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ABSTRACT

Group behaviors, e.g. birds flocking, are widely used in
virtual reality, computer games, robotics and artificial life.
While many methods to simulate group behaviors have been
proposed, these methods are usually applied to sequential
computing. Since most of these methods have a polyno-
mial complexity, it is difficult to simulate a large group in
real-time using these methods. In this paper, we propose
a parallel algorithm to simulate the flocking behavior of
a large group. The new partitioning and communication
mechanisms in the parallel algorithm make the flocking
simulation more efficient. Experimental results show that
the proposed parallel algorithm provides good speedup in
generating flocking behaviors compared with the sequential
simulation.

1 INTRODUCTION

The aggregate motion of a group, e.g. a flock of birds, is
common in nature. A flock consists of individual birds,
each interacting with its neighboring members. Simulating
the group behaviors of a large number of moving objects has
attracted the attention of researchers in different fields such
as virtual reality (Musse and Thalmann 2001), computer
animation (Bayazit, Lien and Amato 2002; Reynolds 1987)
and artificial life (Terzopoulos, Tu and Grzeszczuk 1994).
In flocking simulation, the moving objects in a flock are
called “boids” as in Reynolds (1987). When simulating the
bird flock, under the repulses from neighboring members
and obstacles, each individual boid will be able to move
without collision, and find the correct position in the next
time step. The global group behavior emerges from the
individual local locomotion plus some global attractions.

Reynolds’ behavioral model (Reynolds 1987) is effec-
tive for simulating a small flock, however, it is very time-
consuming when the flock has a large number of boids.
Lorek and White implemented this model to simulate a bird
flock on a Transputer System (Lorek and White 1993). To

achieve good load balancing, they allocated a fixed num-
ber of boids to each available processor. Although the
model only focuses on the neighboring attractions and re-
pulses, the detection for neighborhood relationships is a
time-consuming process. In their realization, to simulate
N boids with P processors, each processor must receive
the information about all boids from other (P − 1) proces-
sors. So the communication cost increases with the number
of processors, and the neighborhood relationship detection
process only reduces from O(N2) to O(N2/P ). Hence its
scalability is not good.

Instead of partitioning the boids, we partition the whole
virtual space into successive partitions and distribute one
partition to one processor. Using this partitioning strategy,
each processor only needs to get the information from the
processors managing the neighboring partitions, and the
time for neighborhood relationship detection also reduces
greatly. We implement Reynolds’ behavioral model with
our new communication and partitioning strategies on a PC-
cluster. Different communication and partitioning strategies
are investigated, and an efficient method for parallel flocking
simulation is proposed.

The remainder of this paper is organized as follows.
In Section 2, the related work in behavioral model and
its parallel simulation are described. In Section 3, the
sequential flocking model is given, and the computation
components of the model are analyzed. The main factors in
the parallel simulation of the behavioral model are discussed,
and a parallel flocking simulation algorithm is proposed in
Section 4. Experimental results are presented in Section 5.
Finally, in Section 6, concluding remarks are made.

2 RELATED WORK

Flocking simulation can be regarded as a special kind of the
N-body simulation. The N-body simulation is to simulate
the movement of a set of bodies (or particles) under various
types of forces. Parallel N-Body simulation of particle
systems have been widely investigated based on a class of
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tree-based methods. Warren and Salmon (1992) and Liu and
Bhatt (1994) have implemented Barnes-Hut’s O(NlogN )
method (Barnes and Hut 1986) using the message passing
programming paradigm. Some parallel implementations of
the fast multipole method (FMM) (Greengard and Rokhlin
1987) have also been investigated in Blelloch and Narlikar
(1994).

Reynolds proposed a distributed behavioral model in
Reynolds (1987), which is based on simulating the behavior
of each member independently. Compared with the tree-
based methods in the N-Body simulation, the individual-
based boid simulation is dependent on both internal and
external states in order to interact correctly. It is a kind of
emergent behavior, which uses some simple rules based on
emergent situation to calculate the individual’s locomotion.
Using this model, basic flocking systems have no central
control, and the boids are only aware of their local envi-
ronment. These two features provide a great opportunity
to simulate flocking behavior in parallel.

