Proceedings of the 2004 Winter Simulation Conference

R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

SOME RECENT ADVANCES IN THE PROCESS WORLD VIEW

Robert G. Sargent

Department of Electrical Engineering and Computer Science
L.C. Smith College of Engineering and Computer Science
Syracuse University
Syracuse, NY 13244, U.S.A.

ABSTRACT

We discuss a modification of the process world view, a
graphical modeling representation language for the modi-
fied process world view called Control Flow Graphs
(CFGs), an extension to CFGs called Hierarchical Control
Flow Graph (HCFG) Models, and a simulation system that
uses HCFG Models called HIMASS.

1 INTRODUCTION

According to Nance and Sargent (2002), Lackner (1962)
identified the concept of a simulation model having a
world view, Krasnow (1967) identified different world
views for continuous, discrete, and combined (discrete and
continuous) simulation models including the activity,
event, and process representations for the discrete world
view, and Kiviat (1969) provided the first detailed com-
parative analysis of the basic discrete world view represen-
tations that consisted of the activity, event, process, and
transactional world views. A detailed description of the ac-
tivity, event, and process world views using system theory
is given in Zeigler (1976). (We note that sometimes the
process world view is defined as consisting of (i) an “ac-
tive resource” view and (i) a “transactional” view that
characterizes only the dynamic objects as processes. In the
remainder of this paper we will use the term “process
world view” to mean the “pure” (or active resource) proc-
ess view and the term “transactional world view” when
processes are used only for dynamic objects, e.g. when
processes are used for only transactions.)

Graphical representations to aid in model specification
for the different world views have been developed. Activ-
ity cycle diagrams (Paul 1993) are used to aid model speci-
fications that use the activity world view. The transactional
world view simulation languages usually contain a graphi-
cal transaction flow oriented language with their introduc-
tion, e.g., GPSS (Schriber 1991). Event Graphs were intro-
duced by Schruben (1983) and further developed by
Sargent (1988) and Som and Sargent (1989) as a graphical
model specification language for models using the event

293

world view. Control Flow Graphs (CFGs), a graphical
model representation language for the (modified) process
world view, was developed by Cota and Sargent (1990c)
(also see Cota, Fritz, and Sargent 1994 and Sargent 1994)
and was later extended by Fritz and Sargent (1993, 1995)
to Hierarchical Control Flow Graph (HCFG) Models (Sar-
gent 1996) to aid in the control of representational com-
plexity. (These latter two graphical representations are dis-
cussed in Sections 3 and 4, respectively.)

In this paper we present some advances that have oc-
curred for the process world view. In the next section we
discuss a modification to the process world view. In Section
3 we describe the graphical representation language CFGs,
which is for the modified process world view presented in
Section 2, and in Section 4 we describe HCFG Models. In
Section 5, we briefly discuss the Hierarchical Modeling And
Simulation System (HIMASS) that uses HCFG Models and
in Section 6 we present the paper summary.

2 MODIFIED PROCESS WORLD VIEW

Cota and Sargent (1992) developed a modification of the
process world view. This modified view has (i) “modular-
ity,” which includes encapsulation and locality, and (ii) a
modified definition of control states. Modularity is very
important in simulation because, as discussed in detail by
Cota and Sargent (1992), modularity is required in order to
have hierarchical modeling, to reuse model components,
and to perform parallel simulation, and makes it easier to
model complex systems and to modify models. This modi-
fied view also requires model components to interact
through a strictly defined interface.

In order to have modularity, the “cancel” construct
used in modeling must be eliminated. This requires a new
definition of the control state. (Recall that a control state is
a formalization of the “process reactivation point” (Zeigler
1976).) In the process world view, each process is defined
by a procedure. Each procedure includes instructions for
suspending execution for one or more intervals of time.
Each interval of time may be specified explicitly, e.g., the
time when a service will be completed, or may last until



Sargent

some specified condition is met, e.g., the time when a
server becomes available. In the classical (historical) proc-
ess world view, only one situation may be specified for
each suspension, i.e., either one specific time or one spe-
cific condition can be specified. In the modified view, any
number of alternatives based on conditions and/or times
can be specified for each suspension. The alternative that
becomes “true” the earliest in simulation time is the alter-
native selected to reactivate the suspended procedure.
(Each alternative has a unique priority specified to handle
any earliest time ties.) This means a control state in the
modified process world view may have multiple exiting
branches with each having a unique priority; whereas, a
control state in the classical view is allowed to have only
one exiting branch. (See Cota and Sargent (1992) for a de-
tail discussion and examples.)

