
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

CHARACTERIZATIONS AND RELATIONSHIPS OF WORLD VIEWS

C. Michael Overstreet

Computer Science Department
Old Dominion University

Norfolk, VA 23529-0162 U.S.A.

 Richard E. Nance

Systems Research Center
Orca Computer, Inc

Virginia Tech Corporate Research Park
Blacksburg, VA 24061 U.S.A.

ABSTRACT

We describe a characterization the three classical world
views of event scheduling, activity scanning, and process
interaction and discuss transformations among them. We
believe that one advantage of each is to allow more concise
model descriptions by allowing a model specifier to take
advantage of contextual information. Automated trans-
formation among world views is difficult due to a mod-
eler’s use of contextual information. We illustrate this by
transforming and then simplifying a model representation
creating a version, similar to what a programmer or mod-
eler might generate.

1 INTRODUCTION

A fundamental sub-area of modeling methodology is the
world view or conceptual framework adopted or imposed
in the model development process. Recognition of the im-
portance of a world view or “Weltansicht” is traced to the
early days of discrete event simulation (DES) (Lackner
1962). Much of the early attention to world views emerges
in the development of simulation programming languages
(SPLs) and simulators (packages in a general purpose lan-
guage (GPL)). The need for model specification inde-
pendent of an implementation in an SPL is expressed in the
early papers of Lackner (1962, 1964). Kiviat (1969) and
Lackner are credited with the definition of the three “clas-
sical” world views: event scheduling, activity scanning,
and process interaction. The characterization of a world
view in terms of its embedding in an SPL is described by
Kiviat (1969) as an inversion of theory and application that
clearly merits the attention of the simulation community.

Zeigler (1972, 1976) uses systems theory as a foun-
dation for explaining DES, and a “formal” representation
of model behavior is given in a notation similar to state
transition diagrams. Nance (1979) approaches model
specification as an issue in the development of model
documentation standards, drawing attention to research in
program generators, the Conical Methodology, and the

DELTA Project (Holbaek-Hanssen, Hfindlykken and Ky-
gaard 1977). The significance of time and state relation-
ships that form the core of any DES model specification
is addressed by Nance (1981) within the context of con-
trasting world view perspectives.

The Condition Specification (CS), created by Over-
street (1982), seeks to enable an algorithmic (automatic)
translation of a model represented in one world view to an-
other. The specification focuses on the most basic or
primitive characterization of time and state, thus making
explicit causal dependencies among model objects more
identifiable (Overstreet and Nance 1985). Graphical repre-
sentations derived from the CS, akin to those offered by
Schruben (1983) for the event scheduling world view,
prove useful in model transformation and simplification
(Overstreet and Nance 1986) and automated model diagno-
sis (Nance and Overstreet 1987).

Since each world view is based on a particular SPL
that provided its own approach to time-advance, model
implementations are usually closely tied to both a world
view and the time-advance technique of the SPL used.
These time-advance techniques can vary significantly in
the run-time characteristics of executing models (depend-
ing on characteristics of the model). If a “world view in-
dependent” model specification could be created, then the
choice of time-flow technique could be based on issues
such as run-time efficiencies.

Note that several of the ideas in this paper appear in
(Overstreet and Nance 1986) but due to the limited avail-
ability of this reference and continuing interest in the work,
we describe that research to broaden its availability to the
simulation community.

2 CONDITION SPECIFICATION OVERVIEW

The creation of the semantic forms embedded in a Condi-
tion Specifications (CS) is motivated by interest in better
understanding the relationships among the three classical
discrete event world views through enabling automated
transformations from one world view to another. Our re-

Overstreet and Nance

search leads to the conviction that direct transformation is
often made difficult or impossible because of implicit in-
formation (sometimes used by a modeler or programmer to
simplify the implementation task) that may not occur in
one world view but which must be explicit in another. For
a transformation from one world view to any other to be
completely automated, this implicit information must
sometimes be represented explicitly in another world view
representation and it may be difficult to determine. We
provide examples of this in Section 5 with examples of
world-view-based simplifications. The relevant point here
is that the form and some of the semantic content required
in a CS results from this transformation issue.

In a CS, a model is a collection of Objects and a col-
lection of Action Clusters (ACs). Each object is composed
of attributes and possibly additional objects. The attributes
record part of the state of the object. Note that additional
object state information may be used to improve run-time
efficiency, support time management, or provide auto-
mated data collection, but this information may not explic-
itly appear in any AC. The additional objects, if any, com-
plete the attribute definition for the composite object. The
model itself is usually such a composite object. (We note
that objects play no role in event scheduling or activity
scanning representations and are used when generating
process interaction representations.)

