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ABSTRACT 

This paper proposes a pre-reckoning algorithm for distrib-
uted virtual environments. First, an overview of dead reck-
oning techniques used in distributed virtual environments is 
provided.  The benefits and drawbacks of implementing 
dead reckoning within specific types of distributed virtual 
environments are discussed.  An alternative to traditional 
dead reckoning techniques used in DIS-compliant distrib-
uted virtual environments is proposed.  The alternative, re-
ferred to as “pre-reckoning,” seeks to significantly reduce 
prediction error with a minimal increase in the number of 
entity state update packets issued.  The performance of the 
pre-reckoning algorithm is compared to one of the DIS stan-
dard algorithms for location prediction.  The test cases are 
based upon a game-based environment where the move-
ments of participants are influenced by physical boundaries. 

1 INTRODUCTION 

Dead reckoning is used within distributed virtual environ-
ments to manage the dynamic shared state, see Singhal and 
Zyda (1999).  The objective is to minimize the number of 
entity state update packets exchanged between participants 
across the network while maintaining a reasonably consis-
tent view of each other’s state.  Reducing the dependency 
upon the network improves the scalability of the distrib-
uted virtual environment by enabling a greater number of 
objects to be modeled before the network becomes a bot-
tleneck, see Cai et al (1999). 

In distributed virtual environments that employ dead 
reckoning, the behavior of an entity is modeled by other 
participants referred to as remote hosts.  The behavior 
modeling typically focuses upon the entity’s location, 
speed and direction of movement, and orientation. Rather 
than solely basing the displayed behavior of an entity upon 
the update packets received across the network, the remote 
hosts execute a predictive model to fill in the gaps between 
updates.  Since the display updates are based upon locally 
 
computed predictions of the actual state, dead reckoning 
can achieve a smoother rendering of an object’s behavior.  
Conner and  Horing (1997) refer to this as providing a 
“low latency experience” from the users’ perspective since 
the update of the display does not wait for information 
from the network. 

In a distributed virtual environment that does not use 
dead reckoning, the representation of an entity on a display 
only changes when an update is received.  Limitations in 
network bandwidth or numerous routing hops as can be ex-
perienced across the Internet may result in sustained update 
rate on the order of 5 per second.  Studies have shown that 
an update rate of 30 frames per second is required to achieve 
a rendering that appears smooth to the human eye.  While 
there is a distinction between the display update rate and the 
entity state update rate, i.e., the display can be updated at a 
rate faster than updates are received across the network sim-
ply be repeating the displayed image, if an entity’s behavior 
is only updated 5 times per second, then the displayed image 
may appear jittery if the discernable appearance, location, or 
speed of the entity is changing at a faster rate. 

While dead reckoning allows a discrepancy between 
the actual behavior and the predicted behavior, Singhal and 
Zyda (1999) assert that dead reckoning sacrifices consis-
tency in order to allow the dynamic shared state of the dis-
tributed virtual environment to change more frequently.  
However, while there is always a degree of error between 
the predicted and actual behavior, all remote hosts can 
achieve a consistent view of an entity’s state since they are 
executing the same predictive algorithm.  The view consis-
tency depends upon the reliability of the network and the 
protocol used to convey entity state updates. 

The remainder of the paper is organized as follows. 
Section 2 provides an overview of dead-reckoning algo-
rithm. Section 3 describes the proposed pre-reckoning al-
gorithm. Section 4  evaluates the proposed algorithm and 
compares it with the standard dead-reckoning algorithm. 
Section 5 concludes the paper and provides directions for 
future research. 
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2 DEAD-RECKONING ALGORITHM 

While dead reckoning can achieve a degree of consistency 
among the predicted state maintained by remote hosts, it 
inherently permits inconsistency to exist between the ac-
tual state of an object and the predicted state maintained by 
other participants.  While some degree of inconsistency 
may be acceptable, there are two main drawbacks: 

