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ABSTRACT 

We consider a supply chain, which consists of N retailers 
and one supplier.  The retailers may be coordinated 
through replenishment strategies and lateral transship-
ments, that is, movement of a product among the locations 
at the same echelon level. Transshipment quantities may be 
limited, however, due to the physical constraints of the 
transportation media or due to the reluctance of retailers to 
completely pool their stock with other retailers. We intro-
duce a stochastic approximation algorithm to compute the 
order-up-to quantities using a sample-path-based optimiza-
tion procedure.  Given an order-up-to S policy, we deter-
mine an optimal transshipment policy, using an 
LP/Network flow framework.  Such a numerical approach 
allows us to study systems with arbitrary complexity. 

1 INTRODUCTION 

Physical pooling of inventories has been widely used in 
practice to reduce cost and improve customer service.  On 
the other hand, information pooling, which entails the shar-
ing of inventory among stocking locations through lateral 
transshipments, has been less frequent.  Transshipments, 
the monitored movement of material between locations at 
the same echelon, provide an effective mechanism for cor-
recting discrepancies between the locations� observed de-
mand and their available inventory.  As a result, trans-
shipments lead to cost reductions and improved service 
without increasing system-wide inventories. 

Our research is motivated by observations from differ-
ent industries.  For example, transshipments are common 
in the management of spare parts.  In manufacturing, facto-
ries turn to sister plants to quickly obtain a spare part be-
fore contacting the original supplier.  Airlines have similar 
practices.  Container shipping lines pool their containers 
through an exchange.  Transshipments are increasingly 
 
common in apparel, fashion goods, and toys, particularly 
by those retailers with brick and click outlets. 

All these transshipment practices, however, represent 
a reactive approach to unexpected stockouts.  We believe 
that, if we take transshipment opportunities into account 
proactively during the planning phase, they can work as an 
effective mechanism for correcting demand-supply dis-
crepancies, thereby reducing cost and improving service. 

The literature on transshipments has generally ad-
dressed either problems with two retailers, e.g., Tagaras 
(1989), Tagaras and Cohen (1992), and Robinson (1990), 
or problems with multiple, identical retailers, e.g., Krish-
nan and Rao (1965) and Robinson (1990).  In contrast, we 
consider multiple retailers, who may differ both in their 
cost structures and in their demand parameters.  We further 
consider limits on transshipment quantities.  Such capacity 
constraints may reflect the physical constraints of the 
transportation media or the reluctance of the retailers to 
completely share their stock with other retailers.  Other re-
cent work on transshipments includes Archibald et al. 
(1997), Tagaras (1999), Rudi et al. (2001), Herer and 
Rashit (1999), and Dong and Rudi (2000). 

In this system, it is optimal for each retailer to follow 
an order-up-to S policy.  The optimality of the order-up-to 
S policy takes into consideration the use of transshipments 
among retailers, to be performed once demand is observed.  
We show how the values of the order-up-to quantities can 
be calculated using a a stochastic approximation algorithm 
that is based on Infinitesimal Perturbation Analysis (IPA). 

IPA has originally been introduced as a simulation-
based optimization technique (Ho et al. 1979).  With IPA, 
instead of using finite differences in a gradient search 
method, we use the mean value of the sample path deriva-
tive, which is obtained through a single simulation.  In 
other words, we conduct a single simulation run, keeping 
track of the impact of a change in a system parameter value 
on performance.  We then average these changes to esti-
mate the gradient.  The implicit assumption is that the av-



Özdemir, Yücesan, and Herer 

 

 
erage of these changes represents the change in expecta-
tions �hence, it yields an unbiased estimator.  Glasserman 
(1991) established the general conditions for the unbiased-
ness of the IPA estimator.  Applications of perturbation 
analysis have been reported in simulations of Markov 
chains (Glasserman 1992), inventory models (Fu 1994), 
manufacturing systems (Glasserman 1994), finance (Fu 
and Hu 1997), and control charts for statistical process 
control (Fu and Hu 1999).  IPA-based methods have also 
been introduced to analyze supply chain problems 
(Glasserman and Tayur 1995). 

Simulation-based derivative estimates help the search 
for an improved policy while allowing for complex fea-
tures that are typically outside of the scope of analytical 
models.  While the optimal order-up-to quantities have to 
be found once for the entire system, an optimal transship-
ment strategy has to be found on a period-by-period basis, 
given the period�s demand realization.  We show how 
these transshipment quantities can be found using an LP / 
Network flow framework.  

