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ABSTRACT 

The painting process is an important part of the entire 
automobile manufacturing system.  Changing color in the 
painting process is expensive because of the wasted paint 
and solvent during color change.  By intelligently selecting 
cars toward downstream operations at the places where 
conveyors converge or diverge, we can reduce the number 
of such color changes without additional hardware invest-
ment.  Discrete Event Simulation is a tool of choice in ana-
lyzing these issues in order to develop an effective and ef-
ficient selection algorithm to ensure the system throughput.  
The concepts and methods presented here are also applica-
ble to other discrete event manufacturing processes where 
setup reduction is pursued. 

1 INTRODUCTION 

Automotive manufacturing is a complex task involving 
several steps of machining and assembly.  Typically, large 
components of an automobile such as the body, engine etc. 
are assembled over multiple systems.  The three main 
stages of an assembly line in the automotive industry are:  
the body shop, the paint shop, and the trim and chassis 
shop.  Cars flow through the assembly line from stage to 
stage in sequence (see Figure 1). 
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Figure 1: Stages of the Automobile Assembly Process 

 
An automotive company will typically sequence cars 

based on several objectives, most dealing with line balanc-
ing and material management.  In the first and last stages 
(the body shop and the trim and chassis shop), different 
cars might require the installation of different components.  
Such imbalance of the workload at the automotive assem-
bly line can be due to 1) different options of the same car 
model (e.g. one car might have an automatic transmission 
and sunroof, while another car might have a manual trans-
mission, but no sunroof), 2) different types of the same 
model (e.g. sedan vs. wagon), or 3) different models as-
sembled in the same line.  To balance the workload, an 
automobile manufacturer will sequence cars so that even 
over small sets of consecutive cars, the frequency of each 
installation is approximately equal to its overall frequency.  
For example, if 10% of all cars have a sunroof, then one 
out of every 10 consecutive cars in an ideal sequence 
would have a sunroof.  If this were the case, a worker at 
the sunroof installation station would have a fairly constant 
workload.  By balancing workloads, the plant can avoid 
bottlenecks that may slow down the line. 

Since workload balancing and other principles is con-
sidered so important, the creation of color blocks (or paint 
blocks, i.e. consecutively-sequenced cars with the same re-
quired color) at the painting station of the assembly line is 
considered less important.  As a result, the average color 
block size of the incoming car to the paint shop is usually 
very low.  However, because the plant must cleanse the 
painting apparatus of one paint color before painting a car 
a new color, it can sacrifice efficiency and money when the 
average color block size is small. 

The data collected from a major automobile assembly 
plant in US (with which we are conducting a research pro-
ject now) show that we can save a lot just by increasing 
color block size (i.e. the number of cars coming together 
with the same color).  We note that the cost associated with 
implementing such color block size increase is a one-time 
expenditure and is expected to be relatively small com-
pared to the possible saving amount (thanks to the fact that 
all we need to do is just to change the control logic of con-
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veyors).  We also expect this savings amount to be in-
creased further since we found several other candidates 
where the same approach can be applied for further in-
creases in average color block size (i.e. reducing the num-
ber of purges). 

Reducing the number of paint purges can also reduce 
environmental impact, as the cleaning solvents often con-
tain environmental pollutants such as volatile organic 
compounds (VOCs). 

The remainder of this paper is organized as follows.  
Section 2 describes the problem, section 3 make brief ex-
planation on our analytical model for the problem, and sec-
tion 4 explains why discrete event simulation model is 
needed for our problem.  Section 5 presents the simulation 
model for this problem and section 6 makes conclusion.  
Screen captures from our simulation model implementation 
are presented in Appendix. 

2 PROBLEM DESCRIPTION 

Changing color in the painting process is expensive be-
cause of the wasted paint and solvent during color change.  
That fact justifies our effort to reduce the number of color 
changes in the painting process.  Besides its original func-
tion of transporting cars to downstream operations, the 
conveyor/transfer systems can be used for buffering and 
can be also used to re-sequence to maximize average color 
block size, which is equivalent to minimizing the total 
number of color changes. 

Let us describe the problem we want to solve using a 
very simple example.  This example with two white cars 
and one black car illustrates our novel method of increas-
ing color block size (see Figure 2 through 4). 