A collection of ACs defines the dynamic behavior of a
model. Each AC consists of a boolean expression and a
collection of actions (such as changing the value of an at-
tribute or scheduling some future action). The actions of an
AC are to occur whenever that AC’s boolean expression,
also called its condition, is TRUE. Thus the form of a CS
is similar to the production rule approach to knowledge
representation (Newell and Simon 1972). The CS approach
has been described elsewhere (Overstreet and Nance 1985,
Zeigler 1984, pp.353-358). While the treatment here is
brief, it should be sufficient to follow the development.
Some additional specifics of CSs are illustrated in the ex-
ample in Section 3.

Zeigler discusses constructing a model specification
by describing its “entity structure” (Zeigler 1984). The ap-
proach taken here is influenced by Zeigler’s work, al-
though exhibiting a significant departure. The objects in a
CS do not provide a “partitioning” (in the mathematical
sense) of the model like that of Zeigler’s entity structure.
We find the idea of objects providing a partition of the
model into “disjoint submodels” (whatever that may mean)
appealing and abandon this idea with reluctance. However,
we find it necessary to do so when considering models
with objects that participate in joint activities. To generate
an acceptable specification in the process interaction world
view automatically, the activities (and the state variables
necessary to control the activities) may need to be associ-
ated with each of the objects participating in the activity.
If this occurs, no partition is created.
2.1 Condition Specification Example

We use the classical Machine Repairman model as an ex-
ample of a CS and later to illustrate world view
transformations. This model is from (Palm 1947) and (Cox
and Smith 1961).

Informal Model Description: A single repairman ser-
vices a group of n identical semiautomatic machines. Each
machine requires periodic service based on a negative ex-
ponential random variable with parameter “meanUptime.”
The repairman starts in an idle location and, when one or
more machines require service, the repairman travels to the
closest failed machine. Service time for a machine follows
a negative exponential distribution with parameter “mean-
Repairtime.” After servicing a machine, the repairman
travels to the closest machine needing service or to the idle
location to await the next service request. The closest ma-
chine is determined by minimal travel time. Travel time
between any two machines or between the idle location
and a machine is determined by a function evaluation.

An object specification for this model is provided in
Figure 1. Each attribute is associated with one or more
model objects and has a name and a type. The attribute
types are typical of those available in many programming
languages except for the addition of “time-based signal.” A
time-based signal is a boolean expressions, with its value
changing from FALSE to TRUE due to the passage of
simulation time.

Figure 1: Machine Repairman Object Specification

Figure 2 contains ACs for the model; each AC consists

of a name (used in the graphic representations of the next
section), a condition, and a set of actions. Conceptually

Object Attribute Type

environ-
ment

systemTime
n

maxRepairs
meanUptime

meanRepairtime
initialization

nonnegative real
const pos integer
const pos integer
const pos real
const pos real

time based signal

machine

n
maxRepairs
meanUptime

meanRepairtime
mach[1..n]
failure
arrMach
endRepair
numRepairs
failed[1..n]

const pos integer
const pos real
const pos real
const pos real
const 1..n

time based signal
time based signal
time based signal
nonnegative integer

boolean

repair-
man

maxRepairs
meanRepairtime

status
location
endRepair
arrMach

numRepairs
arrIdle

const pos integer
const pos real

{avail,travel,busy}
{idle,1..n}

time based signal
time based signal
nonneg integer

time based signal

Overstreet and Nance

(implementations may be quite different), whenever the
condition of an AC becomes true, its associated actions are
to occur. If multiple conditions can become true at the
same instant and the actions are order-dependent, then this
is considered a specification error and the conditions
should be extended to resolve this. (This problem could
also be resolved by associating a priority to resolve “ties”
but that is not the approach we have taken.

Figure 2: Machine Repairman Action Clusters

The SETALARM action has two or more parameters:
the first names the time-based signal to be set, the second
the time the alarm is to occur. Any subsequent parameters
are used to pass values to any AC associated with that
time-based signal.

To illustrate the semantics of Figure 2, the simulation
stops when numRepairs is greater than maxRepairs
(the termination AC); a “begin repair” occurs for some
machine, whenever arrMach is true (that is, the repair-
man has arrived at a machine, an event scheduled by the
“travel to mach” AC).