1. A convergence algorithm must be executed to cor-
rect the inconsistency; and 

2. The existence of inconsistency complicates inter-
actions between entities such as agreement on col-
lisions. 

While it is generally more desirable to implement dead 
reckoning with an explicit convergence algorithm than 
without, the implementation of a convergence algorithm 
represents an additional degree of complexity.  First, the 
algorithm consumes computational resources.  Second, the 
algorithm must determine a reasonable period of time over 
which the entity’s representation can be brought into 
alignment with the most recently reported state.  Figure 1 
illustrates the difference between immediate convergence 
and time-phased convergence.  The path designated as Op-
tion 1 represents an immediate convergence where the 
most recent update to the location is displayed in the next 
frame.  While this approach is simple and does not con-
sume additional computational resources, it can result in a 
jittery display of the entity’s movement.  To achieve a 
smoother rendering, an alternative approach is to more 
gradually align the predicted location with the most recent 
update as illustrated by the path labeled as Option 2. How-
ever, this approach is not without its shortcomings.  By 
taking additional time to perform the convergence, Option 
2 allows the error to persist and possibly worsen. 

. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1: Convergence with Updated Location 
 

In an effort to reduce this residual error, another alter-
native is for the convergence algorithm to predict the loca-
tion of the entity at the completion of the convergence 
timeframe and then align the entity’s location with that po-
sition rather than the location identified in the most recent 
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update.  Figure 2 depicts two options for convergence to 
the predicted location.  The path labeled Option 3 reflects 
linear convergence similar to Option 2, while Option 4 de-
picts a curve fitting technique that is intended to improve 
the rendering of the entity’s movement by eliminating any 
sharp turns.  Under both Options 3 and 4, it may be neces-
sary to accelerate the movement of the entity for it to 
“catch up” to the predicted location and then return it to the 
last known velocity.  The convergence algorithm presented 
in the DIS standard does not explicitly address how entity 
state updates are regulated while convergence is being per-
formed (IEEE 1995).  As a result, there is a potential for 
entity state updates to be issued at a much higher rate than 
desired for an extended period of time until the predicted 
entity is within the error threshold. 
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Figure 2: Convergence with Predicted Location 
 
Another challenge associated with the convergence al-

gorithm is that it may be asked to correct a prediction that 
is not easily undone.  For example, Figure 3 shows a dis-
tributed virtual environment where entities move through a 
maze.  If the dead reckoning algorithm predicts that the ob-
ject will continue to move straight ahead when it in fact 
turns right down a corridor, then the convergence algo-
rithm is forced into undoing the error without having the 
entity appear to move through a wall.  While one option to 
limiting this type of error would be to reduce the error 
threshold, it would have the undesired consequence of 
dramatically increasing the number or entity state update 
packets sent across the network. 

The use of dead reckoning complicates interactions 
between participants because there is likely to be an incon-
sistent view of the locations of entities in an absolute sense 
as well as relative to each other.  This makes it difficult to 
agree on collisions between entities and whether weapons 
fired at another entity actually struck the intended target 
and caused the expected degree of damage.  To overcome 
these difficulties, some applications define explicit agree-
ment protocols or increase the update rate when objects are 
in closer proximity, see Cai et al. (1999).  As a result, the 
traffic on the network can experience localized bottlenecks 
in areas where there is intense interaction. 
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Figure 3: Difficulty in Correcting a Prediction Error 
 
Two early distributed virtual environments, SIMNET 

and NPSNET, employ dead reckoning techniques that be-
came the basis for the dead reckoning algorithms defined 
within the DIS standard, see IEEE (1995).  The DIS algo-
rithms are widely used for prediction of entity position 
based upon the reported position, velocity and acceleration.  
These measures are combined to form derivative polyno-
mials where position is the zero order derivative, velocity 
is the first order derivative, and acceleration is the second 
order derivative, see Macedonia et al. (1995). 

In addition to position dead reckoning, the DIS stan-
dard includes algorithms for predicting an entity’s three-
dimensional orientation based upon the angular velocity of 
a specified set of body coordinates.  These algorithms per-
form what is referred to as rotational dead reckoning.  The 
DIS standard defines two versions of each algorithm – one 
based upon the coordinate system specific to the individual 
entity and one based upon the coordinate system for the 
distributed virtual environment as a whole (world view). 

For convergence, the DIS standard defines a simple 
linear convergence method where the number of “smooth-
ing points” is left to the discretion of the implementer. 

The DIS standard algorithms are also the basis for 
variations and extensions discussed in the following sec-
tions that have been developed for specific applications 
and operating environments. 