In Figure 2, there are two options available for sending 
cars from two incoming conveyors (conveyor A and B) to 
one outgoing conveyor.  Instead of painting the black car 
between the two white cars (Figure 3), we would like to 
paint the black car first, and then paint two white cars 
(Figure 4).  In this way, we have reduced the number of 
paint color changes from two to one. 
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Conveyor B

Conveyor A
white

white

Incoming ConveyorsOutgoing Conveyor

 
Figure 2: Example (Two Incoming Conveyor and 
One Outgoing Conveyor) 
 

white
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Conveyor Ablack white

 
Figure 3: 1st Option (if the Car in Conveyor B is 
Picked Up First)  
black

Conveyor B

Conveyor Awhite white

 
Figure 4: 2nd Option (if the Car in Conveyor B is 
Picked Up Later) 
 
We can think of a reverse example with one incoming 

conveyor and multiple outgoing conveyors (see Figures 5 
through 7).  While in the previous example we had to de-
cide which car to choose from incoming conveyors, in this 
example we have to determine to which outgoing conveyor 
we will send the car.  In Figure 5, there are several options 
available for sending cars from one incoming conveyor to 
two outgoing conveyors (conveyor A and B).  Instead of 
randomly choosing the destination conveyor (with Figure 6 
as a possible result), we would like to use smart logic in 
which conveyor A gets black cars only while conveyor B 
gets white cars only (Figure 7).  In this way, we have re-
duced the number of paint color changes from two to zero. 
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Figure 5:  Example (One Incoming Conveyor 
and Two Outgoing Conveyors) 
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Figure 6: 1st Option (Possible Case if Cars are 
Randomly Selected) 

 
black black

white white
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Figure 7: 2nd Option (Black Cars Go to Con-
veyor A and White Cars Go to Conveyor B) 

 
While for both of the above samples it is easy to find 

the optimal solution to decrease color changes, finding the 
optimal solution is no longer intuitive when the number of 
incoming cars increases (e.g. 30 cars for each conveyor). 

3 ANALYTICAL MODEL 

The optimization problem induced by this situation is to 
minimize the total number of color changes (or, equiva-
lently, maximizing the size of the average color block) 
given the initial ordering of automobiles, the colors they 
are to be painted, and the way conveyors are connected. 
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The above problem can be generalized as follows.  It is 
the problem of resequencing a pre-arranged set of jobs on a 
moving assembly line with the objective of minimizing 
changeover costs.  A changeover cost is incurred whenever 
two consecutive jobs do not share the same attribute.  At-
tributes are assigned from a set of job-specific feasible at-
tributes.  Re-sequencing is limited by the availability of the 
conveyor connection points and offline buffers. 

We developed a finite-horizon analytical model for this 
optimization problem.  This integer programming model is 
flexible in that if given minor assumptions are satisfied, it 
can handle all cases with different initial ordering of auto-
mobiles, color sequence to be painted, and number of in-
coming and outgoing conveyors.  In addition, this model has 
been extended to handle the more general case where an off-
line buffer is used.  A typical example is given in Figure 8. 
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Figure 8: Diagram for Prime Storage Area in At-
lanta Assembly Plant 
 
In this example, for the car at the end of one incoming 

conveyor, we have an additional option to send this car to 
the offline buffer (as well as sending it to three outgoing 
conveyors).  Since the car entering the offline buffer will 
appear at the end of the offline buffer (which is right below 
of the end of incoming conveyor) and will be available for 
sending to downstream conveyors after some time, we can 
use offline buffer for further reducing color changes. 

4 WHY SIMULATION? 

There are many reasons why we need simulation model in 
our case.  In summary, discrete event simulation is a tool 
of choice in analyzing the issues discussed below in order 
to develop an effective and efficient selection algorithm. 

4.1 Limitations of the Analytical Model 

The mathematically optimal solution we can get from the 
analytical model may not be an optimal solution for our 
real system.  Our analytical model cannot address all as-
pects of the real system.  For example, cycle time is one of 
the top concerns of the plant managers but our analytical 
model is unable to handle any time-related constraint.  

In addition, from our problem viewpoint, the entire 
painting processes can be thought of as a collection of con-
veyors connected in various ways.  While our analytical 
model yields the optimal solution for each connection con-
figuration subsystem, the collection of these local optimal 
solutions may not be the global optimal solution of the 
whole system.  So we need to validate the solutions we get 
from analytical model using a simulation model. 

These limitations of the mathematical model make our 
simulation model indispensable for evaluating solutions 
including the solution from the mathematical model. 

4.2 Expensive Real System  
Implementation 

The conveyor system design change as well as control 
logic change is expensive.  Simulation is also a less expen-
sive option compared to actual controls programming and 
fine-tuning of the real system.  Furthermore, simulation 
software available today provide programming constructs 
and abilities that allow intricate operating details of such 
complex systems to be modeled with relative ease and ac-
curacy (Jayaraman 1997). 

4.3 Ideal Tool for Evaluating  
Complex System 

Simulation has been extensively used for simulating auto-
motive production processes.  Example of such successful 
applications can be found in Park et al. 1998 and Graehl 
1992.  More specifically, with its inherent ability for mod-
eling randomness, simulation is an ideal tool for evaluating 
different rule sets and for predicting the throughput capa-
bility of a selectivity system.  It provides an easier option 
for evaluating different scenarios without affecting the cur-
rent operation of the actual system. 

4.4 Additional Advantage  
of Simulation Model 

In addition, plant managers can use our simulation model 
in doing what-if analysis or sensitivity analysis.  For ex-
ample, simply looking at the simulation animation can eas-
ily identify bottlenecks in the paint shop and managers can 
determine how fast the conveyor should move to get the 
desired throughput. 

