
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

THE POTENTIAL COUPLING INTERFACE: METADATA FOR MODEL COUPLING

Tom Bulatewicz
Janice Cuny

Maureen Warman

Computer and Information Sciences
University of Oregon

Eugene, OR 97403, U.S.A.

ABSTRACT

Model coupling is a nontrivial task that is not adequately
supported in existing frameworks. Our long term goal is to
support the fast-prototyping of model couplings, enabling
scientists to quickly experiment with a variety of linkings
without having to make an upfront investment in repro-
gramming. This paper introduces the centerpiece of our
framework, the Potential Coupling Interface (PCI), a visual
representation of a model code based on simplified control
flow graphs. The PCI serves three roles: it is a new form of
metadata describing the coupling potential of a model; it is
the vehicle for the specification of couplings; and it is the
basis for automatic code generation. It is easy to specify
and once specified, it is available for all future coupling
activities. The PCI allows scientists to focus on the impor-
tant domain and model issues of coupling without having
to revisit legacy code for each new effort.

1 INTRODUCTION

Scientists often simulate complex physical phenomena by
coupling models of simpler subsystems. In our application
domain of Hydrology, for example, watershed simulations
are composed from interacting ground water, surface wa-
ter, and solute-transport models. The task of coupling ex-
isting models, however, is nontrivial. It occurs on three
levels. At the domain level, the scientist must identify an
appropriate coupling. At the model level, where the physi-
cal systems are represented mathematically, s/he must re-
solve any incompatibilities regarding, for example, param-
eterization, data type or resolution, or time step length. At
the program level, where the models are represented as
code, s/he must integrate the codes, which are often poorly
understood legacy codes that were originally written as
special purpose, standalone programs. We use the term
model coupling to describe this entire process, although
most existing work focuses on the model code level.
At the model code level, there are several approaches.
The most basic is a brute force merger of the existing codes
into a single program (Jobson and Harbaugh 1999, Guo and
Langevin 2002). This involves time-consuming reprogram-
ming, requires detailed knowledge of the underlying pro-
grams, and does not facilitate reuse. More sophisticated ap-
proaches use frameworks designed to support model
coupling. We categorize such frameworks as communica-
tion-oriented or component-oriented. Communication-
oriented frameworks (Valcke et al. 2000, Kauffman and
Large 2002, Beckman et al. 1998, Guilyardi et al. 2003,
MpCCI 2003, Sydelko et al. 1999, Larson et al. 2001) facili-
tate the transfer of data between concurrently executing
model codes that have been instrumented with appropriate
communication calls. These frameworks may provide do-
main-specific data models, standard data transformations,
and parallel data transfer. Their users must have low-level,
detailed knowledge of each of the source codes, and the re-
sulting programs are not reusable in general. Component-
oriented frameworks (Ford et al. 2003, Piacentini 2002, Hill
et al. 2004, Parker et al. 1998) facilitate reuse and ease of
programming with plug-and-play type environments. Intro-
ducing existing codes into such an environment though, of-
ten requires extensive recoding. The existing code must be
reorganized into independent components with well-defined
interfaces that can be composed by mapping outputs to in-
puts. This approach works well when the modules are writ-
ten from scratch but it is often difficult to decompose com-
plex, unstructured legacy codes into simple modules that can
interact with straightforward input/output relationships. Both
the communication- and the component-oriented frame-
works require a significant upfront investment before a sci-
entist can even begin to investigate potential couplings to a
new model. We are developing an alternative that combines
features of both approaches to support the fast prototyping
of coupled models.

Our goal is to enable scientists to easily experiment
with a variety of couplings before investing in recoding ef-

Bulatewicz, Cuny, and Warman

forts. Like communication-oriented frameworks, we will
support the use of annotated legacy codes rather than re-
coding. Like component-oriented frameworks, we will
promote reuse, allowing the scientist to plug together mod-
els that have been made available within the framework.
We will support all aspects of model coupling (identifying
appropriate models, specifying their interactions, and inte-
grating their codes), while allowing the scientist to work at
a high-level of abstraction without becoming enmeshed in
low-level source code details. In this paper, we report on
the centerpiece of our approach: a high-level, metadata de-
scription of the coupling potential of a model, called the
Potential Coupling Interface (PCI).

