
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

A VIEW FROM THE BEGINNING: WHEN DOES A DESCRIPTION
BECOME A TAXONOMY

Philip J. Kiviat

11202 Tildencrest Court
Guerra, Kiviat, Flyzik & Associates, Inc.

Potomac, MD 20854-2746, U.S.A.

ABSTRACT

This paper describes the author’s career leading up to the
publication of his 1969 paper Digital Computer Simulation:
Computer Programming Languages, how it influenced the
paper, and why the paper has endured as a taxonomy for
discrete-event simulation programming languages.

1 INTRODUCTION

Looking back some 46 years to when I first got involved
with simulation it is hard to remember major milestones,
much less details about why I did this or did that or why
such and such happened. Nevertheless, I will try to recount
how I came to be involved with discrete-event simulation
and the events that led up to my writing The RAND Cor-
poration Memorandum RM-5883-PR, Digital Computer
Simulation: Computer Programming Languages that was
issued in January, 1969.

2 THE BEGINNING

Not being able to get a “real job” the summer of 1958 I
took a position as an assistant to Professor Robert
Bechhofer at Cornell University doing Monte-Carlo sam-
pling simulations to support his experimental statistical re-
search. I learned about random numbers and pseudo-
random numbers and how to generate them, and started
thinking about what it meant to model something and to
perform artificial experiments. From this modest work, be-
ing the only student at the university at that time doing
anything like this, I became known as “the simulation ex-
pert.” Hardly true, but a nice credential nevertheless.

From this summer work I progressed to a part time job
in the Cornell Computer Center supporting research pro-
jects, doing Monte-Carlo modeling for such projects as
population genetics. As a student I was learning about job
shop scheduling simulation from Professor Richard Con-
way and then graduate assistant Bill Maxwell.

I added ALGOL to my repertoire of programming

languages (I knew FORTRAN, COBOL and various as-
semblers) and started thinking seriously about how lan-
guage concepts and structure influence how people think
about solving problems.

After getting my Masters Degree in Industrial Engi-
neering, having some proficiency in FORTRAN,
ALGOL, COBOL and assembler languages, and an over-
rated reputation as a “simulation expert” I was ready to
enter the job market.

In June, 1960 I went to work at the United States Steel
Applied Research Laboratory in Monroeville, PA, having
been hired to lead a team of Industrial Engineers to build
simulation models of open-hearth steelmaking plants that
would allow the engineers to study how best to schedule
facility and equipment operations to maximize plant steel-
making output.

It was here that my exposure to industrial simulation
needs began and my thoughts turned to “industrial
strength” as opposed to “academic” modeling issues.

3 FIRST PRINCIPLES EMERGE

Before I could build a model, or indeed, even think about
one, I needed to understand how an open-hearth steelmak-
ing facility worked. To do this I visited several US Steel
plants, had the plant operations described to me by plant
industrial engineers, and toured the facilities to see them in
action. I watched as steel was “cooked” and then poured,
as cranes moved up and down overhead tracks to service
them, and as various “overhead” functions were performed
to keep equipment in service and provide raw materials.
Then, to develop a logical discrete-event model that could
be simulated to reproduce the statistically varying produc-
tion of a plant, I investigated what others in similar busi-
nesses were doing at the time. In 1961 there wasn’t much
to look at and learn from, but conversations with col-
leagues about the modeling and programming language
work that was going on in Great Britain (K D Tocher’s
GSP work at the United Steel Companies) and in the US

Kiviat

(Geoffrey Gordon’s GPSS and Harry Markowitz’s
SIMSCRIPT) were very informative and set me thinking in
the right track.

I decided that my first need was to create a modeling
language that allowed me to communicate with the indus-
trial engineers I was working with, none of whom were
computer programmers and few of which were analytical
operations research analysts. Without a discussable dy-
namic model of plant operations I couldn’t go forward. I
couldn’t talk about representations of physical objects, I
couldn’t talk about system dynamics, I couldn’t explain
how modeling rules and logic governed actions that took
place in a dynamic system, and I couldn’t explain how sta-
tistical variability was introduced and controlled. The
modeling language had to be understandable by engineers
so we could build models, discuss them, and create scenar-
ios for their use.