Action Cluster
Id:

 Condition

Actions

initialization:
 initialization

INPUT n,maxRepairs,
 meanUptime,meanRepairtime
CREATE(repairman)
FOR i = 1 TO n
 CREATE(machine[i])
 mach[i] = i
 mailed[i] = false
 SETALARM(failure,
 negExp(meanUptime),i)
numRepairs = 0
location = idle
status = avail

termination:
 numRepairs >
 maxRepairs

STOP

failure(i):
 failure

failed[i] = true

begin repair(i):
 arrMach

SETALARM(endRepair,
 negExp(meanRepairtime,i)
status = busy
location = mach[i]

end repair(i):
 endRepair

SETALARM(failure,
 negExp(meanUptime),i)
failed[i] = false
status = avail
numPrepairs = numRepairs+1

travel to idle:
 (FOR ALL i, NOT
 failed[i]) AND
 status = avail
 AND location≠

idle

SETALARM(arrIdle,
 travelTime(location,idle))
staus = travel

arrive idle:
 arrIdle

status = avail
location = idle

travel to mach:
 status = avail
 AND(FOR SOME i
 failed[i])

SETALARM(arrMach,travelTime(
 loction,mach[i]),
 closestFaileMach(failed,
 location))
status = travel
We omit the definitions of the functions closest-
FailedMach which identifies the closest failed machine
to the repairman’s current location and the function
travelTime that determines the travel time from the re-
pairman’s current location to a particular machine or the
idle location.

2.2 Action Cluster Interaction Graphs

One advantage of a CS is that it can be used to deduce in-
teractions among components of a specification. A repre-
sentation that supports this analysis is an Action Cluster
Interaction Graph (ACIG) (Overstreet 1982, pp. 130-131).
In an ACIG, nodes represent ACs and directed edges the
ability of one AC to directly cause the occurrence of an-
other AC, that is, in an ACIG, an edge leads from AC 1 to
AC 2 if the actions of AC 1 can cause the condition of AC
2 to become true either at the same instant AC 1 is acti-
vated or at a future instant (through a SETALARM action).

Figure 3 is the ACIG for the Machine Repairman ex-
ample. In this figure, an AC that can cause another AC to
occur in the same instant (that is, with no change in simu-
lation time) is connected to it by a solid edge. If an AC
directly causes another AC to occur at a future time
(through a SETALARM action), the ACs are connected
by a dashed edge.

Figure 3: Machine Repairman Action Cluster Graph

See (Overstreet and Nance 1985) for a discussion of

how this graph can be generated from a CS and some of
the interesting problems involved in this process. The
graph is introduced here since representations in each of
the three world views are generated from it in Section 4.

initialization

failure

travel to mach

begin repair

end repair

travel to idle

arrive idle

termination

Overstreet and Nance

3 INFORMAL CHARACTERIZATION

OF WORLD VIEWS

We do not attempt a formal characterization of the three
world views, see (Zeigler 1976, Chapter 9) for a more for-
mal approach). The characterization of each world view is
based on our interpretation of the concepts found in
SIMSCRIPT (Dimsdale and Markowitz 1964) for the event
scheduling world view, in CSL (Buxton and Laski 1963) for
the activity scanning world view, and in SIMULA (Dahl and
Nygaard 1966) for the process interaction world view.

We base our ideas on world view as providing differ-
ent types of locality. Locality is defined by Weinberg as
“that property when all relevant parts of a program are
found in the same place” (Weinberg 1971). Locality is
generally regarded as a positive attribute by the software
engineering community since software is usually more eas-
ily understood, reused and maintained if all the parts of a
program that provide certain behaviors are linked in a
readily identifiable manner.

Unfortunately, what is “relevant” highly depends on
the issue of interest. Thus it is impossible for one arrange-
ment of the source text of a specification or program) to
exhibit locality for all possible questions that the source
text might be accessed to answer.

We assert that each world view attempts to capture a
different kind of locality:

• Event scheduling provides locality of time: each
event routine in a model specification describes
related actions that should always all occur in one
instant.

• Activity scanning provides locality of state: each
activity routine in a model specification describes
all actions that should occur due to the model as-
suming a particular state (that is, due to a particu-
lar condition becoming true.)

• Process interaction provides locality of object:
each process routine in a model specification de-
scribes the action sequence of a particular model
object.

These characterizations are illustrated by the transfor-

mations in the next section.