The contribution of this paper is twofold.  First is the 
development of an integrated IPA/LP algorithm for a sys-
tem that allows capacitated transshipments.  The system 
we consider is more general than previously studied sys-
tems with transshipments in that we consider multiple re-
tailers, which differ both in their cost structure and in their 
demand parameters.  Second is a methodological contribu-
tion, obtained by formulating and validating IPA derivative 
estimators for the transshipment problem.    Formulating 
these estimators means introducing appropriate algorithms; 
validating them calls for showing that they converge to the 
correct values, where convergence is over the number of 
independent simulation replications used to estimate the 
derivative information. 

2 PROBLEM DESCRIPTION 

We consider a system with one supplier and N non-
identical retailers, associated with N distinct stocking loca-
tions.  The system inventory is reviewed periodically. The 
demand distribution of each retailer in a period is assumed 
to be known and stationary over time. 

The first event in each period is the arrival of orders 
placed in the previous period.  These orders are used to sat-
isfy any outstanding backlog and to increase the inventory 
level.  Next in the period is the occurrence of demand.  
Since the realization of demand represents the only uncer-
tain event of the period, once it is observed all the deci-
sions of the period, i.e., transshipment and replenishment 
quantities, are made.  Lateral transshipments are then exe-
cuted, and subsequently the demand is satisfied.  Unsatis-
fied demand is backlogged.  At this point, backlogs and in-
ventories are observed, and penalty and holding costs, 
respectively, are incurred.  The inventory is carried, as 
usual, to the next period. 
Note that items in stock elsewhere in the system are 
supplied immediately through transshipments while back-
logged items have to wait until the beginning of the next 
period. Thus, the advantage of using transshipments is in 
gaining a source of supply whose reaction time is shorter 
than that of the regular supply. 

We now introduce the notation used.  We will repre-
sent the vector of quantities described below, as well as the 
ones that we will introduce later in the paper, by dropping 
the subscripts, thus, .  ),...,( 1 Nddd =

N  = number of retailers; • 
• 

• 

• 

• 

• 

• 
• 

• 

iD  = random variable associated with the peri-
odic demand at retailer i with E[Di] <∞; 

)(Df  = joint probability density function for 
the demand vector ; D

id  = actual demand at retailer i in an arbitrary 
period; 

ih  = holding cost incurred at retailer i per unit 
held per period; 

ip  = penalty cost incurred at retailer i per unit 
backlogged per period; 

ic
�

 = replenishment cost per unit at retailer i;  
ijt  = direct transshipment cost per unit trans-

shipped from retailer i to retailer j;  
ijt  = effective transshipment cost, or simply the 

transshipment cost, per unit transshipped from re-
tailer i to retailer j,  t . jiijij cct −+= �

3 OPTIMAL POLICIES 

In each period, the replenishment and transshipment quanti-
ties must be determined.  For the uncapacitated version of 
the problem, Herer et al. (1999) have already proven that, if 
transshipments are only made to satisfy the actual demand 
and not to build up inventory, there exists an optimal order-
up-to replenishment policy for all possible 
transshipment decisions.  In the capacitated system, this 
property is preserved.  We therefore adopt a base stock re-
plenishment policy. 

),...,,( 21 NSSSS =

Given an order-up-to  policy for the replenishment 
quantities, the optimal transshipment quantities need to be 
determined each period between every two retailers.  We 
define the decision variables in Table 1.  In particular, let 

 represent the quantity transshipped from retailer i to 

retailer j.  Recall that is the order-up-to level at retailer i.   

S

jiMBF

iS
We also use the following auxiliary variable: 

iI  = inventory level at retailer i immediately after 
transshipments and demand satisfaction 

  i
N

j

N

j
MBMBi dFFS

ijji
−+−= ∑ ∑

= =1 1
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Note that  may be either positive or negative, and we 
denote:  

iI

 

}0,max{ ii II =+ , . }0,max{ ii II −=−

 
Now, the total cost of the system in a given period is given 
by: 
 

    (1) ∑∑∑ ∑
=

−

=

+

= =
++=

N

i
ii

N

i
ii

N

i

N

j
MBij IpIhFtTC

ji
111 1

 
In the above equation we have not fully accounted for the 
replenishment costs.  Since we are using an �Order-up-to 

� replenishment policy at each retailer, the total amount 
replenished system-wide will be exactly equal to the sys-
tem-wide demand.  Recall, however, that the replenishment 
cost differentials were included in the definition of t .  
Thus, to fully account for the replenishment costs, we 
would need to add the term ∑  to Equation (1).  
However, since this term is independent of our decision 
variables, it is omitted.  

