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ABSTRACT 

Model coupling is a nontrivial task that is not adequately 
supported in existing frameworks. Our long term goal is to  
support the fast-prototyping of model couplings, enabling 
scientists to quickly experiment with a variety of linkings 
without having to make an upfront investment in repro-
gramming. This paper introduces the centerpiece of our 
framework, the Potential Coupling Interface (PCI), a visual 
representation of a model code based on simplified control 
flow graphs. The PCI serves three roles: it is a new form of 
metadata describing the coupling potential of a model; it is 
the vehicle for the specification of couplings; and it is the 
basis for automatic code generation. It is easy to specify 
and once specified, it is available for all future coupling 
activities. The PCI allows scientists to focus on the impor-
tant domain and model issues of coupling without having 
to revisit legacy code for each new effort. 

1 INTRODUCTION 

Scientists often simulate complex physical phenomena by 
coupling models of simpler subsystems. In our application 
domain of Hydrology, for example, watershed simulations 
are composed from interacting ground water, surface wa-
ter, and solute-transport models. The task of coupling ex-
isting models, however, is nontrivial. It occurs on three 
levels. At the domain level, the scientist must identify an 
appropriate coupling. At the model level, where the physi-
cal systems are represented mathematically, s/he must re-
solve any incompatibilities regarding, for example, param-
eterization, data type or resolution, or time step length. At 
the program level, where the models are represented as 
code, s/he must integrate the codes, which are often poorly 
understood legacy codes that were originally written as 
special purpose, standalone programs. We use the term 
model coupling to describe this entire process, although 
most existing work focuses on the model code level. 
At the model code level, there are several approaches. 
The most basic is a brute force merger of the existing codes 
into a single program (Jobson and Harbaugh 1999, Guo and 
Langevin 2002). This involves time-consuming reprogram-
ming, requires detailed knowledge of the underlying pro-
grams, and does not facilitate reuse. More sophisticated ap-
proaches use frameworks designed to support model 
coupling. We categorize such frameworks as communica-
tion-oriented or component-oriented. Communication-
oriented frameworks (Valcke et al. 2000, Kauffman and 
Large 2002, Beckman et al. 1998, Guilyardi et al. 2003, 
MpCCI 2003, Sydelko et al. 1999, Larson et al. 2001) facili-
tate the transfer of data between concurrently executing 
model codes that have been instrumented with appropriate 
communication calls. These frameworks may provide do-
main-specific data models, standard data transformations, 
and parallel data transfer. Their users must have low-level, 
detailed knowledge of each of the source codes, and the re-
sulting programs are not reusable in general. Component-
oriented frameworks (Ford et al. 2003, Piacentini 2002, Hill 
et al. 2004, Parker et al. 1998) facilitate reuse and ease of 
programming with plug-and-play type environments. Intro-
ducing existing codes into such an environment though, of-
ten requires extensive recoding. The existing code must be 
reorganized into independent components with well-defined 
interfaces that can be composed by mapping outputs to in-
puts. This approach works well when the modules are writ-
ten from scratch but it is often difficult to decompose com-
plex, unstructured legacy codes into simple modules that can 
interact with straightforward input/output relationships. Both 
the communication- and the component-oriented frame-
works require a significant upfront investment before a sci-
entist can even begin to investigate potential couplings to a 
new model. We are developing an alternative that combines 
features of both approaches to support the fast prototyping 
of coupled models.  

Our goal is to enable scientists to easily experiment 
with a variety of couplings before investing in recoding ef-
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forts. Like communication-oriented frameworks, we will 
support the use of annotated legacy codes rather than re-
coding. Like component-oriented frameworks, we will 
promote reuse, allowing the scientist to plug together mod-
els that have been made available within the framework. 
We will support all aspects of model coupling (identifying 
appropriate models, specifying their interactions, and inte-
grating their codes), while allowing the scientist to work at 
a high-level of abstraction without becoming enmeshed in 
low-level source code details. In this paper, we report on 
the centerpiece of our approach: a high-level, metadata de-
scription of the coupling potential of a model, called the 
Potential Coupling Interface (PCI). 