4 WORLD VIEW TRANSFORMATIONS

Transformations into each of the three world views can be
treated as a two step process. First, appropriate subgraphs
are generated from an ACIG, with different types of sub-
graphs for each world view. This can be done entirely
automatically as described below. The second step simpli-
fies each specification by use of precondition/postcondition
analysis. The complexity of this step deserves the added
discussion given below.
A CS contains three types of ACs:

1. determined if the attributes in the condition ex-

pression are all time-based signals,
2. contingent if the condition expression contains no

attributes which are time-based signals, an
3. mixed if the conditions contains both time-based

signal and non-time-based signal attributes. Thus
the condition value for a determined AC depends
only on the value of simulation time (at least, after
the signal has been scheduled).

The simple transformation of a CS with mixed ACs

into an equivalent specification with no mixed ACs is ac-
complished by the addition of attributes (Overstreet 1982).
For the development that follows, it is convenient to as-
sume that the specification contains no mixed ACs.

Each Condition Specification contains one special at-
tribute, “initialization.” The transformation algorithms dis-
cussed below are based, in part, on identifying those attrib-
utes that are time-based signals. For these algorithms, it is
useful to treat the “initialization” attribute as both time-
based (for event scheduling) and non-time-based (for activ-
ity scanning). This dual treatment is not unreasonable be-
cause it seems equally correct to regard initialization as oc-
curring when system time is zero (it is a determined or
time-based action) or as occurring because the model exe-
cution is initiated (a contingent action—the model should
be initialized in every generation of sample behavior).

4.1 Event Scheduling

In an event scheduling world view, a modeler first identi-
fies actions that are scheduled (i.e., time-based) and then
for each of the scheduled actions, everything else that
might happen as a consequence of that action both at the
same instant of time and at some point in the future. Thus
for each determined action, a modeler identifies both con-
tingent actions (which can occur as a result of the deter-
mined action and in the same instant) and additional de-
termined actions that occur as a direct result of the original
determined action. Each event specification then consists
of one determined AC and a collection of contingent ACs
that may be caused by it.

Given an ACIG for a model specification, determined
actions are identified by those nodes with dashed input
edges (using the notation of Figure 3) plus the initialization
AC. The contingent actions which can occur in the same
instant as each determined action and which can be caused
by the determined action are identified by the solid edges
leading from the determined node. These subgraphs, called
event subgraphs, are easily generated from an ACIG. Each
subgraph represents the sequence of actions of one event
specification. Figure 4 contains the five event subgraphs
for the Machine Repairman model.

Overstreet and Nance

Figure 4: Machine Repairman Event Subgraphs

For the five event subgraphs, subgraph 1 contains the sin-
gle AC “initialization.” Subgraph 2 starts with the AC
“failure,” and, since a “failure” may cause a “travel to
mach” to occur in the same instant (if the repairman is
available), it also contains the AC “travel to mach.” A “be-
gin repair” can cause no other actions to occur in the same
instant so the graph contains this single AC, but the “end
repair” AC can cause either a “termination,” a “travel to
idle,” or a “travel to mach” to occur in the same instant, so
the subgraph contains all four ACs. As depicted in sub-
graph 5, the “arrive idle” AC can cause an instant “travel to
mach.”

4.2 Activity Scanning

We assert that the use of an activity scan world view re-
quires the modeler first to identify all conditions to which
the model must respond other than those dependent strictly
on the passage of simulation time. After identifying these
conditions, the modeler specifies for each condition all ac-
tions that should occur unconditionally including actions
that should occur at a future time. Each activity specifica-
tion consists of one condition and a collection of actions
which must all occur whenever that condition is TRUE.

Given an ACIG for a model specification, contingent
actions are identified by those nodes with solid input edges
(using the notation of Figure 3). The determined actions that
can occur as a direct result of each contingent action are
identified by the dashed edges leading from the contingent
node. Thus subgraphs, called activity subgraphs, are easily
generated in which each subgraph represents the sequence of
actions for one activity specification. Figure 5 contains the
activity subgraphs for the Machine Repairman model.

Activity subgraph 1 indicates that, once an “initializa-
tion” has occurred, a “failure” is scheduled to occur. Like
wise, activity subgraph 2 indicates that once a “travel to

arrive
idle

end
repair

termi-
nation

travel
to idle

travel
to mach

travel
to mach

begin
repair

travel
to mach

failure

initiali-
zation

Event
Subgraph 3

Event
Subgraph 3

Event
Subgraph 1

Event
Subgraph 5

Event
Subgraph 4
Figure 5: Machine Repairman Activity Subgraphs

mach” has occurred, a “begin repair,” an “end repair,” and
a “failure” must necessarily occur (unless the simulation is
terminated). From subgraph 3, the “travel to idle” results
in an “arrive idle,” and a “termination” results in no other
actions.

