cort them back to a rescue zone, all while under the threat
of encountering defenders at any point. The defending
team simply seeks to stay alive and prevent the rescuers
from accomplishing their objectives.
 Thus, the rescuers collaborate to provide support to
each other while navigating and when under fire. As such,
they divide into leader and follower roles, for which poly-
morphic behaviors were defined for the performance of
their various tasks. For example, the leader and follower
each perform their own version of a follow path behavior
when maneuvering together. During navigation, the fol-
lower provides cover for the leader’s movements, with the
“stop and cover” actions and the “catch up” actions regu-
lated by the communications the team members share via
the blackboard. If a leader is killed and a follower is avail-
able, the follower simply changes roles to become a leader,
and subsequently performs the version of any given behav-
ior defined for that alternate role.

The defending team seeks to find strategic sniping po-
sitions and ambush positions, and in some cases to patrol
for rescuers. For this team, collaboration is necessary pri-
marily for deconfliction purposes; in other words, to make
sure that no two snipers attempt to go to the same sniping
point, and that no two patrolling defenders follow the same
route at the same time. This deconfliction is carried out via
a simple blackboard posting mechanism, where each team
member simply consults the destinations or routes that
have already been posted, decides on one that is absent
from the list, and posts this destination or route for others
to see. Again, this is easily implemented in the authoring
environment, but a critical element of believable and effec-
tive team behaviors.

4.5 Authoring Methodology

While we had applied the visual behavior authoring meth-
odology described in this paper to a variety of simulation
applications, the set of behaviors that we developed for
Counter-Strike was substantially larger and more complex
than any we had previously authored. At the same time,
the domain was not well understood, which made it diffi-
cult to completely specify in advance the full range of be-
havioral capabilities that would be needed to create compe-
tent automated players. As a result, we took a highly
iterative and incremental approach to authoring.

We began by sketching out a set of two or three very
high-level behaviors that would serve as an outline for the
entities’ behavior. These behaviors contained no concrete

Fu, Jensen, and Houlette

actions themselves, but were instead composed of slightly
lower-level behaviors whose details we had not yet defined.
Once this top-level skeleton was roughly complete, we re-
peated the process at the next lower level, and recursively
continued this top-down decomposition until the behaviors
were fleshed out to the level of concrete actions. At this
point, we were able to start testing the bots within the game
environment and making refinements to the behaviors.

During the process of authoring a first draft of the be-
haviors, we found that the initial vocabulary of actions and
predicates we had defined was insufficient for our needs.
This vocabulary was based on the primitive interactions
that were naturally suggested by the human player’s inter-
face to the game – jump, turn, shoot, reload, etc. – rather
than any anticipation on our part of the concrete actions re-
quired to implement our target behaviors. After we made a
first pass through the authoring process, we therefore re-
vised and expanded the list of actions and predicates con-
siderably. In most cases, this was simply to add new capa-
bilities to the bots, but sometimes actions were eliminated
or even broken into several finer-grained actions. Delib-
erative or sensory actions were occasionally translated into
predicates (or vice versa) as usage determined which ver-
sion would be most understandable and convenient.

The authoring process up to this point had essentially
produced behaviors for two distinct entities, one rescuing
soldier and one guarding soldier. To introduce more varia-
tion on the teams, we extended the basic set of behaviors
polymorphically using “Team,” “Role,” and “Attack Style”
descriptors (among others). This approach allowed us to
easily add new varieties of bots simply by specializing one
or two behaviors. This phase of the authoring process can
be thought of as a lateral expansion or broadening of the
behavior set, as contrasted with the top-down authoring
phase, which is focused on completing the chain from ab-
stract behaviors to concrete in-game actions.

5 DISCUSSION

This paper has presented an overview of our visual behav-
ior representation for simulated entities, and it has also de-
scribed an instance of the application of this representation
to the development of automated players within a commer-
cial computer game.
 The process of authoring the complex behaviors re-
quired for competent automated Counter-Strike players
provoked a number of interesting observations regarding
our behavior representation and authoring methodology.
On the positive side, we found that the use of a visual rep-
resentation (along with the associated visual authoring
tools) did in fact reduce the time required to develop the
behaviors from that which would have been required to
write them in C++ (based on our experience with similar
development efforts in the past). The visual representation
was particularly helpful when it was necessary to share be-
haviors between developers, because it substantially re-
duced the amount of effort required to decipher a “foreign”
behavior. The hierarchical and polymorphic facets of the
representation also lent themselves very naturally to an it-
erative authoring style that worked well on an under-
specified effort such as this.
 The Counter-Strike effort also made it clear, however,
that some areas of our representation could benefit from
further thought. In particular, there is little support for au-
thoring complex, highly-interdependent team behaviors
aside from the basic set of actions and predicates supplied
for inter-entity communication. While it is possible to cre-
ate entities that exhibit teamwork (as we have demon-
strated), it requires much more care, forethought, and at-
tention than developing behaviors for a single independent
entity. We plan to explore ways of extending our method-
ology to simplify the task of building coordinated entity
behaviors.
 Another weakness in our representation is the lack of
explicit support for parallel action within a single entity.
To model an entity that can perform multiple simultaneous
actions, it is necessary to divide the entity into several co-
operating sub-entities. This is not an unusual tactic for
dealing with parallelism, but given the above-described
challenges involved in coordinating multiple entities, it is
currently non-trivial to author behaviors featuring true par-
allelism. We hope to alleviate this difficulty in future ver-
sions of our representation, possibly by adding explicit ca-
pabilities for parallel and team authoring to our visual
authoring toolset.

ACKNOWLEDGMENTS

This research was supported in part by Air Force Research
Laboratory research contract F30602-00-C-0036.

REFERENCES

Counter-Strike 2003. Counter-Strike Mod Official Web-
site. <http://www.counter-strike.net/>

AUTHOR BIOGRAPHIES

DANIEL FU is a project manager and software engineer
at Stottler Henke Associates, Inc. His research interests
are in Artificial Intelligence (AI) autonomous agents and
planning. While at Stottler Henke, he has applied AI tech-
niques to a number of intelligent tutoring systems and
autonomous agents projects. Dan holds a Ph.D. in com-
puter science from the University of Chicago, and his
email address is <fu@stottlerhenke.com>.

RANDY JENSEN is a project manager and software en-
gineer at Stottler Henke. He has developed numerous in-
telligent tutoring systems for Stottler Henke, as well as au-

Fu, Jensen, and Houlette

thoring tools, simulation controls, and assessment logic
routines. Mr. Jensen also participated in authoring
autonomous “bot” behaviors for a multiplayer game envi-
ronment. He holds a B.S. in symbolic systems from Stan-
ford University and his email address is <jensen@
stottlerhenke.com>.

RYAN HOULETTE is a project manager and software
engineer at Stottler Henke. His primary interests lie in the
areas of intelligent interfaces, autonomous agents, and in-
teractive narrative. Mr. Houlette is currently leading a pro-
ject to develop a mixed-initiative scheduling system that
will include as a core component a rich capacity for human
interaction and collaboration. He holds an M.S. in com-
puter science from Stanford University and his email ad-
dress is <houlette@stottlerhenke.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 969
	02: 970
	03: 971
	04: 972
	05: 973
	06: 974
	07: 975