3 CONTROL FLOW GRAPHS

Cota and Sargent (1989, 1990a, 1990b, 1990c, 1990d) de-
veloped the graphical representation language CFGs for
the modified process world view discussed in Section 2. In
CFGs each system component (or process) is specified by
a CFG. The interactions between components are specified
by message passing over directed channels connecting
model components. Messages leave a component via an
output port and enter a component via an input port. Each
port connects to only one channel and each channel carries
only one type of message, which implies that there may be
multiple channels between components. Messages queue at
the input port of each channel until the CFG decides to re-
ceive them; i.e., CFGs are active receivers. (This contrasts
with the passive receiver model used, e.g., in object-
oriented programming and simulation, where components
react when information is received.) The time-stamps on
the messages are their sending times. (This contrasts with
the method generally used with parallel and distributed
simulation, where the time-stamps are the times the mes-
sages are to be received.) The specification of channels is
accomplished via an Interconnection Graph, which is a di-
rected graph whose nodes represent the components and
whose directed edges represent the channels. Thus, one In-
terconnection Graph and a set of CFGs (one for each
model component) are required to specify a simulation
model using the CFGs representation.

Each CFG has a set of (component) variables, a (com-
ponent) simulation clock, and an augmented directed graph
whose nodes represent the control states of a component
and whose directed edges specify possible component state
transitions. Each edge has three attributes: a condition, a
priority, and an event. The condition specifies when an
edge can be a candidate for traversal, the priority is used to
break ties when more than one edge is a candidate for tra-
versal at the same simulation time, and the event specifies
the actions to be taken if that edge is traversed. An event
may include receiving a single message waiting at a chan-

294

nel’s input port, changing values of (component) vari-
ables, and sending messages over channels. There are three
types of conditions: (i) an input port, (ii) a boolean expres-
sion on the values of the (component) variables, and (iii) a
time delay. The input port condition is true if there is at
least one unreceived message waiting at its associated in-
put port, the boolean expression condition is true if it
evaluates to true, and the time delay condition becomes
true after a simulation time delay specified by its associ-
ated time delay function. The simulation execution algo-
rithm examines all edges leaving the current control state
and selects the edge whose condition is frue first, i.e., at
the earliest point in time starting from the current simula-
tion time. If there is more than one such edge, then the
edge with the highest priority is selected. Each CFG has
its own “thread of control,” which is a point of control
(POC) that traverses over the selected edge from its current
control state to its next current control state. When a POC
traverses over the selected edge, it advances the simulation
clock, if necessary, to the time at which the condition of
the selected edge becomes frue, and then executes the
event on that edge. Each CFG operates independently of
other CFGs except for message passing interaction.

Different simulation execution algorithms for CFGs
have been developed for use on sequential, parallel, and
distributed computers. A special feature of CFGs is that
they make information explicit that can be used for execu-
tion algorithms. This avoids requiring the modeller to add
additional information (such as lookahead information) as
is usually required for parallel and distributed simulation.

There are two simulation execution algorithms (Cota
and Sargent 1990b, 1990c, 1990d) available for sequential
computers: synchronous and asynchronous. The synchro-
nous algorithm uses the standard approach of executing the
event with the lowest time event across all CFGs. (This al-
gorithm has been implemented in the various versions of
HiMASS.) The asynchronous algorithm allows certain
events to be executed out of time sequence when such
changes do not affect the simulation results in order to
eliminate some event list operations, thereby reducing the
simulation execution time. Both of these algorithms require
priorities to be assigned to each of the CFGs (model compo-
nents) to handle event time ties (Cota and Sargent 1990b,
1990c; Daum 1998; and Fritz and Sargent 1993, 1995).