4.3 Process Interaction

We assert that a process interaction world view requires
the modeler first to identify all model objects whose action
sequences must be defined. Subsequently, the modeler
specifies the sequence of actions for each object.

The object specification, illustrated in Section 2, asso-
ciates each attribute with one or more objects, from which
each AC can be associated with one or more model ob-
jects. Each AC is associated with each model object if the
object contains an attribute (1) that occurs in the AC condi-
tion, or (2) that the AC alters.

After this association of objects and ACs is complete,
subgraphs are generated to represent the action sequences
of each object. Each process subgraph contains all nodes
that represent the ACs associated with that object and the
edges of the ACIG connecting those nodes. These sub-
graphs, called process subgraphs, also provide sequencing
of the object actions. Figure 6 contains the process sub-
graphs for the Machine Repairman model.

This model has three process subgraphs, one for each
object. Although each process subgraph normally depicts
the sequence of possible actions for some model object,
complete sequencing of actions may not be provided. For
example, for this model, the process subgraph for the envi-
ronment, subgraph 1, consists of two ACs, “initialization”
and “termination” and the graph is not connected. This is
not unusual for an environment object (which often con-
tains only initialization and termination ACs), but uncon-
nected process subgraphs can also occur for other model
objects. The other two subgraphs for the machine and re-
pairman objects do depict action sequences for the objects
and nicely reveal the cyclical behavior of each.

begin
repair

end
repair

failure

initiali-
zation

failure

travel
to idle

arrive
idle

termi-
nation

travel
to mach

Activity
Subgraph 1

Activity
Subgraph 2

Activity
Subgraph 3

Activity
Subgraph 4

Overstreet and Nance

Figure 6: Machine Repairman Process Subgraphs

For each of these transformations, the union of the set
of nodes in the subgraphs may not be the complete set of
nodes in the original ACIG since some nodes may appear
in no generated subgraph. Surprisingly, this is not a prob-
lem for generating transformations since for each of the
three world view transformations, any node not included in
any of the world view subgraphs cannot occur in any exe-
cution based on the CS (Overstreet 1982). The action clus-
ter associated with any unincluded node likely indicates a
specification error, though it can be deleted from the speci-
fication without affecting model behavior defined by the
rest of the specification.

5 WORLD VIEW BASED SIMPLIFICATION

Each individual event, activity, and process specification re-
sulting from the above graphs can potentially be simplified
by removal of unnecessary tests or actions and simplification
of some control structure. This is an important part of the
transformation process, for it allows the resulting specifica-
tions to take additional advantage of the representational ad-
vantages of a target world view. Effective automation of
this simplification is possible; Puthoff (1990) describes an
expert system that performs this task for CSs. Nance,
Overstreet and Page (1999) describe improved execution
performance for several simulation models based on the im-
provements found by Puthoff’s expert system.

5.1 Precondition/Postcondition Simplification

All simplifications illustrated here are the result of a
pre/post condition analysis for sequences of model actions.

initiali-
zation

termi-
nation

travel
to mach

begin
repair

end
repair

termi-
nation

travel
to idle

arrive
idle

failure

travel
to mach

begin
repair

end
repair

termi-
nation

travel
to idle

Process
Subgraph 1

(environment)

Process
Subgraph 2
(machine)

Process
Subgraph 3
(repairman)
The condition expressions for each AC should define a
minimal precondition for the actions of that cluster. Each
subgraph, whether event, activity, or process, defines a se-
quence of model actions. Analysis of the actions of each
sequence allows formulation of postconditions for each
AC. Comparison of the postcondition of an AC with the
precondition of each of its successors (as identified by the
appropriate subgraph) provides one basis for simplification
of the specification.

Several types of the possible world-view-based simpli-
fications are illustrated through an example. Consider a
specification of the End Repair event following an event
scheduling world view. A direct transformation (without
any simplification) of the ACs into an event specification
is presented in Figure 7. Lines 1 through 4 are from the
End Repair AC, lines 5 and 6 from “termination,” lines 7
through 9 from “travel to idle,” and lines 10 through 13
from “travel to mach.”