Computational models are a unique class of programs
in that they require a great deal of knowledge beyond their
source code and user interfaces in order to be used cor-
rectly. Thus their documentation may include such things
as parameterization, spatial aspects (dimensionality, grid
extent, and granularity), temporal aspects (fixed/variable
time step, and termination conditions), and model type
(time-dependent/independent, discrete event/continuous,
etc.). Although this information is necessary, it is not suffi-
cient for coupling. For coupling, the user must know which
state variables can be accessed and where those accesses
can occur: Can a specific state variable be modified at any
point in a simulation, or only during an initialization
phase? Can a set of data be read by another model on every
iteration of a solution loop, or is it only meaningful after
the solution has converged? If two models use each other's
state on each time step, how are their time steps to be co-
ordinated? Can a subcomputation that updates a state value
be repeatedly executed, or must the full model always be
executed from start to finish? The Potential Coupling Inter-
face succinctly captures this relevant information.

The PCI is intended to capture the information about a
model code relevant to coupling: it describes the overall
structure of the code, and it specifies the locations where
specific state variables can be read or modified by another
model. It serves as

• a form of model metadata that clearly conveys the

code's coupling-relevant aspects,
• a vehicle for graphically specifying the coupling

of two or more codes, and
• the basis for automatic generation of coupling code.

Thus, the PCI plays the same role as the interface descrip-
tions used in component frameworks but it is able to cap-
ture more complex interactions between programs.

In the next section, we describe the PCI and how it is
created. In Sections 3-5, we demonstrate the use of the PCI
in each aspect of the coupling process: as metadata; as the
vehicle for coupling specification; and as the basis for code
generation. In Section 6, we summarize the role of the PCI
in our ongoing work.
2 THE POTENTIAL COUPLING INTERFACE

Our aim is to develop a representation that allows all cou-
pling relevant aspects of a model to be readily understood by
scientists who are not familiar with its source code, while at
the same time maintaining a correspondence with the under-
lying program that is sufficient for automatic instrumentation
and code generation. In order to encourage the participation
of the original programmers, we want our representation to
be easy to create. To accomplish these goals, we base our
representation on control flow graphs (CFGs) in which nodes
represent sections of code and directed edges represent the
flow of control between them. Work in program comprehen-
sion suggests that succinct CFG representations are effective
in describing programs (Storey, Fracchia, and Muller 1997).
We generate an initial graph directly from the model code
and then allow the user to manipulate and simplify that graph
with the help of a tool, PCIAssist. We preserve the corre-
spondence to the underlying code through all transforma-
tions, so that we can use our CFGs in the automatic genera-
tion of coupling code.

To create a PCI, the author or someone familiar with
the source code annotates it, marking potential interaction
points and state variables that can be read or modified at
those points. For example, the code segment

 IDGB=0

 COUPLING POINT('Before time step loop',TRB)

C start time-stepped loop

 WRITE(LUOUT,2150)

 DO 100 j=1,NHR

(taken from the DAFlow model below) creates and labels a
point of potential interaction (COUPLING POINT) where
the TRB array can be imported or exported. Once the code
is annotated, it is translated from its source language (For-
tran/C/C++) into a structured intermediate form using the
Program Database Toolkit (PDT) (Mohr et al. 2000). The
intermediate form is then parsed to generate a complete
control flow graph. Generally these graphs are huge, far
too large to be comprehensible. To reduce them, we use a
modified form of the graph reductions used in Interval
Analysis (Aho and Ullman 1972). The original algorithm
simplifies a graph by inspecting the edges of each node,
while our algorithm additionally inspects the type of each
node (control statement, annotation statement, etc.). This
allows our algorithm to preserve annotations and the con-
trol structures surrounding them in the reduced graph. All
other nodes are collapsed, retaining only the aspects of the
graph relevant to coupling.