For parallel and distributed simulation there are four
simulation execution algorithms available (Cota and Sar-
gent 1989, 1990a, 1990b, 1990c, 1990d): two conservative
algorithms—one using null message passing and the other
using deadlock detection and resolution; an optimistic al-
gorithm, which is more efficient than the usual optimistic
algorithm because rollback occurrences are based on the
control states of a CFG instead of always rolling back if a
“late message” is received at a CFG; and an optimistic
Only When Necessary (OWN) algorithm, which is a com-
bined optimistic and conservative algorithm. These algo-
rithms automatically obtain information from CFGs to,



Sargent

e.g., identify unconditional events and compute “internal”
lookaheads, thereby eliminating the need for a modeller to
add such knowledge. Cota and Sargent (1989, 1990a) also
developed some algorithms to automatically generate “ex-
ternal” lookahead information from CFGs to be used in
conjunction with these simulation execution algorithms.
Zarei and Pidd (2001) empirically evaluated three of the
automatic “external” lookahead algorithms by using them
in conjunction with the null message conservative algo-
rithm on a CRAY computer to simulate queueing net-
works. They found that the three automatic lookahead al-
gorithms performed better than the best manually inserted
lookaheads (including the computation time to calculate
the lookaheads automatically). This work found that the
single-pass algorithm was the best performer of the three
automatic lookahead algorithms tested and in some cases
performed considerable better than the other two algo-
rithms. Zarei and Pidd also found these lookahead algo-
rithms to be robust and application independent.

We now present some observations on CFGs. CFGs
are the first graphical representation language for the proc-
ess world view (excluding the transactional world view),
are based on a theoretical foundation (the modified process
world view), constitute a general purpose discrete event
model paradigm, and allow the use of experimental frames.
Furthermore, as Zarei and Pidd discuss, CFGs (i) with their
graphical representation are easy to understand, are easy to
communicate, and aid in model validation, (ii) provide an
intermediate tool between the conceptual model and the
simulation program, (iii) separate the model from the exe-
cution (processing) layer, and (iv) allow the information
needed for the various simulation execution algorithms for
use on different types of computer architectures to be
automatically extracted from CFG models, thereby making
the model execution transparent to the modeller, and that
the methods used are application independent. A desired
modeling feature that CFGs lack is hierarchical modeling
capability (Sargent 1993).

4 HCFG MODELS

We give an overview of HCFG Models in this section.
HCFG Models is a graphical hierarchical modeling (speci-
fication) language developed by Fritz and Sargent (1993,
1995) for modeling complex systems and are based on the
use of CFGs. The primary objectives for HCFG Models are
(1) to facilitate model development by making it easier to
develop, maintain, and reuse models and model elements
and (ii) to have the same or similarly flexible and efficient
execution as CFGs. The first objective was accomplished
through the use of encapsulated model elements and pro-
viding for the use of two types of independent and com-
plementary hierarchical structures to CFGs. The second
objective was accomplished through the use of the same
simulation execution and automatic lookahead algorithms
that are used for CFGs. (A system theoretic description of

295

HCFG Models and proofs that the two structures are hier-
archical are found in Fritz and Sargent (1993) and Sargent
and Fritz (1993). Sargent and Daum (2004) contains a de-
scription of the development of HCFG Models.)

The Hierarchical Interconnection Graph (HIG) is one
of the hierarchical structures in HCFG Models, and it per-
mits the coupling of components. A HIG is a directed
graph where the nodes are components and the edges are
channels. There are two types of components: (i) Atomic
Components (ACs), which are the components in CFGs,
and (ii) Coupled Components (CCs), which are formed by
coupling together ACs and/or other CCs. CCs are speci-
fied via a Coupled Component Specification (CCS), which
is a directed graph with nodes being components and edges
being channels. There is a HIG tree that contains the hier-
archical relationships of the components where the leaf
nodes are ACs, the internal nodes are the CCSs of the CCs,
and the root node is the CCS of the top CC that encloses
the entire HCFG Model.

