
Proceedings of the 2003 Winter Simulation Conference
S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, eds.

PRE-RECKONING ALGORITHM FOR DISTRIBUTED VIRTUAL ENVIRONMENTS

 Thomas P. Duncan
Denis Gračanin

Department of Computer Science

Virginia Tech
7054 Haycock Road

Falls Church, VA 22043, U.S.A.

ABSTRACT

This paper proposes a pre-reckoning algorithm for distrib-
uted virtual environments. First, an overview of dead reck-
oning techniques used in distributed virtual environments is
provided. The benefits and drawbacks of implementing
dead reckoning within specific types of distributed virtual
environments are discussed. An alternative to traditional
dead reckoning techniques used in DIS-compliant distrib-
uted virtual environments is proposed. The alternative, re-
ferred to as “pre-reckoning,” seeks to significantly reduce
prediction error with a minimal increase in the number of
entity state update packets issued. The performance of the
pre-reckoning algorithm is compared to one of the DIS stan-
dard algorithms for location prediction. The test cases are
based upon a game-based environment where the move-
ments of participants are influenced by physical boundaries.

1 INTRODUCTION

Dead reckoning is used within distributed virtual environ-
ments to manage the dynamic shared state, see Singhal and
Zyda (1999). The objective is to minimize the number of
entity state update packets exchanged between participants
across the network while maintaining a reasonably consis-
tent view of each other’s state. Reducing the dependency
upon the network improves the scalability of the distrib-
uted virtual environment by enabling a greater number of
objects to be modeled before the network becomes a bot-
tleneck, see Cai et al (1999).

In distributed virtual environments that employ dead
reckoning, the behavior of an entity is modeled by other
participants referred to as remote hosts. The behavior
modeling typically focuses upon the entity’s location,
speed and direction of movement, and orientation. Rather
than solely basing the displayed behavior of an entity upon
the update packets received across the network, the remote
hosts execute a predictive model to fill in the gaps between
updates. Since the display updates are based upon locally

computed predictions of the actual state, dead reckoning
can achieve a smoother rendering of an object’s behavior.
Conner and Horing (1997) refer to this as providing a
“low latency experience” from the users’ perspective since
the update of the display does not wait for information
from the network.

In a distributed virtual environment that does not use
dead reckoning, the representation of an entity on a display
only changes when an update is received. Limitations in
network bandwidth or numerous routing hops as can be ex-
perienced across the Internet may result in sustained update
rate on the order of 5 per second. Studies have shown that
an update rate of 30 frames per second is required to achieve
a rendering that appears smooth to the human eye. While
there is a distinction between the display update rate and the
entity state update rate, i.e., the display can be updated at a
rate faster than updates are received across the network sim-
ply be repeating the displayed image, if an entity’s behavior
is only updated 5 times per second, then the displayed image
may appear jittery if the discernable appearance, location, or
speed of the entity is changing at a faster rate.

While dead reckoning allows a discrepancy between
the actual behavior and the predicted behavior, Singhal and
Zyda (1999) assert that dead reckoning sacrifices consis-
tency in order to allow the dynamic shared state of the dis-
tributed virtual environment to change more frequently.
However, while there is always a degree of error between
the predicted and actual behavior, all remote hosts can
achieve a consistent view of an entity’s state since they are
executing the same predictive algorithm. The view consis-
tency depends upon the reliability of the network and the
protocol used to convey entity state updates.

The remainder of the paper is organized as follows.
Section 2 provides an overview of dead-reckoning algo-
rithm. Section 3 describes the proposed pre-reckoning al-
gorithm. Section 4 evaluates the proposed algorithm and
compares it with the standard dead-reckoning algorithm.
Section 5 concludes the paper and provides directions for
future research.