As an example, consider DAFlow (Jobson 1989), a
distributed-parameter, time-dependent, surface-water flow
model written in Fortran. It has a simple (and common)

Bulatewicz, Cuny, and Warman

structure: it reads parameters and builds data structures
during an initialization phase, and then it executes a single
time-stepped loop computing the water levels in each
branch segment. DAFlow could potentially interact with a
time-dependent, spatial ground-water model in several
places. It could, for example, import its parameters or it
could import/export simulated water levels on each time
step. In the later case, different length time steps would
have to be coordinated. Typically this would happen in one
of two ways: the simulations could proceed in lock step, or
one of them could be invoked for some number of steps
during each iteration of the other. To anticipate both of
these possibilities, the creator of the PCI would place anno-
tations at the top and bottom of the loop (for lock step exe-
cution), and immediately before and after it as well (for
multistep execution). The full CFG for DAFlow contained
1082 nodes; it was automatically reduced to the 28 node
graph shown in the left of Figure 1, with coupling points
marked with a double arrow icon. The reduced graph is the
starting point for the PCI creator. The PCIAssist tool sup-
ports manipulation of the graph, allowing the programmer
to add variables for import/export at interaction points,
view related source code statements, annotate nodes with
descriptions, add and remove coupling points, further re-
duce or expand sections of the graph, and adjust the graph
layout. Its interface uses JGraph (Alder 2002) and is shown
in the bottom right of Figure 1, and the final PCI for
DAFlow developed in PCIAssist is shown in the top right.
The VASE visualization system (Jablonowski 1993) used
CFGs in a similar manner to specify breakpoints for code
visualization. VASE graph reduction was not automatic but
was specified by the user who demarcated blocks of source
code that were to be coalesced; s/he then identified break-
points by selecting CFG edges.

In ongoing work, we are conducting preliminary us-
ability studies on the PCI, evaluating it both as a conven-
ient form of documentation (Can the developer easily spec-
ify a PCI that accurately captures the needed information
for a reasonable range of potential, perhaps unanticipated,
couplings?) and as a tool for comprehension (Can the user
easily interpret the PCI to understand relevant program be-
havior without resorting to exhaustive analysis of source
code?). We are also constructing a set of templates that can
be used to ease PCI creation, to make coupling specifica-
tions more convenient, and to improve our ability to gener-
ate efficient coupling code. Templates capture standard,
perhaps domain-specific, model code structures. Thus, for
example, DAFlow has a common structure: it reads pa-
rameters and builds data structures during an initialization
phase, and then it executes a single time-stepped loop. In-
stead of manipulating the CFG to make this apparent, the
PCIAssist user will be able to match coupling points in the
CFG with coupling points in the template.
3 THE PCI AS METADATA

Typical model code documentation includes descriptions of
the model and its limitations (variable description lists, sim-
ple control flow graphs, domain diagrams, narratives, fig-
ures, equation descriptions, and references to related work)
as well as information on using the code (sample input and
output, and hardware and software requirements, etc.) (Tres-
cott, Pinder, and Larson 1980; Haggerty and Reeves 2003).
In order to realistically share models on a large scale, scien-
tists have begun to define metadata standards for this infor-
mation (Hill et al. 2001, Federal Geographic Data Commit-
tee 1998). CAMASE (CAMASE), SOMNET (Smith et al.
1997), and ECOBAS (Benz, Hoch, and Legovic 2001), for
example, provide online meta-databases with entries cover-
ing general overview, scientific specifications, technical
specifications, and contact information as well as domain-
specific fields. ECOBAS provides a custom modeling lan-
guage that integrates both model design and documentation
into a single representation, thus eliminating inconsistencies
that may arise when documentation is supplied after-the-fact
without any direct tie to the model code. None of these ef-
forts, however, include all of the information needed for
coupling. UFIS (Benz, Hoch, and Legovic 2001) includes
lists of variables that could be imported/exported to other
specific models, but it does not indicate how or where these
variables could be used in general couplings. We believe
that the PCI fills this gap.