The behavior of each AC in HCFG Models is speci-
fied by an HCFG and this is the other hierarchical struc-
ture. An AC’s behavior can be recursively partitioned into
a disjoint set of encapsulated partial behavior specifica-
tions called Macro Control States (MCSs). A MCS (pro-
nounced “max”) is an augmented directed graph where the
nodes are other MCSs and/or Control States, the directed
edges leaving MCSs have no attributes, and the directed
edges leaving Control States have attributes as in Control
Flow Graphs. There is an HCFG tree that contains the hi-
erarchical relationships of the MCSs, where the root node
MCS encloses the behavior of that entire AC. There is an
HCFG Model tree that shows the two-tiered hierarchical
structure of an entire HCFG Model, where the top tier is
the HIG tree and each leaf of the HIG tree has that AC’s
HCFQG tree.

The model elements of HCFG Models are ACs, CCs,
MCSs, events, and edge conditions. Each model element
and each HCFG Model have “types” and “instances.”
Types represent the specifications of models or model ele-
ments, and instances represent concrete representations of
models or model elements. Libraries of types can be cre-
ated, and this allows for reuse of model elements and mod-
els (Daum and Sargent 1999). Scaling of model elements is
possible in HCFG Models by using arrays of model ele-
ments (Daum and Sargent 1999). Furthermore, MultiChan-
nels and MultiEdges can be used to connect arrays or sin-
gle entities of components and MCSs, respectively (Daum
and Sargent 1999).

Numerous HCFG Models have been developed. This
includes several “toy models.” A set of components for
modeling queueing systems has been developed for a li-
brary (Sargent 1997). Two large-scale models have been
reported in the literature: a surveillance radar system (Farr
et al. 1995) and a traffic intersection (Daum 1997). The
latter model had over 400 AC instances from 14 AC types
and over 60 CC instances from 20 CC types.



Sargent

We now evaluate HCFG Models. We first note that
HCFG Models specify a graphical hierarchical modeling
language that uses the process interaction world view. This
modeling language has all of the positive features mentioned
above for Control Flow Graphs, and it addresses its main
weakness, namely the lack of hierarchical modeling capabil-
ity. HCFG Models have two powerful hierarchical modeling
capabilities: the coupling of components and the recursive
partitioning of the behavior of each AC through the use of
MCSs. Since each of these hierarchical structures is inde-
pendent of the other and in its use, different levels of hierar-
chicalness can be used in the coupling of components and
for specifying the behaviors of ACs. We note that while both
of these structures are simple to understand and use, the use
of coupling of components is much simpler than the use of
MCSs. HCFG Models use the layered approach to modeling
(Sargent and Daum 1998) and have a separate layer for the
simulation execution algorithms. The layered approach al-
lows at any level of model granularity (i) the use of (exist-
ing) model elements from libraries, (ii) the specification of
new model elements, and (iii) the examination of the speci-
fications of existing model elements. HCFG Models allow
the use of scaling, reuse of model elements, and the use of
an Experimental Frame (Daum and Sargent 1999, 2001).

Several observations about modeling with HCFG
Models have been developed from modeling systems using
HCFG Models. First, messages can be used as part of the
“modeling process” when modeling using active compo-
nents (active resources). In the modeling of queueing sys-
tems, for example, messages can be used to represent cus-
tomers when active components are used to represent
queueing subsystems (Sargent 1997). Second, modeling
can occur from top-down, bottom-up, or as a mixture of the
latter two (Daum and Sargent 1999). Third, there is con-
siderable flexibility in specifying HCFG Models, e.g., in
how to divide a model into Components and into MCSs.
Fourth, simple ACs are almost always used, which usually
result in only a few levels of hierarchicalness being used in
the MCSs. Fifth, CCs are commonly used and frequently
with several levels of hierarchicalness. Sixth, many in-
stances and few types are generally used for both ACs and
CCs. Seventh, modeling using ACs and CCs seem more
straightforward and simpler than the modeling of the be-
haviors of ACs. Eighth, it appears that ACs are best mod-
elled by keeping events and boolean edge conditions “sim-
ple,” an approach that aids model verification and
validation. Ninth, the number of control states usually in-
creases as simpler events and boolean edge conditions are
used. Tenth, understanding the modeling of systems using
HCFG Models appears to be a rich area for research.