EVENT end repair(i:1..n)
1: SETALARM(failure,negExp(mean_uptime),i)
2: failed[i] = FALSE
3: status = avail
4: numRepairs = numRepairs+1
5: WHILE(numRepairs>maxRepairs)
6: STOP
7: WHILE((FORALL i IN 1..n, NOT failed[i])
AND
 status=avail AND location≠idle){
8: SETALARM(arrIdle,travelTime(location,
 idle))
9: status = travel
 }
10:WHILE(status=avail AND
 (FOR SOME i IN 1..n,failed[i])){
11: SETALARM(arrMach,traveltime(location,
 mach),closestFailedMach(failed,
 location))
12: status = travel
 }

Figure 7: End Repair Event Specification–Unsimplified

Note that the condition of each contingent AC be-

comes the condition for a “while” construct. A “while” is
required rather than an “if” since the actions of the AC
should be repeated as long as its condition is satisfied.

Several types of simplification of this specification are
possible. For this event specification, all WHILE con-
structs have been replaced with noniterative constructs (the
simplified specification is presented in Figure 8). For the
“travel to idle” and “travel to mach” ACs, replacement can
be done since an action of each changes the value of the
condition to FALSE. For example, in Figure 7, the condi-
tion of line 7 specifies that status must have the value
“avail,” but line 9 sets its value to “travel.” In the case of
the “termination” AC, lines 5 and 6 of Figure 7, the STOP
action of line 6 implies that the condition of the AC need

Overstreet and Nance

not be reevaluated. Thus a postcondition of these ACs im-
plies that their precondition is not satisfied without some
further model action.

 EVENT end repair(i:1..n)
1: SCHEDULE(failure,negExp(meanUptime),i)
2: failed(i)=FALSE
3: num_repairs = num_repairs+1
4: IF num_repairs>max_repairs
5: STOP
6: IF FOR ALL i IN 1..n NOT failed[i]
7: SCHEDULE(arrIdle,travelTime(
 locationIdle))
 ELSE
8: SCHEDULE(arrMach,travelTime(location,
 mach),closestFailedMach(failed,
 location))
9: status := travel

Figure 8: End Repair Event Specification–Simplified

Another obvious simplification is possible when an ac-
tion of a preceding AC eliminates the necessity of testing
the value of an attribute in the condition of a successor AC.
This happens several times in this event specification. In
line 3 of Figure 7, status is set to “avail” thus, its value
need not be explicitly tested in the conditions of 7 and 10.

The validity of eliminating the test of the value of lo-
cation of line 7 is more difficult to justify, but still results
from a postcondition of the “end repair” AC. A partial
analysis, to illustrate the process, follows. Unlike the sim-
plifications of the test for status in lines 7 and 10, the value
of location is not altered by the “end repair” AC. But a
precondition for the occurrence of “end repair” is that loca-
tion not have the value “idle.” This condition is satisfied
since (1) the value of location is only altered by the “begin
repair” and “arrive idle” ACs, (2) an “end repair” can only
occur after a “begin repair” (since this is the only place the
“endRepair” alarm is set), (3) the value of location is not
“idle” after the “begin repair” action, and (4) an “arrive
idle” cannot occur between a “begin repair” and “end re-
pair” (so that the value of location cannot be altered before
the “end repair” occurs).

Two other simplifications are made in producing Figure
8. First, the two conditions in lines 7 and 10 of Figure 7 are
such that if one is true, the other is false, so the two WHILEs
become an IF-THEN-ELSE construct. Secondly, the action
of line 3 of Figure 7 has been eliminated. This is valid since,
if the model execution does not terminate, the value of status
will be changed to “travel” either in lines 9 or 12 since these
two alternatives are part of an IF-THEN-ELSE action. So
setting it the value of status to “avail” is obviated.

The result of these simplifications is presented in Figure
8. SETALARMs are replaced with SCHEDULEs so that
the syntax looks more like an event scheduling language.
Because of space constraints, the additional simplifications
to complete the event scheduling specification are omitted.
The process for each of the three world views trans-
formations is similar and consists of deriving postcondi-
tions for sequences of ACs and comparing them with pre-
conditions of other ACs. In general, the transformations
involve reorganizing provided aggregates of model actions
and tests into different groupings, followed by elimination
of resultant redundancies in each new grouping. The sim-
plifications are desirable if the resulting specification is to
take full advantage of the target world view

While some simplifications are easily automated, others
appear complex. Our experience in this area indicates that
the automated discovery of some simplifications requires a
robust theorem proving system; the simplification of line 7
of Figure 7 provides an example. The proof that it is not nec-
essary to consider the value of “location” is not trivially
derived. Identifying such properties of a specification auto-
matically can be difficult or even impossible; no a priori
bound for the complexity can be established.