5 SIMULATON MODEL 

5.1 Input Data Selection 

Quality of simulation output heavily depends on the quality 
of the input data to the simulation model (garbage in, gar-
bage out).  If complete data is ready for use, usually it is 
best to use the available data without modification.  How-
ever, if complete data is not readily available and to get 
complete data is either not available or available at a cer-
tain cost, decision on how detailed data the simulation 
model will use should be made in advance. 
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Two kinds of data are available for the input to our 
simulation model – time domain data and frequency domain 
data.  Time domain data is the data with the time related in-
formation.  In our case, it is the data on incoming car se-
quence to the paint shop with the specific color of each in-
coming car and its time stamp data.  Frequency domain data 
is the data containing frequency information (not time in-
formation).  In our case, it is the historical data on the distri-
bution of colors on incoming cars as well as the average ar-
rival rate to the paint shop.  Time domain data can be 
converted to frequency domain data while frequency domain 
data cannot be converted to time domain data. 

The property of the system we measure (i.e. average 
color block size) makes time domain data more suitable for 
the input to our simulation model.  That fact can be illus-
trated by the following example.  Consider the following 
two different sequences of incoming cars. 

 
black white black white black white

 
black black black white white white

 
Figure 9: Two Different Sequences of  
Incoming Cars 

 
From frequency domain data perspective (3 black cars 

and 3 white cars), both of the above sequences are identical.  
While such abstraction (time domain data  frequency 
domain data) has no effect on some performance measures 
of the system, e.g. throughput, other performance measures, 
e.g. average color block size, are heavily affected by that 
abstraction.  Please note that it took negligible time to 
change color in painting process we observed.  Since we 
are mainly concerned with average color block size, which 
is heavily affected by such abstraction, it is evident that we 
should use time domain data in our simulation model. 

However, the automobile assembly plant we were 
working for does not collect time domain data while they 
collect frequency domain data only.  So we had to collect 
time domain data manually for a limited amount of time, and 
to compare our collected time domain data with the existing 
frequency domain data for verifying that there is no big dis-
crepancy between our collected data and existing frequency 
domain data. 

We note that time domain data derived from frequency 
domain data (infinite number of different time domain data 
can be generated from one frequency domain data by chang-
ing time-related parameter arbitrarily) is not useful as an in-
put data to the simulation model for predicting real system 
behavior, while they are useful for evaluating robustness of 
the control policy of the conveyor control point.   

Our simulation results show that average color block 
size was bigger when manually collected time domain 
data were used (compared to the “derived” time domain 
data).  We suspect that such increase is due to the fact 
that actual incoming car sequence is not randomized 
while the derived data is completely randomized (the 
color of each car is randomly decided according to the 
historical distribution of incoming car color). 

5.2 Control Logic Evaluation 

The main purpose of our simulation model is to evaluate 
various solutions for increasing the desired property (aver-
age color block size) of the system.  Each solution is im-
plemented on the system by changing the control logic for 
each place where conveyors diverge and/or converge (we 
call it a conveyor control point hereafter).  Ideally, best de-
cision at each control point can be made when complete 
information of the whole system is given (complete infor-
mation in our case means data from all sensors installed on 
the paint shop).  However, in our case each Programming 
Logic Controllers (PLCs) governing each conveyor control 
point could “see” only a few sensors nearby and PLCs 
couldn’t communicate with each other.  Furthermore, deci-
sion at each conveyor control point should be made on 
real-time basis (in our case within 1 minute) because of the 
dynamically changing environment.  In addition, because 
the logic in the PLC is implemented by the ladder diagram 
(that is a low-level language like Assembly and therefore 
hard to program and debug), the logic itself should not be 
too complex. 

Because of the above practical difficulties, in addition 
to the analytical model discussed in section 3, we also de-
veloped a few heuristics for each conveyor control point 
and evaluated these heuristics using the simulation model 
to choose the best one.  Since we had 6 control points and 
we developed two heuristics for each control point, we 
chose the best from 26 = 64 possible combinations.  For 
evaluating the robustness of the heuristics (discussed in 
section 5.1.), additional runs using the derived time domain 
data were performed. 

6 CONCLUSIONS 

In this paper, we explained why the color change reduction 
problem in the paint shop of automobile assembly plant is 
important.  We also justified why simulation model should 
be used in our problem and how it can be modeled (ana-
lytically as well as by simulation model).  We also dis-
cussed the detailed simulation implementation issues such 
as input data selection and control logic evaluation. 

The concepts and methods presented here are also ap-
plicable to other discrete event manufacturing processes 
where setup reduction is pursued. 
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APPENDIX: SCREEN CAPTURES 

2 screen captures from our simulation model implementa-
tion are given in Figure 10 and 11. 

 

 
Figure 10: Prime Spray Area  Prime Oven Area (Left), 
Prime Storage Area (Right) 

 

 
Figure 11: Prime Scuff Area 
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