Duncan and Gračanin

2 DEAD-RECKONING ALGORITHM

While dead reckoning can achieve a degree of consistency
among the predicted state maintained by remote hosts, it
inherently permits inconsistency to exist between the ac-
tual state of an object and the predicted state maintained by
other participants. While some degree of inconsistency
may be acceptable, there are two main drawbacks:

1. A convergence algorithm must be executed to cor-
rect the inconsistency; and

2. The existence of inconsistency complicates inter-
actions between entities such as agreement on col-
lisions.

While it is generally more desirable to implement dead
reckoning with an explicit convergence algorithm than
without, the implementation of a convergence algorithm
represents an additional degree of complexity. First, the
algorithm consumes computational resources. Second, the
algorithm must determine a reasonable period of time over
which the entity’s representation can be brought into
alignment with the most recently reported state. Figure 1
illustrates the difference between immediate convergence
and time-phased convergence. The path designated as Op-
tion 1 represents an immediate convergence where the
most recent update to the location is displayed in the next
frame. While this approach is simple and does not con-
sume additional computational resources, it can result in a
jittery display of the entity’s movement. To achieve a
smoother rendering, an alternative approach is to more
gradually align the predicted location with the most recent
update as illustrated by the path labeled as Option 2. How-
ever, this approach is not without its shortcomings. By
taking additional time to perform the convergence, Option
2 allows the error to persist and possibly worsen.

.

Figure 1: Convergence with Updated Location

In an effort to reduce this residual error, another alter-
native is for the convergence algorithm to predict the loca-
tion of the entity at the completion of the convergence
timeframe and then align the entity’s location with that po-
sition rather than the location identified in the most recent

Threshold Exceeded

Position Possible
Error

Time

Option 2
Option 1 Predicted

Position

Actual
Position

?

Display Updates
update. Figure 2 depicts two options for convergence to
the predicted location. The path labeled Option 3 reflects
linear convergence similar to Option 2, while Option 4 de-
picts a curve fitting technique that is intended to improve
the rendering of the entity’s movement by eliminating any
sharp turns. Under both Options 3 and 4, it may be neces-
sary to accelerate the movement of the entity for it to
“catch up” to the predicted location and then return it to the
last known velocity. The convergence algorithm presented
in the DIS standard does not explicitly address how entity
state updates are regulated while convergence is being per-
formed (IEEE 1995). As a result, there is a potential for
entity state updates to be issued at a much higher rate than
desired for an extended period of time until the predicted
entity is within the error threshold.

Time

? Actual
Position

Predicted
Position

Option 4
Option 3

Position

Threshold Exceeded

Display Updates

Figure 2: Convergence with Predicted Location

Another challenge associated with the convergence al-

gorithm is that it may be asked to correct a prediction that
is not easily undone. For example, Figure 3 shows a dis-
tributed virtual environment where entities move through a
maze. If the dead reckoning algorithm predicts that the ob-
ject will continue to move straight ahead when it in fact
turns right down a corridor, then the convergence algo-
rithm is forced into undoing the error without having the
entity appear to move through a wall. While one option to
limiting this type of error would be to reduce the error
threshold, it would have the undesired consequence of
dramatically increasing the number or entity state update
packets sent across the network.

The use of dead reckoning complicates interactions
between participants because there is likely to be an incon-
sistent view of the locations of entities in an absolute sense
as well as relative to each other. This makes it difficult to
agree on collisions between entities and whether weapons
fired at another entity actually struck the intended target
and caused the expected degree of damage. To overcome
these difficulties, some applications define explicit agree-
ment protocols or increase the update rate when objects are
in closer proximity, see Cai et al. (1999). As a result, the
traffic on the network can experience localized bottlenecks
in areas where there is intense interaction.

 Gračanin
Duncan and

Figure 3: Difficulty in Correcting a Prediction Error

Two early distributed virtual environments, SIMNET

and NPSNET, employ dead reckoning techniques that be-
came the basis for the dead reckoning algorithms defined
within the DIS standard, see IEEE (1995). The DIS algo-
rithms are widely used for prediction of entity position
based upon the reported position, velocity and acceleration.
These measures are combined to form derivative polyno-
mials where position is the zero order derivative, velocity
is the first order derivative, and acceleration is the second
order derivative, see Macedonia et al. (1995).

In addition to position dead reckoning, the DIS stan-
dard includes algorithms for predicting an entity’s three-
dimensional orientation based upon the angular velocity of
a specified set of body coordinates. These algorithms per-
form what is referred to as rotational dead reckoning. The
DIS standard defines two versions of each algorithm – one
based upon the coordinate system specific to the individual
entity and one based upon the coordinate system for the
distributed virtual environment as a whole (world view).