Computational models are a unique class of programs 
in that they require a great deal of knowledge beyond their 
source code and user interfaces in order to be used cor-
rectly. Thus their documentation may include such things 
as parameterization, spatial aspects (dimensionality, grid 
extent, and granularity), temporal aspects (fixed/variable 
time step, and termination conditions), and model type 
(time-dependent/independent, discrete event/continuous, 
etc.). Although this information is necessary, it is not suffi-
cient for coupling. For coupling, the user must know which 
state variables can be accessed and where those accesses 
can occur: Can a specific state variable be modified at any 
point in a simulation, or only during an initialization 
phase? Can a set of data be read by another model on every 
iteration of a solution loop, or is it only meaningful after 
the solution has converged? If two models use each other's 
state on each time step, how are their time steps to be co-
ordinated? Can a subcomputation that updates a state value 
be repeatedly executed, or must the full model always be 
executed from start to finish? The Potential Coupling Inter-
face succinctly captures this relevant information. 

The PCI is intended to capture the information about a 
model code relevant to coupling: it describes the overall 
structure of the code, and it specifies the locations where 
specific state variables can be read or modified by another 
model. It serves as 

 
• a form of model metadata that clearly conveys the 

code's coupling-relevant aspects, 
• a vehicle for graphically specifying the coupling 

of two or more codes, and 
• the basis for automatic generation of coupling code.  
 

Thus, the PCI plays the same role as the interface descrip-
tions used in component frameworks but it is able to cap-
ture more complex interactions between programs.  

In the next section, we describe the PCI and how it is 
created. In Sections 3-5, we demonstrate the use of the PCI 
in each aspect of the coupling process: as metadata; as the 
vehicle for coupling specification; and as the basis for code 
generation. In Section 6, we summarize the role of the PCI 
in our ongoing work. 
2 THE POTENTIAL COUPLING INTERFACE 

Our aim is to develop a representation that allows all cou-
pling relevant aspects of a model to be readily understood by 
scientists who are not familiar with its source code, while at 
the same time maintaining a correspondence with the under-
lying program that is sufficient for automatic instrumentation 
and code generation. In order to encourage the participation 
of the original programmers, we want our representation to 
be easy to create. To accomplish these goals, we base our 
representation on control flow graphs (CFGs) in which nodes 
represent sections of code and directed edges represent the 
flow of control between them. Work in program comprehen-
sion suggests that succinct CFG representations are effective 
in describing programs (Storey, Fracchia, and Muller 1997). 
We generate an initial graph directly from the model code 
and then allow the user to manipulate and simplify that graph 
with the help of a tool, PCIAssist. We preserve the corre-
spondence to the underlying code through all transforma-
tions, so that we can use our CFGs in the automatic genera-
tion of  coupling code. 

To create a PCI, the author or someone familiar with 
the source code annotates it, marking potential interaction 
points and state variables that can be read or modified at 
those points. For example, the code segment 
 

  IDGB=0 

  COUPLING POINT('Before time step loop',TRB) 

C start time-stepped loop 

  WRITE(LUOUT,2150) 

  DO 100 j=1,NHR 

 
(taken from the DAFlow model below) creates and labels a 
point of potential interaction (COUPLING POINT) where 
the TRB array can be imported or exported. Once the code 
is annotated, it is translated from its source language (For-
tran/C/C++) into a structured intermediate form using the 
Program Database Toolkit (PDT) (Mohr et al. 2000). The 
intermediate form is then parsed to generate a complete 
control flow graph. Generally these graphs are huge, far 
too large to be comprehensible. To reduce them, we use a 
modified form of the graph reductions used in Interval 
Analysis (Aho and Ullman 1972). The original algorithm 
simplifies a graph by inspecting the edges of each node, 
while our algorithm additionally inspects the type of each 
node (control statement, annotation statement, etc.). This 
allows our algorithm to preserve annotations and the con-
trol structures surrounding them in the reduced graph. All 
other nodes are collapsed, retaining only the aspects of the 
graph relevant to coupling. 