5 HIMASS
Since 1993, three major versions of HIMASS have been

developed for the use of HCFG Models: a simple prototype
implemented in C++ called HI-MASS (Fritz, Daum, and

296

Sargent 1995; Fritz, Sargent, and Daum 1995; Sargent and
Fritz 1995), a major system with an elaborate model devel-
opment environment implemented in Java called HIMASS-
j (Daum 1998; Daum and Sargent 1997, 2001), and an im-
proved system implemented in Java and XML (Bray et al.
2004) called HIMASS-x (Daum and Sargent 2002) (and
recently named HiMASS with additional capabilities to be
added). The development of new versions was motivated
by advances in software engineering that allowed for sig-
nificant improvements in the implementation and from the
lessons learned from working with existing versions. Only
an overview of the various versions of HIMASS will be
presented. (A more detailed description of the various ver-
sions of HIMASS with observations is given in Sargent
and Daum 2004.)

5.1 HI-MASS (C++ Version)

From 1993 to 1995, a C++ based prototype called HI-
MASS was developed under sponsorship of the U. S. Air
Force’s Rome Laboratory. The major purposes of this pro-
totype were to demonstrate the feasibility of and to evalu-
ate the usability of HCFG Models as a way of specifying
hierarchical models for discrete event simulation (Sargent
and Fritz 1995). This prototype was designed to run on
Sun-OS/Solaris workstations but also ran on other Unix
and Linux based systems that had a compatible C++ com-
piler. HI-MASS was implemented using the freely avail-
able GNU C++ Compiler (G++) and C++ library (libg++)
and is object oriented. The Graphical User Interface (GUI)
for specifying HIGs via Visual Interactive Modeling
(VIM) was implemented using the InterViews toolkit (Lin-
ton et al. 1992). HI-MASS consists of 60 C++ classes and
approximately 25,000 lines of code.

HCFG Models are specified in HI-MASS using two
complementary specification structures. The HIG is speci-
fied via VIM using a GUI. The behavior of each AC is
specified by writing C++ code using predefined classes and
functions. A model’s initial conditions are specified in the
simple Experimental Frame contained in HI-MASS. HI-
MASS requires the executable models to be completely
specified in C++. The sequential synchronous simulation
execution algorithm is used in the simulation engine.

This prototype showed that a powerful model devel-
opment environment for specifying HCFG Models is pos-
sible. Such an environment would include (i) VIM capa-
bility using GUIs and dialog boxes for specifying both
HIGs and MCSs, (ii) a model navigator to display and
move through the model tree, (iii) scalability and reuse of
model elements, (iv) libraries of model elements, (v) pa-
rameters in model elements, and (vi) an Experimental
Frame with additional capabilities.

5.2 HiMASS-j (Java Version)

Beginning in 1996, a new implementation of HIMASS was
started from scratch as a completely Java-based software



Sargent

system called HIMASS-j. This system has an elaborate
model development environment with a modern approach
to the Experimental Frame (Daum and Sargent 2001). The
GUI toolkit features built into the Java Development Kit
(JDK) allowed for the implementation of advanced, cross-
platform GUIs. The use of the JDK and Java GUI features
made it possible to develop GUIs and dialog boxes to spec-
ify via VIM the HIG of a model and the MCSs that define
the HCFG of each AC, and also to display the model tree
with interactive capability. HIMASS-j has over 160 Java
classes and runs on a wide variety of computer architec-
tures including UNIX-like systems and various versions of
Windows operating systems.

HiMASS-j provides for the use of parameters and
variables in model elements. The values for these can be
specified when building the model elements or in the Ex-
perimental Frame (EF) that is used in HIMASS-j. When
specifying these entities in model elements via VIM, those
whose values need to be specified in the EF are automati-
cally entered into the EF.

HiMASS-j also provides for the use of model element
libraries, which can easily be used when specifying model
elements via VIM. HiMASS-j uses the layered approach
to modeling, where one can model at any level using pre-
specified model elements or specify new model elements
from scratch, and also look inside model elements to see
their internal specifications.

In HIMASS-j, a very strict object-oriented approach has
been applied to every aspect of a model. This allows model
entities (e.g., ACs and parameters) to be easily used or
changed when specifying models and in the EF. Properties
that can be changed through the EF are strictly encapsulated
(i.e., saved with the element to which it belongs). This
means, e.g., that if a modeller changes a variable name
somewhere in the model, the change is automatically made
in the EF. Also, if a modeller adds a new model element to
a model from a model element library, the EF automatically
has the appropriate properties of that model element.