For convergence, the DIS standard defines a simple
linear convergence method where the number of “smooth-
ing points” is left to the discretion of the implementer.

The DIS standard algorithms are also the basis for
variations and extensions discussed in the following sec-
tions that have been developed for specific applications
and operating environments.

Hybrid methods selectively employ a combination of
first and second order derivative models depending upon
the observed behavior of the entity. Position History-
Based Dead Reckoning (PHBDR) is a widely used hybrid
method where the selection of the derivative polynomial is
based upon the recent history of position updates, see
Singhal and Cheriton (1994). If the algorithm determines
that the entity is making sudden changes in the direction of
its movement, then the acceleration term is ignored and the
first order derivative (velocity) is used. Otherwise, when
the entity is moving in a smoother path, then the second
order derivative polynomial (including velocity and accel-
eration) is used.

PHBDR is referred to as an adaptive algorithm be-
cause it adapts to match the current behavior of the entity
in Cai et al. (1999). The adaptation pertains to the data

- Actual Position

- Predicted Position
used as the basis for the position prediction. The following
paragraphs describe other adaptive algorithms that adjust
the error threshold or the update rate depending upon con-
ditions observed by the controlling host.

Adaptive algorithms represent the state-of-the-art with
respect to general purpose dead reckoning algorithms.
They are based upon the premise that “one size does not fit
all” and there are situations where adjusting either the error
threshold or update rate can improve performance (Chan
2001). Cai et al. (1999) describe an adaptive algorithm
where the error threshold is reduced for objects in close
proximity and increased for distant objects. The result is
an overall net reduction in the number of update packets
issued because there are typically fewer objects that are
considered to be in close proximity. Another benefit is that
it reduces the error between the actual and predicted posi-
tions of objects in close proximity which leads to improved
interaction and collision detection. These adaptive algo-
rithms are referred to as general purpose because they can
be applied to any entity type.

Another category of dead reckoning techniques that
can be considered state-of-the-art are algorithms that are
tailored to the specific entity being modeled. Under this
approach, different algorithms are used for aircraft than are
used for land-based vehicles. The rationale for tailoring
the algorithms is clear: better prediction can be achieved
by making use of knowledge about the specific entity.
While executing a different set of algorithms for every type
of entity potentially requires additional computational re-
sources, there are benefits as well. The modeling can be
improved and possibly simplified in some ways by apply-
ing the known physical constraints of the object, e.g., the
turning radius of a tank.

In addition to specialized algorithms for specific types
of vehicles, there is extensive research into the dead reck-
oning of articulated objects – particularly humans. An ar-
ticulated object is a complex entity comprised of numerous
appendages (e.g, arms, legs, hands, fingers) that can func-
tion independently and have their own rotation axes, see
Capin et al. (1999). The dead reckoning of human partici-
pants is particularly important to the continued develop-
ment of distributed virtual environments because it directly
influences user satisfaction with the virtual environment.

Two basic approaches to the dead reckoning of hu-
mans are to: (1) explicitly track and model the movement
of the individual appendages; or (2) define scripts that de-
scribe a predefined set of human movements, e.g., standing
up from a sitting position, and execute the script when a
particular behavior is initiated. Both techniques have been
shown to be effective depending upon the application. The
script-based approach can achieve very fluid motion, but
the error can be more extensive and difficult to undo if the
wrong script is executed.

The final set of dead reckoning techniques that can be
considered state-of-the-art are designed to optimize a par-

Duncan and Gračanin

ticular metric. Two such algorithms are cost optimization-
based dead reckoning and dead reckoning based upon data
freshness requirements, see Holbrook et al. (1995).

The concept behind cost optimization-based dead
reckoning is to minimize the total information cost, in
Wolfson et al. (1999). Comprising the total information
cost are the “costs” of prediction error, resources used in
disseminating an update, and uncertainty costs. The algo-
rithm is adaptive and can be applied to thresholds for un-
certainty related to the object’s speed, the position predic-
tion error, or the uncertainty as to whether the object is still
functioning within the area of interest.