Hybrid methods selectively employ a combination of 
first and second order derivative models depending upon 
the observed behavior of the entity.  Position History-
Based Dead Reckoning (PHBDR) is a widely used hybrid 
method where the selection of the derivative polynomial is 
based upon the recent history of position updates, see 
Singhal and Cheriton (1994).  If the algorithm determines 
that the entity is making sudden changes in the direction of 
its movement, then the acceleration term is ignored and the 
first order derivative (velocity) is used.  Otherwise, when 
the entity is moving in a smoother path, then the second 
order derivative polynomial (including velocity and accel-
eration) is used. 

PHBDR is referred to as an adaptive algorithm be-
cause it adapts to match the current behavior of the entity 
in Cai et al. (1999).  The adaptation pertains to the data 

- Actual Position 

- Predicted Position 
used as the basis for the position prediction.  The following 
paragraphs describe other adaptive algorithms that adjust 
the error threshold or the update rate depending upon con-
ditions observed by the controlling host. 

Adaptive algorithms represent the state-of-the-art with 
respect to general purpose dead reckoning algorithms.  
They are based upon the premise that “one size does not fit 
all” and there are situations where adjusting either the error 
threshold or update rate can improve performance (Chan 
2001). Cai et al. (1999) describe an adaptive algorithm 
where the error threshold is reduced for objects in close 
proximity and increased for distant objects.  The result is 
an overall net reduction in the number of update packets 
issued because there are typically fewer objects that are 
considered to be in close proximity.  Another benefit is that 
it reduces the error between the actual and predicted posi-
tions of objects in close proximity which leads to improved 
interaction and collision detection.  These adaptive algo-
rithms are referred to as general purpose because they can 
be applied to any entity type. 

Another category of dead reckoning techniques that 
can be considered state-of-the-art are algorithms that are 
tailored to the specific entity being modeled.  Under this 
approach, different algorithms are used for aircraft than are 
used for land-based vehicles.  The rationale for tailoring 
the algorithms is clear:  better prediction can be achieved 
by making use of knowledge about the specific entity.  
While executing a different set of algorithms for every type 
of entity potentially requires additional computational re-
sources, there are benefits as well.  The modeling can be 
improved and possibly simplified in some ways by apply-
ing the known physical constraints of the object, e.g., the 
turning radius of a tank. 

In addition to specialized algorithms for specific types 
of vehicles, there is extensive research into the dead reck-
oning of articulated objects – particularly humans.  An ar-
ticulated object is a complex entity comprised of numerous 
appendages (e.g, arms, legs, hands, fingers) that can func-
tion independently and have their own rotation axes, see 
Capin et al. (1999).  The dead reckoning of human partici-
pants is particularly important to the continued develop-
ment of distributed virtual environments because it directly 
influences user satisfaction with the virtual environment.   

Two basic approaches to the dead reckoning of hu-
mans are to:  (1) explicitly track and model the movement 
of the individual appendages; or (2) define scripts that de-
scribe a predefined set of human movements, e.g., standing 
up from a sitting position, and execute the script when a 
particular behavior is initiated.  Both techniques have been 
shown to be effective depending upon the application.  The 
script-based approach can achieve very fluid motion, but 
the error can be more extensive and difficult to undo if the 
wrong script is executed. 

The final set of dead reckoning techniques that can be 
considered state-of-the-art are designed to optimize a par-
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ticular metric.  Two such algorithms are cost optimization-
based dead reckoning and dead reckoning based upon data 
freshness requirements, see Holbrook et al. (1995). 

The concept behind cost optimization-based dead 
reckoning is to minimize the total information cost, in 
Wolfson et al. (1999).  Comprising the total information 
cost are the “costs” of prediction error, resources used in 
disseminating an update, and uncertainty costs.  The algo-
rithm is adaptive and can be applied to thresholds for un-
certainty related to the object’s speed, the position predic-
tion error, or the uncertainty as to whether the object is still 
functioning within the area of interest. 

In dead reckoning based upon data freshness require-
ments, the algorithm is tailored to the dynamic nature of 
the object.  The rate of issuing heartbeat packets is a func-
tion of how frequently the object typically changes state.  
For terrain entities that change appearance infrequently, a 
less frequent update rate is used.  The approach has been 
shown to reduce network traffic while continuing to sup-
port the required level of interaction. 