Reuse of model elements is one of the major features of
HiMASS-j. HiMASS-j allows for the reuse of both custom-
ized and uncustomized model elements. Allowing model
elements to have parameters and variables provides for con-
siderable reuse of model elements. HIMASS-j also provides
for scaling through the use of arrays of components, MCSs,
channels, and edges. An array can be static (i.e., the number
of elements in the array cannot change) or dynamic where
the number can be specified, e.g., through the EF. Combin-
ing scaling with reuse and an integrated EF provides an effi-
cient way for the building and customization of models.

5.3 HiMASS-x (XML Version)

Starting in 2001, another major version of HIMASS called
HiMASS-x was developed. While the software is still im-
plemented entirely in Java, all data formats are now based
on XML. This includes the graphical representations of the

297

models, (reusable) model elements, component libraries,
EFs, and executable models. Basing HIMASS data formats
on XML allows modellers to easily access shared model
element libraries on other systems. Parties in different loca-
tions can collaboratively build, manipulate, and use models.

The emerging technology of XML allows disparate
data formats to be consolidated into a standardized format
that is human-readable, portable, and easily processed by
software following standardized rules. Previous versions of
HiMASS focused primarily on how to implement desired
properties of a modern modeling system. Basing these
properties in XML allows for easier interaction between
HiMASS model elements and other facets of technology,
resulting in more flexibility and increased ease of use.

HiMASS-x has the same capabilities as HIMASS-j ex-
cept that HIMASS-x has superior “communication” capa-
bilities because of the use of XML. (We note that Hi-
MASS-x has been renamed HiMASS and is available as a
commercial product with planned additional capabilities.
See the web page <http://www.himass.com>.)

6 SUMMARY

We presented some recent advances in the process world
view. A modified version of the process world view that
provides for modularity, which has numerous advantages,
was described. We discussed CFGs, which has numerous
features and was the first graphical language for the proc-
ess world view. An overview of HCFG Models, which is
an extension of CFGs to provide hierarchical modeling,
was presented. Lastly we discussed the various versions of
HiMASS. The last two versions of HIMASS provide an
extremely powerful modeling environment for developing
HCFG Models.

REFERENCES

Bray, T., J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau, eds. 2004. Extensible Markup Lan-
guage (XML) 1.0, 3rd ed. World Wide Web Consor-
tium Available online via <www.w3.org/TR/
REC-xml/> [accessed August 18, 2004].

Cota, B. A. and R. G. Sargent. 1989. Automatic lookahead
computation for conservative distributed simulation.
CASE Center Technical Report No. 8916, Syracuse
University, Syracuse, New York.

Cota, B. A. and R. G. Sargent. 1990a. A framework for
automatic lookahead computation in conservative
simulation. In Proceedings of 1990 Distributed Simu-
lation Conference, ed. D. Nicol, 56-59. San Diego,
CA: Society for Computer Simulation.

Cota, B. A. and R. G. Sargent. 1990b. Simulation algo-
rithms for control flow graphs. CASE Center Techni-
cal Report No. 9023, Syracuse University, Syracuse,
New York.

Cota, B. A. and R. G. Sargent. 1990c. Control flow graphs:
A method of model representation for parallel discrete



Sargent

event simulation. CASE Center Technical Report No.
9026. Syracuse University, Syracuse, New York.

Cota, B. A. and R. G. Sargent 1990d. Simultaneous
events and distributed simulation. In Proceedings of
the 1990 Winter Simulation Conference, ed. O. Balci,
R. P. Sadowski, and R. E. Nance, 436-440. Piscata-
way, NJ: IEEE.

Cota, B. A. and R. G Sargent. 1992. A modification of the
process interaction world view. ACM Transactions on
Modeling and Computer Simulation 2 (2): 109-129.

Cota, B. A, D. G. Fritz, and R. G. Sargent. 1994. Control
flow graphs as a representation language. In Proceed-
ings of the 1994 Winter Simulation Conference, ed. J.
D. Tew, M. S. Manivannan, D. A. Sadowski, and A.
F. Seila, 555-559. Piscataway, NJ: IEEE.