5.2 Impact of Simplifications

We believe that modelers, in producing both specifications
and implementations, intuitively use something like
pre/postcondition analysis. They sometimes omit model
actions and tests for parts of preconditions (and sometimes
entire preconditions) when they know that the tests or ac-
tions are unnecessary. It seems likely that these omissions
can be based on more than what we have illustrated in the
above example (where all are based on analysis of the pro-
vided specification); modelers may also draw both on their
deep knowledge of possible behaviors of a simulated sys-
tem and on their understanding of implementation details
of a supporting simulation tool.

Each eliminated test and action becomes implicit in
the resulting representation. However in another world
view, this implicit test or action may require explicit repre-
sentation. A direct transformation from one world view to
another can require discovery of what was omitted by a
specifier or programmer. This poses a problem so formida-
ble that we suspect no general algorithm for direct world
view transformations can be constructed.

A converse issue, in a sense, is the challenge of the
developer of the translator from the model specification to
the model implementation (the executable program). The
CS as a specification tool is focused correctly on what be-
havior is intended. The implementation describing how
that behavior is achieved requires additional resolution of
abstraction and considerably more detail as discussed in
(Page and Nance 1999). Automatic translation from the
CS, or any other specification language representation,
forces the translator writer to make assumptions and deci-
sions that should include the potential application do-
main(s), the users of the model development environment,
and the likely costs incurred in experimental use.

Overstreet and Nance

6 SUMMARY

In other places (Overstreet and Nance 1984, 1987), we
have discussed supporting the model specification process
by providing analysis tools to evaluate a model specifica-
tion during development. The traditional world views pro-
duce model specifications with embedded implicit knowl-
edge that can simplify the specification process but at the
price of inhibiting or preventing assistance through analy-
sis. The benefits of model analysis are still being explored.

The characterization of each world view as providing a
different type of locality reflects our view that no single
world view is necessarily superior to any other for simula-
tion modeling in general. This lack of superiority is due in
part to the significant variation in model simplification pos-
sible with each world view that is due to properties of the
model being specified. The choice of the “proper” world
view for a particular model can impressively reduce the task
of specifying model behavior due to the variation in implicit
actions and conditions possible within each world view.

The fact that each world view encourages omission (at
least in terms of how much must be included in the specifi-
cations) appears to make direct translation among the vari-
ous world views impossible. Automated translation from a
more basic form, a Condition Specification, into represen-
tations that take advantage of each of the three world views
is instructive in identifying some benefits of each world
view. The CS’s ability to support multiple world views,
it’s enabling of significant model analysis for both error
detection and identification of some revealing model char-
acteristics, and the ability to create efficient run-time im-
plementations directly from it makes the CS an useful tool
for model specification.

REFERENCES

Buxton, J. N. and J. G. Laski. 1963. Control and simulation
language. The Computer Journal 5: 194-199.

Cox, D. R. and W. L. Smith. 1961.Queues. Methuen and
Company, Inc.

Dahl, O. Nygaard. 1966. SIMULA–an ALGOL - based
simulation language. Communications of the ACM. 9
(9):349-395.

Dimsdale, B. and H. M. Markowitz 1964. A description of
the SIMSCRIPT language, IBM Systems Journal 3(1):
57-67.

Holbaek-Hanssen, E., P. Hfindlykken, and K. Nygaard,
1977. System description and the DELTA language,
DELTA project report no. 4. Second printing. Norwe-
gian Computing Center.

Kiviat, P. J. 1969. Digital computer simulation: Computer
programming languages. RAND Memo. RM-5883-
PR, RAND Corporation, Santa Monica, California.

Lackner, M. R. 1962. Toward a general simulation capa-
bility. In Proceedings of the SJCC, 3. San Francisco,

California.
Lackner, M. R. 1964. Digital simulation and system the-
ory. System Development Corporation, SDC SP-12,
Santa Monica, California.

Nance, R. E. 1979. Model representation in discrete event
simulation: Prospects for developing documentation
standards. In Current issues in computer simulation,
ed. N. Adam and A. Dogramaci, New York, Aca-
demic Press.

Nance, R. E. 1981. The time and state relationships in
simulation modeling. Communications ACM 24(4):
173-179.

Nance, R. E. 1996. A history of discrete event simulation
programming languages. In History of Programming
Languages, eds. T. J. Bergin and R. G. Gibson, 369-
427. New York: Association for Computing Machin-
ery Press and Addison-Wesley Publishing Company.

Nance, R. E. and C. M. Overstreet, 1987. Diagnostic assis-
tance using digraph representations of discrete event
simulation model specifications, Transactions of the
Society for Computer Simulation 4 (1): 33-57.