In dead reckoning based upon data freshness require-
ments, the algorithm is tailored to the dynamic nature of
the object. The rate of issuing heartbeat packets is a func-
tion of how frequently the object typically changes state.
For terrain entities that change appearance infrequently, a
less frequent update rate is used. The approach has been
shown to reduce network traffic while continuing to sup-
port the required level of interaction.

3 PROPOSED PRE-RECKONING
ALGORITHM

As a variation to the published dead reckoning techniques,
an algorithm is proposed wherein the controlling host uses
its copy of the predictive model to anticipate changes that
will likely result in the error threshold being exceeded.
When this situation is detected, the controlling host issues
an entity state update immediately rather than waiting for
the threshold to be exceeded. The objective is to eliminate
foreseeable error with no appreciable increase in update
packets. While some unnecessary updates may be issued
in cases where the entity reverts to the predictable behavior
(and wouldn’t have exceeded the threshold), it is conjec-
tured that particular applications where discrete behavioral
choices are required (e.g., the selection of a path through a
maze) may benefit from this proposed variation.

To implement the proposed algorithm, the criteria
must be defined for when an immediate update should be
issued. At a high level, it is described as change in move-
ment that would ultimately result in the error threshold be-
ing exceeded for the difference between the entity’s pre-
dicted location and its actual location. In more specific
terms, the objective is to mathematically define the condi-
tions under which the movement is unpredictable and an
update is required.

There are three types of behaviors that are candidates
for pre-reckoning: (1) when an entity at rest begins to
move, (2) when a moving entity comes to a stop, and (3)
when an entity makes a sharp turn. The first two behaviors
are easily detected, but what constitutes a “sharp turn” re-
quires pre-defined criteria.

In specifying the PHBDR algorithm, Singhal and
Cheriton (1994) define an angle of embrace based upon the
three most recent position updates. When the angle is
acute, the movement of the entity is assumed to be chang-
ing sharply and so the tolerated error threshold is reduced.
When the angle is obtuse, the entity is assumed to be mov-
ing in a more conventional manner and the default version
of the algorithm is applied. The process for deriving the
angle of embrace from the most recent position updates is
depicted in Figure 4.

Angle of
Embrace
(acute)

Angle of
Embrace
(obtuse)

Position
Updates

time time
Figure 4: Position Updates for Angle of Embrace [8]

The algorithm proposed in this paper borrows upon

this concept of the angle of embrace to determine when an
immediate update should be issued. Since the intended ap-
plication is for environments where objects may make
sharp turns, the threshold for the angle of embrace is arbi-
trarily set at 100 degrees. The rationale for the selected
value is that an angle of 90 degrees corresponds to a per-
fectly straight right or left-hand turn, but the entity may not
always turn at perfect right angles.

The frame update rate is set to 30 frames per second
and the error between the predicted position and the actual
position is computed at each frame to determine if it is still
within the threshold. If the error threshold is not exceeded
within 5 seconds, the controlling host issues a heartbeat
packet with the current location. A 100-millisecond net-
work latency is assumed for all entity state updates. The
amount of network latency influences the prediction error
because of the lag between a change in the actual entity’s
position and when remote hosts become aware of it.

Remote hosts are expected to correct their predicted
locations each time an update is received – regardless of
whether the error threshold was exceeded. An accelerated
convergence algorithm is employed with both the DIS
standard dead reckoning algorithm and the pre-reckoning
algorithm. The same convergence algorithm is used for
both algorithms to ensure comparability of the results. The
convergence algorithm is referred to as accelerated be-
cause it allows the predicted entity to move at the maxi-
mum of its previous velocity and the velocity reported in
the most recent update. The predicted entity moves at this
velocity until it is within an “acceptability range” of the ac-
tual entity position. For all of the experiments, an accept-
ability factor of 50% of the error threshold is used. The

Duncan and Gračanin

rationale for continuing accelerated convergence after the
entity is within the error threshold is to prevent the thresh-
old from quickly being exceeded again which could result
in a higher than desired rate of entity state updates. The
accelerated convergence algorithm is described in detail
below. The actual position, trajectory, and velocity are
known from the most recent entity state update that trig-
gered the accelerated convergence.

1. Set velocity to the maximum of the previous pre-
dicted velocity and the actual velocity.

2. Calculate the distance between the previous pre-
dicted position and the actual position.

3. Calculate the time that it would take the predicted
entity to reach the actual position.

4. Calculate the position of the actual entity if it
were to continue moving at the same velocity and
on the same trajectory. This is referred to as the
convergent position.