Daum, T. 1997. An HCFG Model of a traffic Intersection
specified using HIMASS-j. In Proceedings of the 1997
Winter Simulation Conference, ed. S. Andradottir, K.
J. Healy, D. Withers, and B. L. Nelson, 158-165. Pis-
cataway, NJ: IEEE..

Daum, T. 1998. An investigation into specifying HCFG
Models using visual interactive modeling. Graduate
Thesis, Department of Simulation and Graphics, Otto
von Guericke University, Magdeburg, Germany.

Daum, T. and R. G. Sargent. 1997. A Java based system
for specifying Hierarchical Control Flow Graph Mod-
els. In Proceedings of the 1997 Winter Simulation
Conference, ed. S. Andradottir, K. J. Healy, D. With-
ers, and B. L. Nelson, 150-157. Piscataway, NJ: IEEE.

Daum, T and R. G. Sargent. 1999. Scaling, hierarchical
modeling, and reuse in an objected-oriented modeling
and simulation system. In Proceedings of the 1999
Winter Simulation Conference, ed. P. A. Farrington,
H. Black Nembhard, D. T. Sturrock, and G. W. Evans,
1470-1477. Piscataway, NJ: IEEE.

Daum, T. and R. G. Sargent. 2001. Experimental frames in
a modern modeling and simulation system. /IE (Insti-
tute of Industrial Engineering) Transactions 33 (3):
181-192.

Daum, T. and R. G. Sargent. 2002. A web-ready HIMASS:
Facilitating collaborative, reusable, and distributed
modeling and execution of simulation models with
XML. In Proceedings of the 2002 Winter Simulation
Conference, ed. E. Yucesan, C.-H Chen, J. L. Snow-
don, and J. M. Charnes, 634-640. Piscataway, NJ IEEE.

Farr, S. D. A. F. Sisti, D. G. Fritz, and R. G. Sargent. 1995.
A simulation model of a surveillance radar data proc-
essing system using HI-MASS. In Proceedings of the
1995 Winter Simulation Conference, ed. C. Alexop-
poulos, K. Kang, W. R. Lilegon, and D. Goldsman,
1364-1370. Piscataway, NJ: IEEE.

Fritz, D. G., T. Daum, and R. G. Sargent. 1995. Users
Manual for HI-MASS. Simulation Research Group,
Syracuse University, Syracuse, NY.

298

Fritz, D. G. and R. G. Sargent. 1993. Hierarchical Control
Flow Graph Models. CASE Center Technical Report
No. 9323, Syracuse University, Syracuse, NY.

Fritz, D. G. and R. G. Sargent. 1995. An overview of Hier-
archical Control Flow Graph Models. In Proceedings
of the 1995 Winter Simulation Conference, ed. C.
Alexoppoulos, K. Kang, W. R. Lilegon, and D.
Goldsman, 1347-1355. Piscataway, NJ: IEEE.

Fritz, D. G., R. G. Sargent, and T. Daum. 1995. An over-
view of HI-MASS (Hierarchical Modeling and Simu-
lation System). In Proceedings of the 1995 Winter
Simulation Conference, ed. C. Alexoppoulos, K.
Kang, W. R. Lilegon, and D. Goldsman, 1356-1363.
Piscataway, NJ: IEEE.

Kiviat, P. J. 1969. Digital computer simulation: computer
programming languages. RAND Memo RM-5883-PR,
RAND Corporation, Santa Monica, CA.

Krasnow, H. S. 1967. Dynamic representation in discrete
interaction simulation languages. In Digital Simulation
in Operational Research, ed. S.H. Hollingdale, 77-92.
New York: American Elsevier Publishing Company.

Lackner, M. R. 1962. Toward a general simulation capa-
bility. In Proceedings of the AFIPS 1962 Spring Joint
Computer Conference, 1-14. San Francisco, CA.

Linton, M. A., P. Calder, J. Interrante, S. Tang, and J. Vlis-
sides. 1992. Interviews reference manual, 3.1 ed. CSL,
Stanford University, Stanford, CA..

Nance, R. E. and R. G. Sargent. 2002. Perspectives on the
evolution of Simulation. Operations Research 50 (1):
161-172.