After thinking about the relative merits of activity
scan, event scheduling and transaction flow modeling I de-
cided on event scheduling. This was partly because it was
easy to understand and completely transparent, and partly
because I needed a modeling language I could put into use
immediately. (While US Steel Research was farsighted
enough to fund my modeling research and programming
language development, its interest was in having simula-
tion models that could be used to improve plant operations,
not in sponsoring simulation research.)

I decided to build my own simulation programming
system using FORTRAN as a base language with the dis-
crete-event modeling concepts and constructs imple-
mented through functions and subroutines. I built it as I
worked through the problems of modeling open-hearth
steelmaking plants, learning as I went about what was
needed for modeling and what was necessary for model
implementation. Thus was developed GASP, the General
Activity Simulation Program.

Note: An activity in GASP is bounded by two events
that are the starting and ending points of the activity in
simulated time. GASP deals with events explicitly and ac-
tivities implicitly. GSP, the activity based language created
by KD Tocher, deals with activities explicitly through an
activity scanning mechanism. In GSP the activity and not
the event is where the logic of a model is represented.

GASP worked, and the industrial engineering team
and I successfully built, demonstrated, and experimented
with simulation models of several active US Steel open-
hearth steelmaking plants.

Looking back over that experience I learned that the
most important feature of a simulation language is that it
express and communicate modeling-oriented thoughts and
concepts. A suitable language had to be able to define and
manipulate permanent and temporary objects, objects that
were passive and objects that exhibited active behavior; it
had to be able to express system dynamics and the rules
that govern system behavior; and it had to be able to repro-
duce the variability in the nature of objects and how they
interact that is seen in the real world.

I also came to the conclusion that while you could im-
plement a modeling language in a general purpose pro-
gramming language such as FORTRAN, the clarity of the
model was often so obscured by the programming baggage
of the implementation that a specialized simulation pro-
gramming language would do a far better job of both shap-
ing a modeler’s thoughts and communicating them.

4 EVOLUTION

In 1963 I moved to The RAND Corporation to work with
Harry Markowitz on the second generation of
SIMSCRIPT, SIMSCRIPT II. Being an event-oriented
language, SIMSCRIPT was conceptually similar to GASP.
The SIMSCRIPT II project added modeling power to
SIMSCRIPT and used its implementation as a modern
programming language to build in simulation features and
capabilities that went far beyond the capabilities of a
FORTRAN package or FORTTRAN generator.

While at RAND I participated in many conferences that
brought together people doing simulation language research
in the US and Western Europe. From 1963 through the early
1970’s people who had “made their mark” in the program-
ming language community and in the simulation language
community gathered together in various venues to share
what they were doing and advance new points of view. The
people who took part in what became over the years a peri-
odic “gathering of luminaries” included: KD Tocher, John
Laski, John Buxton, Bob Parslow, Robin Hills, Edjer
Dykstra, Tony Hoare, Christopher Strachey, Nicholas Wirth,
Ole Johan Dalhl, Kristen Nygaard, Alan Clementson, Pat
Blunden, Howard Krasnow, Geoff Gordon, John McNeley,
Donald Knuth, Tom Naylor, Alan Pritsker, Julian Reitman,
Tom Schriber, David Parnas and others. Simulation model-
ing, programming and statistical analysis ideas were pro-
posed and dissected, ideological camps were formed (event,
activity, process-orientation) and many advanced program-
ming language ideas were discussed in the context of their
use for simulation purposes. It was a time of great intellec-
tual excitement for me with a mingling of minds from very
different backgrounds and perspectives, most academic but
some commercial and industrially-focused.

By the time this period ended and the simulation
community focused what is now the Winter Simulation
Conference as the gathering place for simulation practitio-
ners and researchers, things had pretty well settled down
into well understood patterns:

• The simulation community had pretty much settled
on Activity-oriented languages, Event-oriented
languages, and Process- oriented languages as
paradigms for modeling system dynamics. Harry
Markowitz’s term “World View” expressed well

Kiviat

how a modeling paradigm captures the essential
elements of how the modeler’s world works.

• Programming languages were being de-
signed/improved/implemented to host one or more
of these modeling approaches. Great strides were
made in programming language constructs and the
best minds of the time took part in conferences de-
voted to new programming language ideas.