As an example, consider DAFlow (Jobson 1989), a 
distributed-parameter, time-dependent, surface-water flow 
model written in Fortran. It has a simple (and common) 



Bulatewicz, Cuny, and Warman 

 
structure: it reads parameters and builds data structures 
during an initialization phase, and then it executes a single 
time-stepped loop computing the water levels in each 
branch segment. DAFlow could potentially interact with a 
time-dependent, spatial ground-water model in several 
places. It could, for example, import its parameters or it 
could import/export simulated water levels on each time 
step. In the later case, different length time steps would 
have to be coordinated. Typically this would happen in one 
of two ways: the simulations could proceed in lock step, or 
one of them could be invoked for some number of steps 
during each iteration of the other. To anticipate both of 
these possibilities, the creator of the PCI would place anno-
tations at the top and bottom of the loop (for lock step exe-
cution), and immediately before and after it as well (for 
multistep execution). The full CFG for DAFlow contained 
1082 nodes; it was automatically reduced to the 28 node 
graph shown in the left of Figure 1, with coupling points 
marked with a double arrow icon. The reduced graph is the 
starting point for the PCI creator. The PCIAssist tool sup-
ports manipulation of the graph, allowing the programmer 
to add variables for import/export at interaction points, 
view related source code statements, annotate nodes with 
descriptions, add and remove coupling points, further re-
duce or expand sections of the graph, and adjust the graph 
layout. Its interface uses JGraph (Alder 2002) and is shown 
in the bottom right of Figure 1, and the final PCI for 
DAFlow developed in PCIAssist is shown in the top right. 
The VASE visualization system (Jablonowski 1993) used 
CFGs in a similar manner to specify breakpoints for code 
visualization. VASE graph reduction was not automatic but 
was specified by the user who demarcated blocks of source 
code that were to be coalesced; s/he then identified break-
points by selecting CFG edges.  

In ongoing work, we are conducting preliminary us-
ability studies on the PCI, evaluating it both as a conven-
ient form of documentation (Can the developer easily spec-
ify a PCI that accurately captures the needed information 
for a reasonable range of potential, perhaps unanticipated, 
couplings?) and as a tool for comprehension (Can the user 
easily interpret the PCI to understand relevant program be-
havior without resorting to exhaustive analysis of source 
code?). We are also constructing a set of templates that can 
be used to ease PCI creation, to make coupling specifica-
tions more convenient, and to improve our ability to gener-
ate efficient coupling code. Templates capture standard, 
perhaps domain-specific, model code structures. Thus, for 
example, DAFlow has a common structure: it reads pa-
rameters and builds data structures during an initialization 
phase, and then it executes a single time-stepped loop. In-
stead of manipulating the CFG to make this apparent, the 
PCIAssist user will be able to match coupling points in the 
CFG with coupling points in the template. 
3 THE PCI AS METADATA 

Typical model code documentation includes descriptions of 
the model and its limitations (variable description lists, sim-
ple control flow graphs, domain diagrams, narratives, fig-
ures, equation descriptions, and references to related work) 
as well as information on using the code (sample input and 
output, and hardware and software requirements, etc.) (Tres-
cott, Pinder, and Larson 1980; Haggerty and Reeves 2003). 
In order to realistically share models on a large scale, scien-
tists have begun to define metadata standards for this infor-
mation (Hill et al. 2001, Federal Geographic Data Commit-
tee 1998). CAMASE (CAMASE), SOMNET (Smith et al. 
1997), and ECOBAS (Benz, Hoch, and Legovic 2001), for 
example, provide online meta-databases with entries cover-
ing general overview, scientific specifications, technical 
specifications, and contact information as well as domain-
specific fields. ECOBAS provides a custom modeling lan-
guage that integrates both model design and documentation 
into a single representation, thus eliminating inconsistencies 
that may arise when documentation is supplied after-the-fact 
without any direct tie to the model code. None of these ef-
forts, however, include all of the information needed for 
coupling. UFIS (Benz, Hoch, and Legovic 2001) includes 
lists of variables that could be imported/exported to other 
specific models, but it does not indicate how or where these 
variables could be used in general couplings. We believe 
that the PCI fills this gap. 