iS

ij

=
N
i ii dc1

Since the optimal policy is to order up to  units at 
retailer i, the point in time after an order arrives is a regen-
eration point.  That is, the system returns to the same state 
(  units at each retailer i and no backorders) just after the 
start of each and every period.  Thus, we can view the 
multi-period problem as a series of single-period problems.   

iS

iS

Consider the movement of material in an arbitrary pe-
riod.  At the beginning of the period there are  units in 
stock at each retailer i.  This stock can be used in one of 
three different ways: satisfy demand at retailer i, satisfy 
demand at retailer j (i.e., a transshipment from retailer i to 
j), and hold in inventory at retailer i.  While it is true that it 
is physically possible to move stock from retailer i to an-
other retailer, e.g., j, for storage, this is precluded. 

iS

At the end of the period replenishment arrives from 
the supplier.  This material can be used in two different 
ways: to satisfy a backorder at a retailer or to buildup in-
ventory at a retailer so that the period will end with the 
right amount of stock.  The stock at the beginning of the 
period and the replenishment that arrives from the supplier 
are the only two sources of material during a period. 

On the other hand, the demand at retailer i, , can be 
satisfied in one of three different ways: from the initial in-
ventory at retailer i, from the initial inventory at another 
retailer j (i.e., a transshipment from retailer j to retailer i), 
or from replenishment at the end of the period.  Another 
sink for material is the requirement that each retailer i ends 
the period with  units in inventory.  These units can 
come from one of two sources: the starting inventory at re-
tailer i or replenishment at the end of the period.  As dis-

id

iS

 

cussed above, inventory from another retailer will not be 
used to buildup inventory levels at retailer i. 

Using the observations above we model the movement 
of stock during a period as a network flow problem.  In 
particular we have a source node, , to represent the iB be-
ginning inventory at retailer i, and a source node, R , to 
represent the replenishment that occurs at the end of the 
period.  The sink node associated with the demand at re-
tailer i will be denoted  and the sink node associated 
with the 

iM
ending inventory at retailer i will be denoted .  

The arcs in the network flow problem are exactly those ac-
tivities described above and are summarized (with their as-
sociated cost per unit flow) in Table 1. 

iE

The complete network flow representation of the prob-
lem can be found in Figure 1 for three retailers.  Note that 
the graph is bipartite, though our representation of the 
graph, which was chosen to show the connection to the un-
derlying inventory problem, does not emphasize this point.  
The LP formulation associated with this network flow 
problem is as follows: 
 Problem (P)  

 

∑ ∑ ∑ ∑
= = = =

++=
N

1i 1 1 1
 min),(

N

i

N

j

N

i
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+=
N

i

N

i
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N

i
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∑       (4) 

 
iREEB SFF iii =+  i      (5) N,...,1=

 
Tr
ijMB CF

ji
≤ ,      (6) jiNji ≠= ,,...,2,1,

    , i ,  0,,,, ≥iijiiiii RERMMBMBEB FFFFF N,...,1=

      .,...,1 Nj =
 

Equations (2), (3), (4) and (5), respectively, represent 
the inventory balance constraint at the , , iB iM R  and  

nodes.  Equation (6) reflects a physical constraint, , on 
the quantity that can be transshipped from location i to lo-
cation j.  Alternatively, each location may wish to allocate 
only a portion, say β, of its on-hand inventory to trans- 
 

iE
Tr
ijC
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Table 1: The Definition of the Arcs in the Network Flow Problem 
Arc Variable Cost per 

unit flow 
Meaning 
 

),( ii EB  iiEBF  ih  inventory is held at retailer i 
),( ii MB  iiMBF  0 stock at retailer i is used to satisfy demand at retailer i 
),( ji MB  jiMBF  

ijt  

( 0=iit ) 

stock at retailer i is used to satisfy demand at retailer j, i.e., 
transshipment from retailer i to retailer j 

),( iMR  
iRMF  ip  shortage at retailer i is satisfied through replenishment 

),( iER  
iREF  0 inventory at retailer i is increased through replenishment 
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Figure 1: Network Flow Representation of a Single Period 
 
shipments.  This practice, typically referred to as partial 
pooling, can be represented through the following con-
straints: 

 

    i     (7) ,
1
∑
≠
=

≤
N

ji
j

iMB SF
ji

β .,...,1 N=

3.1 Finding the Optimal Order-up-To Values 

In the most general setting, exact computation of optimal or-
der-up-to levels by analytical methods is difficult.  This is in 
fact the problem of optimizing an expected value function.  
Since the corresponding expectation function cannot be 
computed exactly, it is approximated through Monte Carlo 
sampling.  Using the notation of Shapiro (2001), this repre-
sents a class of optimization problems of the form: 
 