5. Define a trajectory for the predicted entity to in-
tersect with the convergent position.

6. When the predicted entity is within the acceptabil-
ity range, revert to the velocity of the actual entity
(if different) and follow a trajectory parallel to the
actual entity’s last known trajectory.

The convergent position is recalculated for subsequent
frame updates if the predicted position does not converge
with the actual position.

4 EVALUATION OF
PROPOSED ALGORITHM

Performance of the proposed pre-reckoning algorithm is
evaluated using a discrete event simulation model of the
maze shown in Figure 5. The maze is based upon the lay-
out of a Belgium mint building that has been defined for
Mission 9: Operation Red Wolf of Tom Clancy’s Rainbow
Six computer game, see Knight (1999). Rainbow Six sup-
ports multiplayer games and the layout of the mint is repre-
sentative of a virtual environment through which human-
controlled commando avatars would move. The Start posi-
tion corresponds to the front door of the mint and the End
position corresponds to a loading dock exit in the rear. The
scale of the virtual environment is roughly 100 X 100 feet.

To simplify the modeling of the environment, stair-
wells to other levels are treated as barriers so that move-
ment is limited to two dimensions. In addition, the doors
opening into rooms are modeled as fixed obstructions that
do not move. This is a simplifying assumption that does
not affect the analysis of the algorithms. The mint layout
was selected because it has open spaces as well as narrow
corridors that can be used to observe the performance of
the algorithms under varying conditions.

For the initial set of tests, the physical boundaries are
taken into account when defining actual entity movement,
but they are ignored when calculating the predicted posi-

End

Start

Figure 5: Environment Used for Algorithm Evaluation

tion. While this can result in the predicted entity moving
through walls, the objective in the first phase of experi-
ments is to observe the general performance of the pre-
reckoning algorithm in comparison to the DIS standard
dead reckoning algorithm. Although the physical bounda-
ries are ignored, when the predicted movement is overlaid
onto the test environment, it can be observed when the in-
accuracy of the predictive algorithms would result in indi-
rect convergence, i.e., the convergent path would have to
be routed around physical obstacles.

Three different “actual” routes are modeled through
the maze that correspond to different degrees of variability
with respect to the entity’s movement. The objective is to
evaluate the pre-reckoning algorithm under a range of
movement behaviors.

For the first set of experiments, the actual entity moves
from the start position to the end position along a direct
path without stopping. Minor changes in velocity occur as
the entity changes direction. The range of the velocity of
the actual entity within all of the experiments is approxi-
mately 0-10 feet per second. This range was selected to
reflect rates of movement that a typical human could
achieve under “real world” conditions. Based upon the
path defined for Experiment 1, the time for the actual en-
tity to move through the environment is 63.5 seconds.

For the second set of experiments, a path is defined
with moderate variability. The actual entity looks in
rooms, but does not enter them. In some cases, the actual
entity moves behind an obstacle as a defensive measure.
In two instances, the actual entity comes to a stop (depicted
by a solid square on the diagram of the path) and then re-
starts its movement.

Under the second set of experiments, the actual entity
also changes its velocity without changing its trajectory.
These occurrences are depicted by a solid circle on the dia-
gram. The actual time to move along the complete path
from Start to End is 75.9 seconds.

Duncan and Gračanin

In the third set of experiments, the actual entity moves
in a pattern indicative of searching the environment while
having to evade hostile entities. As in the test cases with
moderate variability, the actual entity changes velocity,
comes to a stop, and then starts moving again. The added
dimension for these test cases is that the changes in trajec-
tory and velocity are more frequent. The zig-zag motion as
the entity approaches the End position is intentionally de-
signed to observe the behavior of the pre-reckoning algo-
rithm when the actual entity makes a series of sudden
changes in trajectory. The actual time to complete the
movement along the path is 152.1 seconds.