The PCI augments existing documentation and meta-
data with a complete description of the potential coupling
behavior of a model. It is easy to construct, and to inter-
pret. The PCI for a model code needs to be created just
once; after that, any user interested in coupling can work
entirely at the level of the PCI without becoming enmeshed
in source code details. Finally, the PCI is directly tied to
the model code removing the possibility of inconsistencies.

4 THE PCI AS A COUPLING INTERFACE:
CURRENT WORK

Ultimately, PCIs will be useful only if they can serve as the
basis of successful couplings. In the simplest case, the cou-
pling of two models can be specified as a mapping of the po-
tential coupling interface of one model to that of another as in
component frameworks. Often though, more complex trans-
formations of data and control flow are needed. In order to
evaluate the use of PCIs in the fast prototyping of real appli-
cations and to develop requirements for the specification of
this additional control, we have completed several case stud-
ies and present one here.

We consider a coupling of DAFlow, the surface-water
flow model discussed above, with ModFlow (McDonald and
Harbaugh 1988), a widely used, ground-water flow model
written in Fortran.

Bulatewicz, Cuny, and Warman

Figure 1: PCI for DAFlow: Original Reduced Graph (left), Final Graph (right), and PCI-
Assist Screenshot (bottom)

Bulatewicz, Cuny, and Warman

The models are nontrivial, totaling about 16K lines of
code. The coupling at the domain level is shown in Figure
2 where the 2d DAFlow surface network of branches is
overlaid on the 3d ModFlow grid so that a set of the branch
segments from the surface-water model interact with a cell
along the top of the ground-water model.

Aquifer

Stream

Head

Land

Top View

2D Surface Water Model

3D Ground Water Model
Figure 2: 2d DAFlow Surface Mapped to 3d ModFlow
Volume

The purpose of this coupling is to model the interac-

tion between ground-water flow and surface-water flow.
To do so, the leakage between the two systems is calcu-
lated on each time step and used by the models in their
flow calculations. If both models had the same time step
size and number, then the coupling would be straightfor-
ward. But, ground water moves at a much slower rate than
surface water, and thus, it is more efficient to have the
ground-water model use a larger time step. As a result,
DAFlow executes many time steps for each one executed
by ModFlow. How should we calculate the intermediate
surface-water time steps that do not have access to a corre-
sponding new ground-water state? As is commonly done,
we interpolate the needed values from the ground-water
model based on its previous step, but what happens if the
estimate is found to be wrong on the next ground-water
calculation? The surface-water time steps calculated using
the incorrect estimate must be resimulated. This requires
additional control structure to be added to DAFlow so that
it can repeat the simulation for a set of time steps. Since
many couplings may require this type of additional control,
our framework must support adding it to the PCI.

Also of concern here is the possibility that this addi-
tional control might require coupling points not specified at
the time the PCI was created. We do not want to revisit the
source code. In our PCI, we had included the necessary
points; for the general user, we expect that the use of tem-
plates as mentioned above will help. Matching the initial
CFG during PCI creation to a continuous simulation tem-
plate will automatically insert the necessary points.
Figure 3 shows how this coupling might be specified
using PCIs. The ellipses indicate where additional coupler
code (functions executed by the coupler, using data struc-
tures stored in the coupler) is executed to perform the leak-
age calculations. The unshaded nodes in the DAFlow
model show the added control structure discussed above.
Communication between the models takes places at the
double edges marked A, B, C, and D. At A, ModFlow
sends initial data necessary to calculate the leakage be-
tween the ground- and surface-water, and DAFlow saves
its state in the coupler, similar to a checkpoint, so that it
can restore its state and repeat its calculation if the estimate
turns out to be wrong. At B, ModFlow sends an estimate of
its values to DAFlow. DAFlow simulates a series of time
steps, and sends its result back to ModFlow at C. ModFlow
then calculates its time step, and if the estimate was wrong,
returns to DAFlow at B with a new estimate and the proc-
ess is repeated. Otherwise, if the estimate was acceptable,
both models exchange their results for the time step at D,
and move on to the next time step.