Nance, R. E., C. M. Overstreet, and E. H. Page, 1999. Re-
dundancy in model specifications for discrete event
simulation, ACM Transaction on Modeling and Com-
puter Simulation, 9(3): 254-281.

Newell, A. and H. A. Simon. 1972. Human Problem Solv-
ing, Prentice-Hall, Inc., Inglewood Cliffs, NY, 22-33.

Overstreet, C. M. 1982. Model specification and analysis
for discrete event simulation. Doctoral dissertation,
Virginia Polytechnic Institute & State University,
Blacksburg, Virginia.

Overstreet, C. M. and R. E. Nance, 1985. A specification
language to assist in analysis of discrete event simula-
tion models. Communications AC, 28(2): 190-201.

Overstreet, C. M. and R. E. Nance, 1986. World View
Based Discrete Event Model Simplification, in Model-
ling and Simulation Methodology in the Artificial In-
telligence Era, North-Holland Publishing Co., Am-
sterdam, The Netherlands, ed. M. Elzas, T. Oren, B.
Zeigler, 165-179.

Page, E. H. and R. E. Nance, 1999, Incorporating support
for model execution within the condition specification,
Transactions of the Society for Computer Simulation
International, 16(2), 47-62.

Palm, D. C., 1947. The distribution of repairmen in servic-
ing automatic machines, Industritidningen Norden,
175(75). (Swedish).

Puthoff, F. A., 1990. The model analyzer: prototyping the
diagnosis of discrete event model specification, M. S.
Thesis, Department of Computer Science, Virginia
Tech, Blacksburg, VA.

Schruben, L. M. 1983. Simulation modeling with event
graphs. Communications ACM, 26(11): 957-963.

Weinberg, G. M. 1971. The Psychology of Computer Pro-
gramming, Van Nostrand Reinhold, New York. 229.

Overstreet and Nance

Zeigler, B. P. 1972. Towards a formal theory of modeling

and simulation: Structure preserving morphisms.
Journal of the ACM, 19 (4): 742-764.

Zeigler, B. P. 1976. Theory of Modelling and Simulation,
John Wiley & Sons, New York.

Zeigler, B. P. 1984. Multifacetted Modelling and Discrete
Event Simulation, Academic Press, London.

AUTHOR BIOGRAPHIES

C. MICHAEL OVERSTREET is an Associate Professor
of Computer Science at Old Dominion University. A
member of ACM and IEEE/CS, he is a former chair of
SIGSIM, and has authored or co-authored over 80 refereed
journal and conference articles. He received a B.S. from
the University of Tennessee, an M.S. from Idaho State
University and an M.S. and Ph.D. from Virginia Tech. He
has held visiting appointments at the Kyushu Institute of
Technology in Iizuka, Japan, and at the Fachhochschule fŭr
Technik und Wirtschaft in Berlin, Germany. His current
research interests include model specification and analysis,
static code analysis and support of interactive distance in-
struction. Dr. Overstreet can be reached by e-mail at
<cmo@cs.odu.edu>; his home page is <www.cs.
odu.edu/~cmo>.

RICHARD E. NANCE is the Chief Scientist of Orca
Computer, Inc. and Emeritus Professor of Computer Sci-
ence at Virginia Tech. He served on the faculties of
Southern Methodist University and Virginia Tech, where
he was department head of Computer Science, 1973-1979
and held the John Adolphus Dahlgren Chair in Computer
Science, 1988-2004. He held a distinguished visiting hon-
ors professorship at the University of Central Florida for
the spring semester, 1997. Dr. Nance has held research
appointments at the Naval Surface Weapons Center and at
the Imperial College of Science and Technology (UK). He
has held a number of editorial positions and was the found-
ing Editor-in-Chief of the ACM Transactions on Modeling
and Computer Simulation, 1990-1995. He served as Pro-
gram Chair for the 1990 Winter Simulation Conference.
Dr. Nance received a Distinguished Service Award from
the TIMS College on Simulation in 1987. In 1995 he was
honored by an award for “Distinguished Service to
SIGSIM and the Simulation Community” by the ACM
Special Interest Group on Simulation. He was named an
ACM Fellow in 1996. He is a member of Sigma Xi, Alpha
Pi Mu, Upsilon Pi Epsilon, ACM, IIE, INCOSE and
INFORMS. His email address is <nance@vt.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 279
	02: 280
	03: 281
	04: 282
	05: 283
	06: 284
	07: 285
	08: 286
	09: 287