For each route, the performance of the pre-reckoning
algorithm is compared with a DIS standard first order de-
rivative algorithm. To simplify the evaluation of the pro-
posed algorithm, acceleration is not modeled and so
changes in velocity are instantaneous. The test cases cor-
responding to each route are run for three different error
thresholds: 0.5, 1.0, and 2.0 distance units where each unit
translates to approximately 6 feet. The thresholds corre-
spond to 0.3%, 1.1%, and 4.3% of the total space of the
virtual environment, respectively. The objective is to de-
termine if the performance of the proposed pre-reckoning
algorithm is affected by the magnitude of the error thresh-
old and, if so, what values yield the best results. The com-
plete set of test cases is defined in Table 1.

Table 1: Description of Test Cases

Test Case Route Variability Threshold
1 Direct Path 0.5
 1.0
 2.0

2 Moderate Variability 0.5
 1.0
 2.0

3 Evasive Path 0.5
 1.0
 2.0

The configuration of the simulated environment is the

same for each test case. Both dead reckoning algorithms
are metered to produce an update of the predicted path 30
times per second. The heartbeat update is issued after 5
seconds if nothing has occurred to trigger the issuance of
an entity state update packet. These values reflect the typi-
cal ratio of update frames to heartbeat packets found in dis-
tributed virtual environments that use dead reckoning.

The simulation is executed from the perspective of the
controlling host. Since the actual entity movements are
known by the controlling host, they are pre-loaded into the
event list. The movements are defined as discrete changes
in trajectory and velocity at specific points in time. At the
start of the simulation, the controlling host generates an en-
tity state update that is received by remote hosts. The con-
trolling host accounts for the network delay and begins its
execution of the predictive algorithm. It is assumed that
the delay in processing entity states updates is the same for
all remote hosts. For this assumption to be valid, the hosts
must be relatively homogenous and they must be applying
a synchronization scheme to maintain an approximation of
a global clock. Maintaining a consistent view of time is a
challenge faced by all distributed virtual environments –
especially those that utilize dead reckoning algorithms to
predict actual behavior.

The predicted position is calculated at a frequency
equivalent to the display frame rate. Each of these pre-
dicted positions is referred to as a “predicted frame.”
Upon processing each predicted frame, the next predicted
frame event is scheduled and added to the list with the ac-
tual entity movements.

For the test cases where the physical boundaries are
imposed, a bound event is scheduled if, proceeding on the
current trajectory, the predicted path would intersect a
physical boundary before the time of the next frame up-
date. In those cases, processing of bound event results in:

1. The predicted path stopping at the boundary until
the error threshold is exceeded and convergence
must be performed; or

2. If convergence is already being performed, then the
predicted path will move laterally along the bound-
ary in the direction of the point of convergence.

The performance of the proposed pre-reckoning algo-
rithm is evaluated based upon the cumulative prediction
error and the number of update packets generated. These
statistics are also computed for the DIS standard algorithm
for purposes of comparison. Since the cumulative error is
measured at the same frequency as the frame rate, the cu-
mulative error will generally be larger for the experiments
with the longer completion times. For this reason, the
comparison of the results for the different routes is based
upon the average error per measurement and the average
number of entity state updates per second.

Table 2 summarizes the performance of the two algo-
rithms for the experiments where the physical boundaries
are not imposed. The pre-reckoning algorithm performs
best (relative to the DIS standard algorithm) under the test
cases where the error threshold was 1.0 distance units – for
all three movement behaviors. However, it is not possible
to generalize these results because the three paths analyzed
within the experiments do not provide a broad enough
sampling of possible behaviors through a physically con-
strained virtual environment. In all cases, both algorithms
achieve a relatively low entity state update rate compared
to the display rate of 30 frames per second. The average
predictive error per measurement is generally less than half
of the error threshold, however it is somewhat higher for
the DIS standard dead reckoning algorithm – particularly
when the higher error threshold of 2.0 distance units is
used. These results imply that the convergence algorithm

Duncan and Gračanin

Table 2: Comparative Summary of Algorithm Performance
Without Physical Boundaries Imposed

Movement
Error

Updates/sec.
Standard/Pre-

Reckoning

Aver. Error
Standard/Pre-

Reckoning
0.5 3.0 / 1.4 0.4 / 0.2
1.0 2.3 / 1.1 0.5 / 0.3

Direct
Path

2.0 0.6 / 0.5 0.9 / 0.5
0.5 4.4 / 2.6 0.5 / 0.3
1.0 3.2 / 0.9 0.8 / 0.4

Moderate
Variability

2.0 1.2 / 1.3 1.4 / 1.0
0.5 3.3 / 2.2 0.5 / 0.3
1.0 2.0 / 0.8 0.7 / 0.4

Evasive
Action

2.0 1.5 / 0.5 1.4 / 0.8

may not be effective in enabling the predicted position to
“catch up” to the actual entity position once the error
threshold has been violated. Additional insights may be
gained from peak statistics, but that data was not collected
for these initial experiments.