3 PROPOSED PRE-RECKONING  
ALGORITHM 

As a variation to the published dead reckoning techniques, 
an algorithm is proposed wherein the controlling host uses 
its copy of the predictive model to anticipate changes that 
will likely result in the error threshold being exceeded.  
When this situation is detected, the controlling host issues 
an entity state update immediately rather than waiting for 
the threshold to be exceeded.  The objective is to eliminate 
foreseeable error with no appreciable increase in update 
packets.  While some unnecessary updates may be issued 
in cases where the entity reverts to the predictable behavior 
(and wouldn’t have exceeded the threshold), it is conjec-
tured that particular applications where discrete behavioral 
choices are required (e.g., the selection of a path through a 
maze) may benefit from this proposed variation. 

To implement the proposed algorithm, the criteria 
must be defined for when an immediate update should be 
issued.  At a high level, it is described as change in move-
ment that would ultimately result in the error threshold be-
ing exceeded for the difference between the entity’s pre-
dicted location and its actual location.  In more specific 
terms, the objective is to mathematically define the condi-
tions under which the movement is unpredictable and an 
update is required. 

There are three types of behaviors that are candidates 
for pre-reckoning:  (1) when an entity at rest begins to 
move, (2) when a moving entity comes to a stop, and (3) 
when an entity makes a sharp turn.  The first two behaviors 
are easily detected, but what constitutes a “sharp turn” re-
quires pre-defined criteria. 

In specifying the PHBDR algorithm, Singhal and 
Cheriton (1994) define an angle of embrace based upon the 
three most recent position updates.  When the angle is 
acute, the movement of the entity is assumed to be chang-
ing sharply and so the tolerated error threshold is reduced.  
When the angle is obtuse, the entity is assumed to be mov-
ing in a more conventional manner and the default version 
of the algorithm is applied.  The process for deriving the 
angle of embrace from the most recent position updates is 
depicted in Figure 4. 
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Figure 4: Position Updates for Angle of Embrace [8] 
 
The algorithm proposed in this paper borrows upon 

this concept of the angle of embrace to determine when an 
immediate update should be issued.  Since the intended ap-
plication is for environments where objects may make 
sharp turns, the threshold for the angle of embrace is arbi-
trarily set at 100 degrees.  The rationale for the selected 
value is that an angle of 90 degrees corresponds to a per-
fectly straight right or left-hand turn, but the entity may not 
always turn at perfect right angles. 

The frame update rate is set to 30 frames per second 
and the error between the predicted position and the actual 
position is computed at each frame to determine if it is still 
within the threshold.  If the error threshold is not exceeded 
within 5 seconds, the controlling host issues a heartbeat 
packet with the current location.  A 100-millisecond net-
work latency is assumed for all entity state updates.  The 
amount of network latency influences the prediction error 
because of the lag between a change in the actual entity’s 
position and when remote hosts become aware of it. 

Remote hosts are expected to correct their predicted 
locations each time an update is received – regardless of 
whether the error threshold was exceeded.  An accelerated 
convergence algorithm is employed with both the DIS 
standard dead reckoning algorithm and the pre-reckoning 
algorithm.  The same convergence algorithm is used for 
both algorithms to ensure comparability of the results.  The 
convergence algorithm is referred to as accelerated be-
cause it allows the predicted entity to move at the maxi-
mum of its previous velocity and the velocity reported in 
the most recent update.  The predicted entity moves at this 
velocity until it is within an “acceptability range” of the ac-
tual entity position.  For all of the experiments, an accept-
ability factor of 50% of the error threshold is used.  The 
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rationale for continuing accelerated convergence after the 
entity is within the error threshold is to prevent the thresh-
old from quickly being exceeded again which could result 
in a higher than desired rate of entity state updates.  The 
accelerated convergence algorithm is described in detail 
below.  The actual position, trajectory, and velocity are 
known from the most recent entity state update that trig-
gered the accelerated convergence. 

1. Set velocity to the maximum of the previous pre-
dicted velocity and the actual velocity. 

2. Calculate the distance between the previous pre-
dicted position and the actual position. 

3. Calculate the time that it would take the predicted 
entity to reach the actual position. 

4. Calculate the position of the actual entity if it 
were to continue moving at the same velocity and 
on the same trajectory.  This is referred to as the 
convergent position. 