  { ,)],([:)(min }ωxGExg
Xx

=
∈

     (8) 
where the expectation g(x) is well defined for every x∈X.   
The function G(x,ω) is in itself an optimization problem.  In 
our case, G is the optimal value of a network flow problem , 
where retailer demand is the random data of the problem.   
 We solve the optimization problem (8) by Monte 
Carlo simulation, that is, by generating an IID random 
sample and calculating the corresponding sample average: 
 

∑
=

−=
U

j

j
U xGUxg

1

1 ).,(:)(� ω  

 
The optimization problem (8) is then approximated by: 
 
  (9) ).(�min xgU

Xx∈

 
 We propose an IPA-based approach to solve (9).  The 
idea is to use the expected value of the sample path deriva-
tive obtained via simulation instead of using the derivative 
of the expected cost in a gradient search method.  In other 
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words, the gradient of interest is dE[TC]/dS whereas our 
numerical procedure computes E[dTC/dS].  To validate this 
approach, that is, to justify the interchange of the deriva-
tive and the integral, we need to show that the objective 
function is jointly convex and �smooth� in the S  variables 
(Glasserman and Tayur 1995).  For the capacitated trans-
shipment problem, this is done in Özdemir et al. (2003).  
We now turn to the description of the IPA algorithm. 

i

3.2 Description of the IPA Algorithm 

The algorithm starts with an arbitrary value for the order-
up-to levels, .  An instance of the demand is generated at 
each retailer.  Once the demand is observed, problem (P) is 
solved in a deterministic fashion to compute the minimum-
cost solution.  The gradient of the total cost (derivatives 
with respect to the order-up-to levels) is estimated and ac-
cumulated through independent replications; the average 
gradient value is then used to update the values of .  The 
procedure is summarized in a pseudo-code format, where 
K denotes the number of steps taken in a path search, U 
represents the number of independent replications, a

S

S

k rep-
resents the step size at iteration k, and  represents the 
order-up-to level for retailer i at the k

k
iS

th iteration. 
 

Initialize K 
Initialize U  
Set k ← 1 
For each retailer, set initial order-up-to 

levels, S  0
i

Repeat 
Set dTC ← 0 
Set u ← 0 
Repeat 
i. Generate an instance of the demand at each 

retailer, d, from f(D) 
ii. Solve problem (P) to determine optimal 

transshipment quantities 
iii. Accumulate the desired gradients (de-

rivatives) of the total cost, dTC 
iv. u ← u + 1 
Until u = U 
v. Calculate the desired gradient(s), dTC / U 
vi.Update the order-up-to-levels, Si: 

 /U)(dTCaSS ik
1k

i
k
i +← −

vii. k ← k + 1 
Until k = K 

 
In step (iii) of the algorithm, we use IPA to compute 

the gradient.  To illustrate the sample-path derivative idea, 
suppose that we end a period with inventory at retailer i.  
In this case, raising Si by 1 unit would result in increasing 
total cost by hi.  In the computer implementation, for each 
retailer i, we could partially code Step (iii) as: 

dTCi = dTCi + hi, if inventory at retailer i is 
positive, at the end of Step (ii). 
Starting with dTCi = 0 for all i at the beginning of the 
simulation and dividing dTCi by U in Step (v) yield the de-
rivative estimates. 

Our network flow formulation greatly simplifies 
computations.  Increasing Si corresponds to increasing the 
supply at source node Bi and the demand at sink node Ei.  
From a network flow perspective, dTC/dSi = hi, if the arc 

 is basic or, equivalently, the flow ii  is posi-
tive.  If the arc is non-basic, then since any basic solution 
corresponds to a spanning tree in the network, there exists 
a unique augmenting path from B

),( ii EB EBF

ij
jp

i to Ei whose total cost 
yields the gradient value.  For example, the augmenting 
path may go from Bi to Mj to R to Ei, with an associated 
cost of - .  Such a path represents a transshipment 
from retailer i to retailer j (with a cost of t ), a reduction 
in backorders at retailer j (with a savings of ) and a pur-
chase of another unit at retailer i (cost of zero). 

ijt jp

Furthermore, our implementation of the derivative 
computation in Step (iii) is very efficient.  Since the value 
of the gradient is equal to the total cost along the unique 
path from Bi to Ei for each retailer i, this quantity can be 
calculated directly as the difference between the holding 
cost at retailer i and the reduced cost of the arc (Bi,Ei), 
which is readily available from the linear programming so-
lution in Step (ii). 