• Languages were being extended to deal with data
structures for static system modeling and repre-
sentation (e.g. entities, attributes and sets), model
management, statistical analysis and experimenta-
tion requirements.

By the fall of 1968 I saw relative stability in the simu-

lation concept world and thought it would be worthwhile to
sort out my thoughts on the modeling and programming of
discrete-event simulation models. I did this as I was still
embarked on the development of the SIMSCRIPT II pro-
gramming language and thought that going through the re-
search/writing process might open up some new avenues
that might improve the language, and to share my thinking
with others in the simulation community.

Digital Computer Simulation: Computer Program-
ming Languages was published as one person’s description
of what he saw happening in the discrete-event simulation
community, and not as a suggested, much less proposed,
taxonomy. When I was invited to prepare this paper I was
told that “[my] 1969 paper still provides the fundamental
taxonomy for simulation modeling - all modeling thinking
builds from it.” When I declined, it was offered that upon
re-reading the paper, it appeared that I was not proposing a
strict scientific taxonomy at all - it just became such.
That’s exactly what happened.

5 LOOKING BACK

The last two sections of my paper were titled “Current SPL
Research” and “The Future of SPLS”.

In the penultimate section I discussed research then
going on in Simulation Concepts, Operating Systems, In-
teractive Languages, Time-Sharing, and Graphics. It was
primitive, as the technology in use then was far less capa-
ble in almost every sense than the technology we have to-
day. But it was on track. As one might expect, today’s
simulation languages and the web make possible things
that were barely thought of then.

In my final section I said that the greatest challenge to
the simulation community (in 1969) lay in the unification of
discrete-event and continuous-event simulation languages.

When preparing this paper I looked at A Collection of
Modelling and Simulation Resources on the Internet pub-
lished by Andrea Emilio Rizzoli of IDSIA and saw that this
challenge had been met and answered with three languages
dealing with hybrid simulation and over 90 simulation lan-
guages and packages catalogued, some for languages and
kinds of simulation that were not even thought of then.

The research and industrial world has been busy for
the past 35 years adding to the store of simulation knowl-
edge and experience and successfully adapting the ideas of
my 1969 paper -- which has become taxonomy -- to the
hardware and software technologies that come and go.

Looking back I guess we got it right.
Looking ahead I see the essential simulation modeling

concepts I described being preserved -- active and passive
entities will continue to be viewed as acting on one another
through rules and logic described as events, activities or
processes -- while the languages used to describe them con-
tinue to flourish and become more elegant, more powerful,
more intuitive, more visual, and hopefully, more easily used.

REFERENCES

Kiviat, Philip, 1969, Digital Computer Simulation:
Computer Programming Languages, The RAND Cor-
poration, Memorandum RM-5883-PR

AUTHOR BIOGRAPHY

PHILIP KIVIAT is a founding Partner of Guerra, Kiviat,
Flyzik & Associates, Inc., a strategic marketing and sales
consulting firm specializing in solution selling, sales strategy
and tactics, and market analysis and positioning. He was the
first Technical Director of the Federal Computer Perform-
ance Evaluation and Simulation Center (FEDSIM) that was
established by the US Air Force in 1972. He is the author of
two books on simulation programming languages
(SIMSCRIPT II and GASP) and numerous technical papers.
The “Kiviat Graph” is widely used in the computer hardware
and software performance field, as well as in other disci-
plines, to portray performance patterns and distinguishes
modes of behavior. In 1974 he received a special ACM pro-
fessional award in recognition of his contributions to the use
of computers within the Federal Government. In 1976 he
received the prestigious A. A. Michelson Award from the
Computer Measurement Group for his contributions to com-
puter performance management. In 1988 he was one of the
first inductees to the Government Computer News Informa-
tion Resources Management Hall of Fame, and was elected
in 1990, 1991, 1992 and 1999 to receive Federal Computer
Week's Federal 100 Executive award. He has degrees in
Mechanical Engineering and Industrial Engineering from
Cornell University and completed his course work for a
Doctorate in Business Administration at the University of
Southern California. His e-mail address is <pkiviat@
govspecialists.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 4
	02: 5
	03: 6