The PCI augments existing documentation and meta-
data with a complete description of the potential coupling 
behavior of a model. It is easy to construct, and to inter-
pret. The PCI for a model code needs to be created just 
once; after that, any user interested in coupling can work 
entirely at the level of the PCI without becoming enmeshed 
in source code details. Finally, the PCI is directly tied to 
the model code removing the possibility of inconsistencies.  

4 THE PCI AS A COUPLING INTERFACE: 
CURRENT WORK 

Ultimately, PCIs will be useful only if they can serve as the 
basis of successful couplings. In the simplest case, the cou-
pling of two models can be specified as a mapping of the po-
tential coupling interface of one model to that of another as in 
component frameworks. Often though, more complex trans-
formations of data and control flow are needed. In order to 
evaluate the use of PCIs in the fast prototyping of real appli-
cations and to develop requirements for the specification of 
this additional control, we have completed several case stud-
ies and present one here. 

We consider a coupling of DAFlow, the surface-water 
flow model discussed above, with ModFlow (McDonald and 
Harbaugh 1988), a widely used, ground-water flow model 
written in Fortran. 
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Figure 1: PCI for DAFlow: Original Reduced Graph (left), Final Graph (right), and PCI-
Assist Screenshot (bottom) 
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The models are nontrivial, totaling about 16K lines of 
code. The coupling at the domain level is shown in Figure 
2 where the 2d DAFlow surface network of branches is 
overlaid on the 3d ModFlow grid so that a set of the branch 
segments from the surface-water model interact with a cell 
along the top of the ground-water model.  
 

Aquifer

Stream

Head

Land

Top View

2D Surface Water Model

3D Ground Water Model  
Figure 2: 2d DAFlow Surface Mapped to 3d ModFlow 
Volume 

 
The purpose of this coupling is to model the interac-

tion between ground-water flow and surface-water flow. 
To do so, the leakage between the two systems is calcu-
lated on each time step and used by the models in their 
flow calculations. If both models had the same time step 
size and number, then the coupling would be straightfor-
ward. But, ground water moves at a much slower rate than 
surface water, and thus, it is more efficient to have the 
ground-water model use a larger time step. As a result, 
DAFlow executes many time steps for each one executed 
by ModFlow. How should we calculate the intermediate 
surface-water time steps that do not have access to a corre-
sponding new ground-water state? As is commonly done, 
we interpolate the needed values from the ground-water 
model based on its previous step, but what happens if the 
estimate is found to be wrong on the next ground-water 
calculation?  The surface-water time steps calculated using 
the incorrect estimate must be resimulated. This requires 
additional control structure to be added to DAFlow so that 
it can repeat the simulation for a set of time steps. Since 
many couplings may require this type of additional control, 
our framework must support adding it to the PCI. 

Also of concern here is the possibility that this addi-
tional control might require coupling points not specified at 
the time the PCI was created. We do not want to revisit the 
source code. In our PCI, we had included the necessary 
points; for the general user, we expect that the use of tem-
plates as mentioned above will help. Matching the initial 
CFG during PCI creation to a continuous simulation tem-
plate will automatically insert the necessary points.  
Figure 3 shows how this coupling might be specified 
using PCIs. The ellipses indicate where additional coupler 
code (functions executed by the coupler, using data struc-
tures stored in the coupler) is executed to perform the leak-
age calculations. The unshaded nodes in the DAFlow 
model show the added control structure discussed above.  
Communication between the models takes places at the 
double edges marked A, B, C, and D. At A, ModFlow 
sends initial data necessary to calculate the leakage be-
tween the ground- and surface-water, and DAFlow saves 
its state in the coupler, similar to a checkpoint, so that it 
can restore its state and repeat its calculation if the estimate 
turns out to be wrong. At B, ModFlow sends an estimate of 
its values to DAFlow. DAFlow simulates a series of time 
steps, and sends its result back to ModFlow at C. ModFlow 
then calculates its time step, and if the estimate was wrong, 
returns to DAFlow at B with a new estimate and the proc-
ess is repeated. Otherwise, if the estimate was acceptable, 
both models exchange their results for the time step at D, 
and move on to the next time step. 