Lorek and White (1993) implemented Reynolds’ model
on a Meiko Transputer System. In his implementation, each
processor deals with a fixed number of birds. However,
with p processors, its communication scheme requiresP −1
steps to collect the data from other processors. In our work,
each processor deals with one partition of the simulated
environment, and the partitions are dynamic for load bal-
ancing.

3 SEQUENTIAL FLOCKING ALGORITHM

3.1 Flocking Behavioral Model

We mainly focus on the leader-following behavior described
in Reynolds (1999). In a flocking group, a designated leader
knows the position of the goal. Meanwhile, the followers
will follow the leader. Suppose the group is moving in
a space without any obstacle, there are three basic rules
governing the flocking behavior:

• Separation: a repulsive force to avoid collisions
with neighboring boids

• Cohesion: the attraction of the center of neigh-
boring boids

• Alignment: the desire to fly in the same direction
with others

We can see in Figure 1 that the three rules are only
related to the local information of the group. With these
rules, the simulation can only generate the basic flocking
behavior. To realize the leader following behavior in a
complex environment, additional rules should be used.

Separation Cohesion

Alignment

Figure 1: Three Basic Rules of Flocking Simulation

3.2 Environmental Information

When there are some obstacles in the simulated environment,
the flock should use two additional forces to avoid collision
with obstacles and to explore the complex environment.
Figure 2 shows the two additional rules.

• Obstacle Repulsion: the repulsion of the obstacles.
Each boid will detect the position of the obstacles.
If an obstacle is in a boid’s vision, the obstacle
will repulse it. The smaller the distance is, the
stronger the repulsion is.

• Goal Attraction: the attraction of the goal on
the leader. For the leader-following behavior, it is
important to use the goal attraction to guide the
leader to achieve the designated target. Following
the leader, other boids will tend to approach the
position where the leader is currently located, and
this attraction is called “leader attraction”.

Compared with the three local rules: separation, cohe-
sion and alignment, these two rules need to use the global
environmental information.

ObstacleRepulsion GoalAttraction

goal

leader

Figure 2: Two Additional Rules of Flocking Simulation

3.3 Algorithmic Considerations

The whole process of the simulation is composed of frames.
Figure 3 shows the algorithm of the simulation in one frame.
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After this computation, each boid moves to the new
position under the integrated force. For smooth movement,
the maximum speed of each boid is controlled by a pre-
defined value. It is also important to fine-tune the parameters
of these rules to generate realistic flocking behaviors.

01. for(each individual boid)
02. if(the leader achieves the goal)
03. select the next goal
04. else
05. apply “goal attraction” to the leader
06. apply “leader attraction” to followers
07. endif
08. add the force of “separation”
09. add the force of “alignment”
10. add the force of “cohesion”
11. for(each obstacle in the space)
12. if(in the boid’s vision)
13. add the force of “obstacle repulsion”
14. endif
15. endfor
16. endfor

Figure 3: Sequential Simulation Algorithm

4 PARALLEL FLOCKING SIMULATION

The force calculation algorithm is very time-consuming
when the size of the flock is large. If we apply the physics
formula accurately as in the N-body problem, the naive
sequential simulation takes O(N2) computations each frame.
To reduce the computational complexity, the “vision” of the
boid is used to restrict the interactions among boids, i.e.,a
boid only needs to communicate with its neighboring boids
that are within its vision. However, an exhaustive search is
still needed to find the neighboring boids.

In this section, we propose the parallel flocking sim-
ulation based on the Reynolds’ flocking model. We only
consider the simulation within a two-dimensional simu-
lated space in this paper. When implementing the previous
flocking model using parallel algorithms, two main aspects,
including communication and partition, should be consid-
ered.

4.1 Communication

Using data-parallel method, the forces can be computed si-
multaneously. All processors execute the same statements,
but deal with different objects at the same time. To collect
the relevant data of the boids on other processors, a processor
needs to communicate with other processors. Communica-
tion overhead is an important factor of the parallel simulation

system. There are two basic communication schemes to
exchange the data maintained in different processors:

• All-to-all communication: The simulated space
is partitioned and distributed toN processors, and
each processor sends local information to and re-
ceives information from all other processors. Fig-
ure 4 shows this kind of communication.
Under many circumstances, a processor does not
know whether other processors need its local in-
formation, and does not know the location of the
information it needs. So, each processor must
communicate with all other processors in order to
collect the necessary information. Although this
communication scheme is inefficient, it can give
the local process a global view. Note that the re-
ceive buffers in each processor will increase with
the number of group members.