In Step (vi) of the algorithm, one typically imposes 
conditions on the step size, ak such that 

 

∑
∞

=
∞=

1k
ka  and  . ∑

∞

=
∞<

1

2

k
ka

 
 The first condition facilitates convergence by ensuring 
that the steps do not become too small too fast.  However, 
if the algorithm is to converge, the step sizes must eventu-
ally become small, as ensured by the second condition.  
Note that when the gradient estimator is unbiased (as is the 
case here), step (vi) represents a Robbins-Monro algorithm 
(1951) for stochastic search. 

4 COMPUTATIONAL STUDY 

4.1 Experimental Design 

An illustrative example of the system with four retailers 
is shown in Figure 2.  Let us call retailer 0 the central re-
tailer and all other N retailers the remote retailers.  We 
begin by considering the case of identical retailers, the 
cost parameters are as follows: hi ≡ h = $1 per unit, pi ≡ p 
= $4 per unit, and the basic direct transshipment cost, ct = 
$0.5 per unit, when transshipments are allowed.  Each re-
tailer faces an independent demand stream distributed 
uniformly over (0, 200). 
 Note that t0i, i=1,2,�,N, represents the transshipment 
cost from the central retailer to remote retailers, ti0, 
i=1,2,�,N, represents the transshipment cost from the re- 
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Figure 2: Configuration Used in Numerical Testing 

 
mote retailers to the central retailer, and tij, i,j=1,2,�,N, 
denotes the transshipment cost from remote retailer i to 
remote retailer j.  As summarized in Table 2, we consider 
five alternative system configurations.  Note that tij = ∞ 
implies that transshipments are not allowed between retail-
ers i and j. 
 

Table 2: System Configurations 
System t0i ti0 tij 

1 ∞ ∞ ∞ 
2 ct ∞ ∞ 
3 ct ct ∞ 
4 ct ct 2 ct 
5 ct ct ct 

 
 System 1, where no material movement is allowed 
among retailers, represents N+1 independent newsvendor 
problems.  It thus serves as a benchmark.  In system 2, 
transshipments are allowed only from the central retailer to 
the remote retailers.  System 3 extends the scenario in sys-
tem 2 by allowing transshipments from the remote retailers 
to the central retailer as well.  In system 4, all material 
movement is possible.  However, transshipments between 
any two remote retailers are twice as expensive as the 
transshipments from/to the central retailer.  Finally, all 
transshipment costs are identical in system 5. 

4.2 Results and Analysis 

In all systems, we observe an increase in the total cost and 
in the total inventory levels when capacity considerations 
are incorporated.  However, as the number of units allo-
cated for transshipment increases, both the total cost and 
the total inventory levels decrease.   

Figure 3 depicts the total cost as a function of trans-
shipment capacity for the five systems with 10 retailers.  In 
systems 2 and 3, where transshipment opportunities are re-
stricted, decreasing capacity leads to increased costs.  In 
systems 4 and 5, however, a tightening transshipment ca-
pacity is fully compensated for through the availability of 
transshipment opportunities between any pair of retailers. 
200
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900

Xij=25 Xij=50 Xij=75 Xij=100 INF
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ta
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Figure 3: Total Cost in the Presence of Transport Con-
straints 
 

Figure 4 illustrates an interesting redistribution of in-
ventory in system 3 in the presence of transshipment capaci-
ties.  Recall that, in system 3, stocking location 1 behaves as 
a clearinghouse for all other stocking locations.  In other 
words, when there is no constraint on the quantity that can 
be transshipped, most of the material is stocked in location 1 
and shipped to the other locations, as needed.  In fact, up to 
25% of the system-wide inventory is kept at location 1.  
However, when transshipment quantities are tightly con-
strained, location 1 finds itself unable to support any of the 
other locations through transshipments.  It therefore does not 
have any reason to carry extra inventory.  In fact, in a tightly 
capacitated environment, the other locations carry additional 
stock for location 1.  Even for very small transshipment ca-
pacities, there is enough stock (9 times the transshipment 
capacity) carried by the other locations that can be sent to 
location 1 in case of a shortfall there. 

5 SUMMARY 

In this paper, we considered the multi-location dynamic 
transshipment problem, where transshipment quantities 
may be restricted.  Our approach includes several innova-
tions.  First, an arbitrary number of non-identical retailers 
is considered with possibly dependent stochastic demand. 
Second, we model the dynamic behavior of the system in 
an arbitrary period as a network flow problem.  Finally, 
we employ a simulation-based method using infinitesimal 
perturbation analysis for optimization.  Our simulation-
based optimization approach therefore provides a flexible 
platform to analyze transshipment problems of arbitrary 
complexity. 
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