5. Define a trajectory for the predicted entity to in-
tersect with the convergent position. 

6. When the predicted entity is within the acceptabil-
ity range, revert to the velocity of the actual entity 
(if different) and follow a trajectory parallel to the 
actual entity’s last known trajectory. 

The convergent position is recalculated for subsequent 
frame updates if the predicted position does not converge 
with the actual position. 

4 EVALUATION OF  
PROPOSED ALGORITHM 

Performance of the proposed pre-reckoning algorithm is 
evaluated using a discrete event simulation model of the 
maze shown in Figure 5.  The maze is based upon the lay-
out of a Belgium mint building that has been defined for 
Mission 9: Operation Red Wolf of Tom Clancy’s Rainbow 
Six computer game, see Knight (1999).  Rainbow Six sup-
ports multiplayer games and the layout of the mint is repre-
sentative of a virtual environment through which human-
controlled commando avatars would move.  The Start posi-
tion corresponds to the front door of the mint and the End 
position corresponds to a loading dock exit in the rear.  The 
scale of the virtual environment is roughly 100 X 100 feet. 

To simplify the modeling of the environment, stair-
wells to other levels are treated as barriers so that move-
ment is limited to two dimensions.  In addition, the doors 
opening into rooms are modeled as fixed obstructions that 
do not move.  This is a simplifying assumption that does 
not affect the analysis of the algorithms.  The mint layout 
was selected because it has open spaces as well as narrow 
corridors that can be used to observe the performance of 
the algorithms under varying conditions. 

For the initial set of tests, the physical boundaries are 
taken into account when defining actual entity movement, 
but they are ignored when calculating the predicted posi- 
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Figure 5: Environment Used for Algorithm Evaluation 
 

tion.  While this can result in the predicted entity moving 
through walls, the objective in the first phase of experi-
ments is to observe the general performance of the pre-
reckoning algorithm in comparison to the DIS standard 
dead reckoning algorithm.  Although the physical bounda-
ries are ignored, when the predicted movement is overlaid 
onto the test environment, it can be observed when the in-
accuracy of the predictive algorithms would result in indi-
rect convergence, i.e., the convergent path would have to 
be routed around physical obstacles. 

Three different “actual” routes are modeled through 
the maze that correspond to different degrees of variability 
with respect to the entity’s movement. The objective is to 
evaluate the pre-reckoning algorithm under a range of 
movement behaviors. 

For the first set of experiments, the actual entity moves 
from the start position to the end position along a direct 
path without stopping.  Minor changes in velocity occur as 
the entity changes direction.  The range of the velocity of 
the actual entity within all of the experiments is approxi-
mately 0-10 feet per second.  This range was selected to 
reflect rates of movement that a typical human could 
achieve under “real world” conditions. Based upon the 
path defined for Experiment 1, the time for the actual en-
tity to move through the environment is 63.5 seconds. 

For the second set of experiments, a path is defined 
with moderate variability.  The actual entity looks in 
rooms, but does not enter them.  In some cases, the actual 
entity moves behind an obstacle as a defensive measure.  
In two instances, the actual entity comes to a stop (depicted 
by a solid square on the diagram of the path) and then re-
starts its movement. 

Under the second set of experiments, the actual entity 
also changes its velocity without changing its trajectory.  
These occurrences are depicted by a solid circle on the dia-
gram.  The actual time to move along the complete path 
from Start to End is 75.9 seconds. 



Duncan and Gračanin 

 

In the third set of experiments, the actual entity moves 
in a pattern indicative of searching the environment while 
having to evade hostile entities.  As in the test cases with 
moderate variability, the actual entity changes velocity, 
comes to a stop, and then starts moving again.  The added 
dimension for these test cases is that the changes in trajec-
tory and velocity are more frequent.  The zig-zag motion as 
the entity approaches the End position is intentionally de-
signed to observe the behavior of the pre-reckoning algo-
rithm when the actual entity makes a series of sudden 
changes in trajectory. The actual time to complete the 
movement along the path is 152.1 seconds. 