Comparing the results for the specified paths when the
physical boundaries are not imposed, it appears that the
pre-reckoning algorithm’s performance improves relative
to the DIS standard dead reckoning algorithm as the vari-
ability of the actual path increases. This is an expected re-
sult given that the pre-reckoning algorithm is designed to
address situations where the actual entity’s behavior is un-
predictable. However, it is an unexpected result that the
reduction in predictive error can be achieved while reduc-
ing the number of entity state updates. This result is ob-
tained because the convergence algorithm has difficulty
“catching up” to the actual entity and so entity state up-
dates continue to be generated until the error threshold is
no longer violated.

Figure 6 provides a side-by-side comparison of the pre-
reckoning algorithm performance for the experiments
with and without the physical boundaries imposed. The
results correspond to the test cases using an error thresh-
old of 0.5 distance units which is the only value for which
complete results were available. The percentage reduc-
tions in the predictive error and the number of entity state
updates are measured relative to the DIS standard dead
reckoning algorithm.

As an illustration (Direct Path movement without im-
posed boundaries), Figure 7 provides a comparison of the
predicted paths yielded by the DIS standard dead reckon-
ing algorithm (depicted by the solid line) and the pre-
reckoning algorithm (depicted by the dotted line) when the
error threshold is set to 2.0 distance units. While the larger
error threshold allows for significant divergence, the pre-
reckoning algorithm yields a predicted path that more
closely follows the direct path of the actual entity.

Error Threshold = 0.5
Without With Bounds

100

90

80

70

60

50
40

30

20

10
0

Direct
Path Evasive

Action Moderate
Variability

Evasive
Action

Direct
Path

Moderate
Variability

Figure 6: Summary Comparison of Pre-Reckoning Algo-
rithm Performance

% Redu ion in the Predictive ct
 Error % Reduction in the Number

 of Entity State Updates

Figure 7: Direct Path with Error Threshold = 0.5

Start

End

Even though boundaries are not imposed, the predicted

path nearly stays within the physical boundaries. In con-
trast, the DIS standard dead reckoning algorithm’s pre-
dicted path varies significantly from the actual path. It is
important to note that the predicted entity’s movement lags
behind the actual entity so the actual and predicted entity
are not necessarily moving at opposing trajectories at the
same time. Due to the accelerated convergence algorithm,
the trajectory of the predicted path is set in manner that is
intended to help it converge with the actual entity path.

5 CONCLUSION

The results indicate that pre-reckoning algorithm yields a
greater degree of performance improvement when there is
less variability in the movement of the actual entity. In ad-
dition, the percentage reduction in entity state updates is

Duncan and Gračanin

greater than the percentage reduction in the predictive er-
ror. Both of these results are counter to the original hy-
pothesis which expected the pre-reckoning algorithm to
work better as the variability of movement increases and
that the reduction in predictive error may come at the cost
of additional entity state updates. Moreover, the finding
with regard to variability in movement is also not consis-
tent with the performance results when an error threshold
of 1.0 distance units was used in the experiments where the
physical boundaries were not imposed. As a result, a gen-
eral conclusion cannot be drawn in this area because the
results appear to depend upon the error threshold. The re-
duction in the number of entity state updates reflects the
nature of the convergence that must be performed when
generating the predicted path. The pre-reckoning algo-
rithm yielded a reduced amount of predictive error in all
test cases across the defined range of movement behaviors
and error thresholds. Because of the “avoided” error, the
pre-reckoning algorithm also reduces the need for entity
state updates during the convergence process. Additional
studies are required to draw broader conclusions as to the
types of applications that would benefit most from the im-
plementation of the pre-reckoning algorithm.