This coupling demonstrates some of the additional
complexities of model coupling that are not solved with the
PCI. DAFlow and ModFlow have both a spatial incom-
patibility (grid dimensionality), and a temporal incompati-
bility (time step resolution). Resolving such incompatibili-
ties is quite difficult in general, and has received a great
deal of attention in the literature (MpCCI, Jobson and Har-
baugh 1999, Ford et al. 2003). It is these issues though that
form the intellectual task of model coupling; the PCI helps
relieve the user of the more mundane aspects of coding that
detract from this central task.

As a reference for evaluating our DAFlow/ModFlow
coupling, we used an existing (brute-force) coupling (Job-
son and Harbaugh 1999) in which the DAFlow code was
divided into subroutines and integrated into the ModFlow
code. As our infrastructure is not complete, we instru-
mented the models with communication code by hand to
produce the code we expect later to produce automatically.
The coupled model was then compared to the reference
model in terms of accuracy, efficiency, and difficulty of
coupling. In terms of accuracy, while we don't have con-
clusive results, the model couplings did produce the same
values for all of the data we tested. In terms of efficiency,
we executed both models on the same machine (600 MHz
G3 iBook running MacOS X) and averaged 50 runs with-
out screen I/O. The reference model had a mean of 3.46
seconds with a standard deviation of 0.0025 and the PCI
coupled model had a mean of 9.21 seconds with a standard
deviation of 0.437. Cleary there was a penalty for our pro-
totype coupling, but we do not expect these couplings to be
used for production runs. Our goal is to provide a fast pro-
totyping environment that will enable the scientist to
quickly create and test proposed couplings.

Bulatewicz, Cuny, and Warman

Figure 3: Complete Coupling Specification based on the ModFlow and DAFlow PCIs
The PCI couplings were created without source code
modifications, allowing the user to work entirely at the
higher level of the PCI, whereas the reference model was
painstakingly developed through extensive recoding. In
addition, our PCI need not be recreated for future cou-
plings.

Bulatewicz, Cuny, and Warman

5 THE PCI AS THE BASIS FOR COUPLING

CODE GENERATION: FUTURE WORK

Given linked PCIs, the final step of the coupling process is
to modify the actual model source codes to reflect the cou-
pling specification. We plan to use existing solutions in
source-to-source transformations to automatically generate
and instrument the model codes with the required coupling
code. The direct correspondence between the PCI and the
model code makes this possible. Automatic code genera-
tion is used in component-oriented frameworks but not in
communication-oriented frameworks. It is important in that
it relieves the user from the need to have an extensive un-
derstanding of the source code, and it prevents the intro-
duction of additional bugs during instrumentation. Our
generated coupling code will be in two forms: communica-
tion and control. The communication code will use an ex-
isting custom library to send and receive data between
models and/or a coupler. The control code can introduce
additional control structure into the model codes or into
separate, new "coupler" components (shown as ellipses in
Figure 3); it is a current focus of our research.

6 CONCLUSIONS

This paper introduces a new type of model metadata, Po-
tential Coupling Interfaces. PCIs assist in the central tasks
of model coupling: they clearly convey the code's cou-
pling-relevant aspects; they provide a vehicle for graphi-
cally specifying the coupling of two or more codes; and
they form the basis for automatic generation of coupling
code. Because the PCIs provide an abstracted form of the
model code, scientists can focus on the important domain
and model issues of coupling without having to revisit leg-
acy codes for each new effort. As a result, prototype cou-
plings between a variety of models can be created quickly
without an upfront investment in reprogramming. We have
conducted several case studies and presented one here. Al-
though additional research is necessary, our initial results
suggest that PCIs adequately capture the coupling potential
of a model and are sufficient for the specification of the
coupled interaction of multiple models.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation grant ACI-0081487.