• Near-neighbor communication: We see in Fig-
ure 5 that the simulated space is partitioned and
distributed toN processors, and each processor
sends local information to and receives information
from its logically neighboring processors. Logi-
cally neighboring processors are those processors
that manage neighboring spaces in the simulated
environment.

In a static environment, we suppose that the obstacles
are fixed. Based on the space-dividing method which will
be discussed later, a processor maintains a partition of the
simulated space, together with the boids that are within
the partition. At the beginning of the simulation, all-to-
all communication is used to get the global environment
information.

P0 P1 P2 P3

Figure 4: All-to-all Communication

Besides the two additional forces based on static envi-
ronment information, the three local forces from the boids
are all related with the dynamic flock. It is efficient to
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use the near-neighbor communication to get the useful in-
formation from the logically neighboring processors. The
effect of this mechanism depends on the size of “vision”.
If the vision exceeds the space managed by the logically
neighboring processors, the information on other processors
may also be used. In this paper, we assume that the range
of the vision of a boid is small as compared with the size
of a partition. Thus, we adopt the near-neighbor commu-
nication mechanism for information collection to enhance
the simulation performance.

P0 P1 P2 P3

Figure 5: Near-neighbor Communication

4.2 Partition

In a parallel simulation, partitioning mechanism is another
critical factor to the system performance. Barnes and Huts
proposed to divide the space rather than distribute particles
to processors. We use column wise block-striped decom-
position to partition the simulated space, then distributethe
neighboring spaces to logically neighboring processors. Af-
ter that, each processor will maintain one partition, together
with the corresponding boids in that partition.

There are two factors need be considered. First, the
distribution of boids among the processors should be consid-
ered while partitioning the space. Second, whether the space
partitioning is static or dynamic should also be considered.

• Even Distribution: To achieve better performance,
each processor in a PC-cluster should take charge
of approximately equal computational load so that
each processor will use roughly the same time to
finish the force calculation in each frame. Thus,
the synchronization overhead is minimized.
The simulation environment contains the flock and
obstacles. It is hard to make them both evenly
distributed among the processors. For example, if
the space is divided to make obstacles distributed
evenly among the processors, extremely uneven
distribution of boids among the processors may
occur.

For a static environment, all-to-all communication
will be executed once to form the static global view
of environment in each processor. The computa-
tional load of detecting the neighboring obstacles
and interacting with them primarily depends on the
number of the boids in the processor. Therefore,
the even distribution of boids is more important to
the performance of the whole simulation system.

• Dynamic Load Balancing: Suppose that the en-
vironment is static. In the sequential model, the
calculation of the three local forces from the boids
will be more time-consuming with the increase of
the group size. If each processor manages a fixed
partition of the flock, it can maintain the even
distribution of the boids. However, it requires
all-to-all communication to collect the necessary
information in each frame, since one moving boid
may have the neighboring boids in any processor
as seen in Figure 6.

Based on the space-partitioned method, the simulation
only uses near-neighbor communication to collect the nec-
essary information about boids. However, load imbalance
may occur frequently due to the migration of the boids
among the processors. Some moving boids may leave the
space managed by the processor that they currently reside in,
and get into another space managed by another processor.

Figure 6: Neighboring Boids from All Processors

Due to the movement of the boids, the initial even
distribution among the processors may be broken as the
simulation progresses. To maintain even distribution, dy-
namic partitioning mechanism is used for load balancing.
When load imbalance among the processors exceeds a pre-
specified threshold, the load balancing algorithm needs to
re-partition the simulated space and re-distribute the succes-
sive spaces among the processors. Figure 7 shows that, after
the load balancing, each processor will manage a new space,
together with new boids and new boundary information.