This coupling demonstrates some of the additional 
complexities of model coupling that are not solved with the 
PCI. DAFlow and ModFlow have both a spatial incom-
patibility (grid dimensionality), and a temporal incompati-
bility (time step resolution). Resolving such incompatibili-
ties is quite difficult in general, and has received a great 
deal of attention in the literature (MpCCI, Jobson and Har-
baugh 1999, Ford et al. 2003). It is these issues though that 
form the intellectual task of model coupling; the PCI helps 
relieve the user of the more mundane aspects of coding that 
detract from this central task. 

As a reference for evaluating our DAFlow/ModFlow 
coupling, we used an existing (brute-force) coupling (Job-
son and Harbaugh 1999) in which the DAFlow code was 
divided into subroutines and integrated into the ModFlow 
code. As our infrastructure is not complete, we instru-
mented the models with communication code by hand to 
produce the code we expect later to produce automatically. 
The coupled model was then compared to the reference 
model in terms of accuracy, efficiency, and difficulty of 
coupling. In terms of accuracy, while we don't have con-
clusive results, the model couplings did produce the same 
values for all of the data we tested. In terms of efficiency, 
we executed both models on the same machine (600 MHz 
G3 iBook running MacOS X) and averaged 50 runs with-
out screen I/O. The reference model had a mean of 3.46 
seconds with a standard deviation of 0.0025 and the PCI 
coupled model had a mean of 9.21 seconds with a standard 
deviation of 0.437. Cleary there was a penalty for our pro-
totype coupling, but we do not expect these couplings to be 
used for production runs. Our goal is to provide a fast pro-
totyping environment that will enable the scientist to 
quickly create and test proposed couplings. 
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Figure 3: Complete Coupling Specification based on the ModFlow and DAFlow PCIs 
The PCI couplings were created without source code 
modifications, allowing the user to work entirely at the 
higher level of the PCI, whereas the reference model was 
painstakingly developed through extensive recoding. In 
addition, our PCI need not be recreated for future cou-
plings. 
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5 THE PCI AS THE BASIS FOR COUPLING 

CODE GENERATION: FUTURE WORK 

Given linked PCIs, the final step of the coupling process is 
to modify the actual model source codes to reflect the cou-
pling specification. We plan to use existing solutions in 
source-to-source transformations to automatically generate 
and instrument the model codes with the required coupling 
code. The direct correspondence between the PCI and the 
model code makes this possible. Automatic code genera-
tion is used in component-oriented frameworks but not in 
communication-oriented frameworks. It is important in that 
it relieves the user from the need to have an extensive un-
derstanding of the source code, and it prevents the intro-
duction of additional bugs during instrumentation. Our 
generated coupling code will be in two forms: communica-
tion and control. The communication code will use an ex-
isting custom library to send and receive data between 
models and/or a coupler. The control code can introduce 
additional control structure into the model codes or into 
separate, new "coupler" components (shown as ellipses in 
Figure 3); it is a current focus of our research. 

6 CONCLUSIONS 

This paper introduces a new type of model metadata, Po-
tential Coupling Interfaces. PCIs assist in the central tasks 
of model coupling: they clearly convey the code's cou-
pling-relevant aspects; they provide a vehicle for graphi-
cally specifying the coupling of two or more codes; and 
they form the basis for automatic generation of coupling 
code. Because the PCIs provide an abstracted form of the 
model code, scientists can focus on the important domain 
and model issues of coupling without having to revisit leg-
acy codes for each new effort. As a result, prototype cou-
plings between a variety of models can be created quickly 
without an upfront investment in reprogramming. We have 
conducted several case studies and presented one here. Al-
though additional research is necessary, our initial results 
suggest that PCIs adequately capture the coupling potential 
of a model and are sufficient for the specification of the 
coupled interaction of multiple models. 
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