For each route, the performance of the pre-reckoning 
algorithm is compared with a DIS standard first order de-
rivative algorithm.  To simplify the evaluation of the pro-
posed algorithm, acceleration is not modeled and so 
changes in velocity are instantaneous.  The test cases cor-
responding to each route are run for three different error 
thresholds: 0.5, 1.0, and 2.0 distance units where each unit 
translates to approximately 6 feet.  The thresholds corre-
spond to 0.3%, 1.1%, and 4.3% of the total space of the 
virtual environment, respectively.  The objective is to de-
termine if the performance of the proposed pre-reckoning 
algorithm is affected by the magnitude of the error thresh-
old and, if so, what values yield the best results.  The com-
plete set of test cases is defined in Table 1. 

 
Table 1: Description of Test Cases 

Test Case Route Variability Threshold 
1 Direct Path 0.5 
  1.0 
  2.0 

2 Moderate Variability 0.5 
  1.0 
  2.0 

3 Evasive Path 0.5 
  1.0 
  2.0 

 
The configuration of the simulated environment is the 

same for each test case.  Both dead reckoning algorithms 
are metered to produce an update of the predicted path 30 
times per second.  The heartbeat update is issued after 5 
seconds if nothing has occurred to trigger the issuance of 
an entity state update packet.  These values reflect the typi-
cal ratio of update frames to heartbeat packets found in dis-
tributed virtual environments that use dead reckoning.   

The simulation is executed from the perspective of the 
controlling host.  Since the actual entity movements are 
known by the controlling host, they are pre-loaded into the 
event list.  The movements are defined as discrete changes 
in trajectory and velocity at specific points in time.  At the 
start of the simulation, the controlling host generates an en-
tity state update that is received by remote hosts.  The con-
trolling host accounts for the network delay and begins its 
execution of the predictive algorithm.  It is assumed that 
the delay in processing entity states updates is the same for 
all remote hosts.  For this assumption to be valid, the hosts 
must be relatively homogenous and they must be applying 
a synchronization scheme to maintain an approximation of 
a global clock.  Maintaining a consistent view of time is a 
challenge faced by all distributed virtual environments – 
especially those that utilize dead reckoning algorithms to 
predict actual behavior. 

The predicted position is calculated at a frequency 
equivalent to the display frame rate.  Each of these pre-
dicted positions is referred to as a “predicted frame.”  
Upon processing each predicted frame, the next predicted 
frame event is scheduled and added to the list with the ac-
tual entity movements. 

For the test cases where the physical boundaries are 
imposed, a bound event is scheduled if, proceeding on the 
current trajectory, the predicted path would intersect a 
physical boundary before the time of the next frame up-
date.  In those cases, processing of bound event results in: 

1. The predicted path stopping at the boundary until 
the error threshold is exceeded and convergence 
must be performed; or 

2. If convergence is already being performed, then the 
predicted path will move laterally along the bound-
ary in the direction of the point of convergence. 

The performance of the proposed pre-reckoning algo-
rithm is evaluated based upon the cumulative prediction 
error and the number of update packets generated.  These 
statistics are also computed for the DIS standard algorithm 
for purposes of comparison.  Since the cumulative error is 
measured at the same frequency as the frame rate, the cu-
mulative error will generally be larger for the experiments 
with the longer completion times.  For this reason, the 
comparison of the results for the different routes is based 
upon the average error per measurement and the average 
number of entity state updates per second. 

Table 2 summarizes the performance of the two algo-
rithms for the experiments where the physical boundaries 
are not imposed.  The pre-reckoning algorithm performs 
best (relative to the DIS standard algorithm) under the test 
cases where the error threshold was 1.0 distance units – for 
all three movement behaviors.  However, it is not possible 
to generalize these results because the three paths analyzed 
within the experiments do not provide a broad enough 
sampling of possible behaviors through a physically con-
strained virtual environment.  In all cases, both algorithms 
achieve a relatively low entity state update rate compared 
to the display rate of 30 frames per second.  The average 
predictive error per measurement is generally less than half 
of the error threshold, however it is somewhat higher for 
the DIS standard dead reckoning algorithm – particularly 
when the higher error threshold of 2.0 distance units is 
used.  These results imply that the convergence algorithm  
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Table 2: Comparative Summary of Algorithm Performance 
Without Physical Boundaries Imposed 