REFERENCES

Aho, A. V., & J. D. Ullman. 1972. The Theory of Parsing,
Translation, and Compiling, Volume II: Compiling.
1st ed. Prentice Hall.

Alder, G. 2002. Design and implementation of the JGraph
Swing component [online]. Available online via
<www.jgraph.com/documentation.html>
[accessed August 5, 2004].

Beckman, P. H., P. K. Fasel, W. F. Humphrey, & S. M.
Mniszewski. 1998. Efficient coupling of parallel ap-
plications using PAWS. In Proceedings of the Seventh
IEEE International Symposium on High Performance
Distributed Computing 215-222.

Benz, J., R. Hoch, & T. Legovic. 2001. ECOBAS - mod-
elling and documentation. Ecological Modelling
138: 3-15.

CAMASE. 2004. Available online via <library.
wur.nl/camase/> [accessed August 5, 2004].

Federal Geographic Data Committee 1998. Content Stan-
dard for Digital Geospatial Metadata [online]. Available
online via <fgdc.gov/metadata/contstan.
html> [accessed August 5, 2004].

Ford, R. W., G. D. Riley, M. K. Bane, C. W. Armstrong, &
T. L. Freeman. 2004. GCF: A General Coupling
Framework. Concurrency and Computation: Practice
and Experience, to appear.

Guilyardi, E., R. Budick, G. Brasseur, & G. Komen. 2003.
PRISM System Specification Handbook [online].
Available online via <prism.enes.org> [ac-
cessed August 5, 2004].

Guo, W., & C. D. Langevin. 2002. User's guide to
SEAWAT: A computer program for simulation of
three-dimensional variable-density ground-water flow.

Haggerty, R., & P. C. Reeves. 2003. STAMMT-L: Formu-
lation and user's manual.

Hill, L. L., S. J. Crosier, T. R. Smith, & M. Goodchild.
2001. A Content Standard for Computational Models.
D-Lib Magazine 7 (6).

Hill, C., C. DeLuca, V. Balaji, M. Suarez, & A. DaSilva.
2004. The architecture of the Earth System Modeling
Framework. Computing in Science and Engineering 6
(1): 18-28.

Jablonowski, D. J., J. D. Bruner, B. Bliss, & R. B. Haber.
1993. VASE: The visualization and application steer-
ing environment. In Proceedings of the 1993
ACM/IEEE conference on Supercomputing 560-569.

Jobson, H. E. 1989. Users manual for an open-channel
streamflow model based on the diffusion analogy.
U.S. Geological Survey Water Resources Investiga-
tions Report 89-4133.

Jobson, H. E., & A. W. Harbaugh. 1999. Modifications to
the diffusion analogy surface-water flow model
(DAFlow) for coupling to the modular finite differ-
ence ground-water flow model (ModFlow), U.S. Geo-
logical Survey Open-file Report 99-217.

Kauffman, B. G., & W. G. Large. 2004. The CCSM Cou-
pler [online]. Available online via <www.ccsm.
ucar.edu/models/ccsm3.0/cpl6/> [ac-
cessed August 5, 2004].

Larson, J. W., R. L. Jacob, I. Foster, & J. Guo. 2001. The
Model Coupling Toolkit [online]. Available online via

Bulatewicz, Cuny, and Warman

<www-unix.mcs.anl.gov/mct/>[accessed
August 5, 2004].

McDonald, M. G., & A. W. Harbaugh. 1988. A modular
three-dimensional finite difference ground-water flow
model. In Techniques of Water-Resources Investiga-
tions of the United States Geological Survey, Book 6,
Chapter A1.

Mohr, B., K. Lindlan, J. Cuny, A. Malony, S. Shende, R.
Rivenburgh, & C. Rasmussen. 2000. Tool Framework
for Static and Dynamic Analysis of Object-Oriented
Software with Templates. In Proceedings of the 2000
ACM/IEEE conference on Supercomputing 49-59.