Paul, R. J. 1993. Activity cycle diagrams and the three
phase method. In Proceedings of the 1993 Winter
Simulation Conference, ed. G. W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, 123-131.
Piscataway, NJ: IEEE.

Sargent, R. G. 1988. Event graph modelling for simulation
with an application to flexible manufacturing systems.
Management Science 34 (10): 1231-1251.

Sargent, R. G. 1993. Hierarchical modeling for discrete
event simulation. In Proceedings of the 1993 Winter
Simulation Conference, ed. G. W. Evans, M. Mol-
laghasemi, E. C. Russell, and W. E. Biles, 569-572.
Piscataway, NJ: IEEE.

Sargent, R. G. 1994. Control flow graphs as a paradigm for
discrete event simulation. In: Proceedings of the 1994
IEEE Mohawk Valley Section Technologies & Appli-
cations Conference, 133-136. Piscataway, NJ: IEEE.

Sargent, R. G. 1996. An introduction to Hierarchical Con-
trol Flow Graph Models. In Proceedings of the 18" In-
ternational Conference on Information Technology In-
terfaces, ed. D. Kalpic and V. Hljuz Dobric, 21-23,
Pula, Crotia.

Sargent, R. G. 1997. Modeling queueing systems using Hi-
erarchical Control Flow Graph Models. Mathematics
and Computers in Simulation 44 (3): 233-249.



Sargent

Sargent, R. G. and T. Daum. 1998. Visual interactive mod-
eling in a Java-based hierarchical modeling and simu-
lation system. In Proceedings of the Simulation und
Visualisierung '98 Conference, ed. P. Lorenz and B.
Preim, 1-17, Magdeburg, Germany. Ghent, Belguim:
Society for Computer Simulation International.

Sargent, R. G. and T Daum. 2004. Hierarchical Control
Flow Graph Models and HIMASS. In Proceedings of
the 2004 Operational Research Society Simulation
Workshop, ed. S. C. Brailsford, L Oakshott, S. Robin-
son, and S. J. E. Taylor, 83-92. Birmingham, United
Kingdom: The Operational Research Society.

Sargent, R. G. and D. G. Fritz. 1993. Hierarchical model-
ing and simulation, Final Report for the AFSOR
Summer Research Extension Program.

Sargent, R. G. and D. G. Fritz. 1995. Hierarchical model-
ing and simulation system (HI-MASS), Final Techni-
cal Report RL-TR-95-184, Rome Laboratory USAF,
Rome, NY.

Schriber, T. J. 1991. An introduction to simulation and
GPSS. New York: John Wiley and Sons, Inc.

Schruben, L. W. 1983. Simulation modeling with event
graphs. Communications of the ACM 26 (11): 957-963.

Som, T. K. and R. G. Sargent. 1989. A formal develop-
ment of event graphs as an aid to structured and effi-
cient simulation programs. ORSA Journal on Comput-
ing 1(2):107-125.

Zarei, B. and M. Pidd. 2001. Performance analysis of auto-
matic lookahead generation by control flow graphs:
Some experiments. Simulation Practice and Theory 8
(8): 511-527.

Zeigler, B. P. 1976. Theory of modelling and simulation.
New York: John Wiley & Sons, Inc.

AUTHOR BIOGRAPHY

ROBERT G. SARGENT is a Professor Emeritus of Syra-
cuse University. He received his education at The Univer-
sity of Michigan. Dr. Sargent has served his profession in
numerous ways including being the General Chair of the
1977 Winter Simulation Conference, serving on the WSC
Board of Directors for ten years, chairing the Board for two
years, being a Department Editor for the Communications of
the ACM, and currently holding the presidency of the WSC
Foundation. He has received several awards including the
INFORMS-College on Simulation Lifetime Professional
Achievement Award and their Distinguished Service Award.
His current research interests include the methodology areas
of modeling and of discrete event simulation, model valida-
tion, and performance evaluation. Professor Sargent has
published extensively and is listed in Who’s Who in Amer-
ica. His web and e-mail addresses are <www.cis.syr.

edu/srg/rsargent/> and <rsargent@syr.edu>.

299



	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 293
	02: 294
	03: 295
	04: 296
	05: 297
	06: 298
	07: 299