Movement 
Error  

Updates/sec. 
Standard/Pre-

Reckoning 

Aver. Error 
Standard/Pre-

Reckoning 
0.5 3.0 / 1.4 0.4 / 0.2 
1.0 2.3 / 1.1 0.5 / 0.3 

Direct 
Path 

2.0 0.6 / 0.5 0.9 / 0.5 
0.5 4.4 / 2.6 0.5 / 0.3 
1.0 3.2 / 0.9 0.8 / 0.4 

Moderate 
Variability 

2.0 1.2 / 1.3 1.4 / 1.0 
0.5 3.3 / 2.2 0.5 / 0.3 
1.0 2.0 / 0.8 0.7 / 0.4 

Evasive 
Action 

2.0 1.5 / 0.5 1.4 / 0.8 
 
may not be effective in enabling the predicted position to 
“catch up” to the actual entity position once the error 
threshold has been violated.  Additional insights may be 
gained from peak statistics, but that data was not collected 
for these initial experiments. 

Comparing the results for the specified paths when the 
physical boundaries are not imposed, it appears that the 
pre-reckoning algorithm’s performance improves relative 
to the DIS standard dead reckoning algorithm as the vari-
ability of the actual path increases.  This is an expected re-
sult given that the pre-reckoning algorithm is designed to 
address situations where the actual entity’s behavior is un-
predictable.  However, it is an unexpected result that the 
reduction in predictive error can be achieved while reduc-
ing the number of entity state updates.  This result is ob-
tained because the convergence algorithm has difficulty 
“catching up” to the actual entity and so entity state up-
dates continue to be generated until the error threshold is 
no longer violated. 

Figure 6 provides a side-by-side comparison of the pre-
reckoning algorithm performance for the experiments 
with and without the physical boundaries imposed.  The 
results correspond to the test cases using an error thresh-
old of 0.5 distance units which is the only value for which 
complete results were available.  The percentage reduc-
tions in the predictive error and the number of entity state 
updates are measured relative to the DIS standard dead 
reckoning algorithm. 

As an illustration (Direct Path movement without im-
posed boundaries), Figure 7 provides a comparison of the 
predicted paths yielded by the DIS standard dead reckon-
ing algorithm (depicted by the solid line) and the pre-
reckoning algorithm (depicted by the dotted line) when the 
error threshold is set to 2.0 distance units.  While the larger 
error threshold allows for significant divergence, the pre-
reckoning algorithm yields a predicted path that more 
closely follows the direct path of the actual entity.   
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Figure 6: Summary Comparison of Pre-Reckoning Algo-
rithm Performance 
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Even though boundaries are not imposed, the predicted 

path nearly stays within the physical boundaries.  In con-
trast, the DIS standard dead reckoning algorithm’s pre-
dicted path varies significantly from the actual path.  It is 
important to note that the predicted entity’s movement lags 
behind the actual entity so the actual and predicted entity 
are not necessarily moving at opposing trajectories at the 
same time.  Due to the accelerated convergence algorithm, 
the trajectory of the predicted path is set in manner that is 
intended to help it converge with the actual entity path. 

5 CONCLUSION 

The results indicate that pre-reckoning algorithm yields a 
greater degree of performance improvement when there is 
less variability in the movement of the actual entity.  In ad-
dition, the percentage reduction in entity state updates is 
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greater than the percentage reduction in the predictive er-
ror.  Both of these results are counter to the original hy-
pothesis which expected the pre-reckoning algorithm to 
work better as the variability of movement increases and 
that the reduction in predictive error may come at the cost 
of additional entity state updates.  Moreover, the finding 
with regard to variability in movement is also not consis-
tent with the performance results when an error threshold 
of 1.0 distance units was used in the experiments where the 
physical boundaries were not imposed.  As a result, a gen-
eral conclusion cannot be drawn in this area because the 
results appear to depend upon the error threshold.  The re-
duction in the number of entity state updates reflects the 
nature of the convergence that must be performed when 
generating the predicted path.  The pre-reckoning algo-
rithm yielded a reduced amount of predictive error in all 
test cases across the defined range of movement behaviors 
and error thresholds.  Because of the “avoided” error, the 
pre-reckoning algorithm also reduces the need for entity 
state updates during the convergence process.  Additional 
studies are required to draw broader conclusions as to the 
types of applications that would benefit most from the im-
plementation of the pre-reckoning algorithm. 
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