REFERENCES

Cai, W., F. B. S. Lee, and L. Chen. 1999. An Auto-
adaptive Dead Reckoning Algorithm for Distributed
Interactive Simulation. In Proceedings of the 13th
Workshop on Parallel and Distributed Simulation, ed.
R. M. Fujimoto and S. J. Turner, 82-89. New York:
ACM Press.

Capin, T., J. Esmerado, and D. Thalmann. 1999. A Dead
Reckoning Technique for Streaming Virtual Human
Animation. IEEE Transactions on Circuits and Sys-
tems for Video Technology 9: 411-414.

Chan, A., R. Lau, and B. Ng. 2001. A Hybrid Motion Pre-
diction Method for Caching and Prefetching in Dis-
tributed Virtual Environments. In Proceedings of the
ACM Symposium on Virtual Reality Software and
Technology, ed. M. Green, C. Shaw and W. Wang,
135-142. New York: ACM Press.

Conner, B., and L. Horing. 1997. Providing a Low La-
tency User Experience In a High Latency Applica-
tion. In Proceedings of 1997 Symposium on Interac-
tive 3D Graphics, ed. A. van Dam, 45-48. New York:
ACM Press.

Holbrook, H., S. Singhal, and D. Cheriton. 1995. Log-
Based Receiver-Reliable Multicast Distributed Interac-
tive Simulation. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Proto-
cols for Computer Communication, ed. D. Oran and S.
Wecker, 328-341. New York: ACM Press.

IEEE. 1995. IEEE Standard for Distributed Interactive
Simulation – Application Protocols, Annex B: Dead
Reckoning Definitions and Algorithms, IEEE Std
1278.1-1995. New York: IEEE Press.

Knight, M. 1999. Prima’s Official Strategy Guide, Tom
Clancy’s Rainbow Six. Rocklin,CA: Prima Publishing.

Macedonia, M., D. Brutzman, M. Zyda, D. Pratt, and P.
Barham. 1995. NPSNET: A Multi-player 3D Virtual
Environment Over the Internet. In Proceedings of the
1995 Symposium on Interactive 3D Graphics, ed. M.
Zyda, 93-ff. New York: ACM Press.

Singhal S., and D. Cheriton. 1994. Using a Position His-
tory-Based Protocol for Distributed Object Visualiza-
tion. Technical Report STAN-CS-TR-94-1505. De-
partment of Computer Science, Stanford University.

Singhal, S., and M. Zyda. 1999. Networked Virtual Envi-
ronments. , New York: Addison-Wesley.

Wolfson, O., L. Jiang, A. Sistla, S. Chamberlain, N. Rishe,
and M. Deng. 1999. Databases for Tracking Mobile
Units in Real Time. In Proceedings of the 7th Interna-
tional Conference on Database Theory, ed. C. Beeri
and P. Buneman, 169-186. Heidelberg: Springer.

AUTHOR BIOGRAPHIES

THOMAS P. DUNCAN is a graduate student at Virginia
Tech. He has a B.S. degree in Applied Mathematics from
Carnegie-Mellon University in 1983 and a M.E. degree in
Operations Research and Industrial Engineering from Cor-
nell University in 1984. He joined the BDM Corporation in
1984. He formed his own company, ITstrategy, in 2001
and is currently serving as a consultant to the Federal Avia-
tion Administration’s (FAA’s) Telecommunication Acqui-
sition Management Division. He is a member of ACM. His
email address is <thduncan@vt.edu>.

DENIS GRAČANIN is an Assistant Professor in the De-
partment of Computer Science at Virginia Tech. He has a
B.S. and M.S. degree in Electrical Engineering from the
University of Zagreb, Croatia in 1985 and 1988, respec-
tively. He has a M.S. and Ph.D. degree in Computer Sci-
ence from the University of Louisiana at Lafayette in 1992
and 1994, respectively, His research interests include vir-
tual reality and distributed simulation. He is a senior mem-
ber of IEEE and a member of AAAI, ACM, APS, SCS,
and SIAM. His email address is <gracanin@vt.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1086
	02: 1087
	03: 1088
	04: 1089
	05: 1090
	06: 1091
	07: 1092
	08: 1093