MpCCI 2003. MpCCI Mesh-based parallel Code Coupling
Interface, Specification of MpCCI version 2.0
[online]. Available online via <www.scai.
fraunhofer.de/index.php?id=222&L=1>
[accessed August 5, 2004].

Parker, S. G., M. Miller, C. D. Hansen, & C. R. Johnson.
1998. An integrated problem solving environment: the
SCIRun computational steering system. In Proceed-
ings of the 31st Hawaii International Conference on
System Sciences 7: 147-156.

Piacentini, A. 2002. PALM: A dynamic parallel coupler. In
Proceedings of High Performance Computing for
Computational Science - VECPAR 2002: 5th Interna-
tional Conference 479-492.

Smith, P., D. S. Powlson, J. U. Smith, and P. Falloon.
1997. SOMNET. A Global Network and Database of
Soil Organic Matter Models and Long-Term Experi-
mental Datasets. The Globe 38: 4-5.

Storey, M.-A. D., F. D. Fracchia, & H. A. Muller. 1997.
Cognitive design elements to support the construction
of a mental model during software visualization. In
Proceedings of the 5th International Workshop on
Program Comprehension 17-28.

Sydelko, P. J., K. A. Majerus, J. E. Dolph, & T. N. Taxon.
1999. A Dynamic object-oriented architecture ap-
proach to ecosystem modeling and simulation. In Pro-
ceedings of the 1999 American Society of Photogram-
merty and Remote Sensing (ASPRS) Annual
Conference 410-421.

Trescott, P. C., G. F. Pinder, & S. P. Larson. 1980. Finite-
difference model for aquifer simulation in two dimen-
sions with results of numerical experiments. In Tech-
niques of Water-Resources Investigations of the
United States Geological Survey, Book 7, Chapter C1.

Valcke, S., A. Caubel, D. Declat, & L. Terray. 2000.
OASIS3 Ocean Atmosphere Sea Ice Soil User's Guide.
Technical Report TR/CMGC/03/69, CERFACS, Tou-
louse, France.

AUTHOR BIOGRAPHIES

TOM BULATEWICZ, received his B.S. degree in com-
puter science and B.A. degree in religion from the Univer-
sity of Rochester in 2001. He received an M.S. degree in
computer science from the University of Oregon in 2003.
He is currently a Ph.D. candidate in the Computer and In-
formation Sciences Department at the University of Ore-
gon. His research interests include distributed computing
and modeling and simulation. His email address is
<tomb@cs.uoregon.edu>.

JANICE CUNY, Ph. D. received a B.A. from Princeton
University in 1973, an M.S. from the University of Wis-
consin in 1974, and a Ph.D. from the University of Michi-
gan in 1981. She has been on the faculty at Purdue Univer-
sity and the University of Massachusetts. She is currently a
Professor of Computer and Information Science at the
University of Oregon. Her research interests include dis-
tributed computing, programming environments, and do-
main-specific environments for scientific computation. Dr.
Cuny serves as the Vice Chair of the Computing Research
Associations Board of Directors and its Committee on the
Status of Women in Computing Research (CRA-W). She
also serves on the Leadership Team of the National Center
for Women and Information Technology, and she is cur-
rently the 2004 Program Chair for the Grace Hopper Cele-
bration of Women in Computing. Her email address is
<cuny@cs.uoregon.edu>.

MAUREEN WARMAN, received her B.S. degree in
computer science and psychology from the University of
Oregon in 2001. She received an M.S. degree in computer
science from the University of Oregon in 2004. She is cur-
rently working as a research assistant at the Institute for the
Development of Educational Achievement at the Univer-
sity of Oregon. Her interests include human-computer in-
teraction and educational technology. Her email address is
<mwarman@cs.uoregon.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 183
	02: 184
	03: 185
	04: 186
	05: 187
	06: 188
	07: 189
	08: 190