4.3 Parallel Flocking Algorithm

We develop the parallel flocking algorithms using MPI
(Quinn 2004) to investigate the performance of our proposed
mechanisms.
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Figure 7: Dynamic Partition of the Simulated Space

At first, we initialize the boids, obstacles and processor
settings, and designate the leader. Then we partition the
simulated space to make the boids be evenly distributed to
the processors, and get the boundary information. After
one all-to-all communication, each processor receives the
information about all obstacles, and keeps a snapshot about
the environment. Figure 8 shows the skeleton of our parallel
simulation algorithm.

01. initialize the simulated environment
02. partition and distribute the space
03. collect information about obstacles using

all-to-all communication
04. collect information about bois using

near-neighbor communication
05. for(each boid)
06. apply the goal attraction
07. compute the forces from boids
08. compute the forces from obstacles
09. endfor
10. update the position of boids
11. update the distribution among processors
12. if(imbalance exceeds the threshold)
13. invoke the load balancing method
14. endif
15. goto step 4

Figure 8: Parallel Simulation Algorithm

The algorithm uses near-neighbor communication to
collect the information about neighboring boids, then uses
the similar procedure from the sequential simulation algo-
rithm to calculate the new position of each boid. After
updating the positions, it re-distributes the boids among
the processors based on the current boundaries. After that,
evaluate the degree of imbalance. If the load imbalance
among the processors exceeds the threshold, load balancing
mechanism is invoked. If the imbalance is still acceptable,
jump to the beginning of the interaction, and produce the
next frame.

The 2-dimensional simulated space is divided intoP
column wise strips. Each strip is mapped onto one processor.
If the number of boids residing in one processor are more

than the threshold, load balancing is invoked. It re-calculates
and update the boundary information, then re-distributes the
boids among the processors based on the new boundaries.
Because the calculation of boundary information is a time-
consuming task, the load balancing should not be invoked
frequently. We will evaluate the influence of load balancing
under different conditions in the next section.

The major differences between our parallel algorithm
and Lorek and White’s algorithm (Lorek and White 1993)
are shown in Table 1.

Table 1: Comparison of the Two Parallel Algorithms
Main Algorithm

Characteristics Lorek and White’s Ours

All-to-all comm.
√

−

Near-neighbor comm. −

√

Keep even distribution
√

−

Load balancing −

√

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our parallel
simulation algorithm for different number of boids on differ-
ent number of processors, and compare the performance of
our algorithm with Lorek and White’s implementation. We
also analyze the performance under different environment
settings to investigate the factors which affect the system
performance.

The experiments were done on a Linux PC-cluster. It
has 27 processors connected with Myrinet and a total of
8.0GB memory. We use 16 processors of the cluster. The
average speed of the processors is about 450MHz. MPI
is used to realize the communication among the cluster
processors.

We compute the time needed to produce 1000 frames
in different configurations. The radius of the boid’s vision
is set to 20 cm. The maximum speed of each boid is set
to 2 cm per frame.

The simulated environment is a 800cm×600cm space,
with round obstacles of different sizes. We first investigate
the influence of the number of obstacles on the performance
of the algorithm. Two typical scenarios are used in the
simulation. The simple scenario is composed of only 24
obstacles, and the complex scenario is composed of 240
obstacles. Figure 9 shows the simulation results of the simple
and the complex scenario where the number of boids is a
medium size of 128. We can see that the influence of the
number of obstacles on the performance reduces greatly with
the increase of the number of processors. Therefore, in the
remaining experiments, we only use the simple scenario.
Various configurations are used in the experiments: the
number of processors (P ) is set to 1, 2, 4, 8 and 16
respectively, the number of boids (N ) is set to 32, 64, 128,
256 and 512 respectively.



Zhou and Zhou

Figure 10 shows that the execution time reduces signif-
icantly when more processors are used, especially when the
flock is composed of a large number of boids. The config-
uration withP = 1 means that one processor simulates the
whole flock, so it is equivalent to a sequential algorithm.
Obviously we obtain a better performance through parallel
simulation.

simple scenario

complex scenario
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Figure 9: Performance of Varying Environment

It is noticed that the performance of the flocking sim-
ulation is not good when the number of boids is small.
The reason is that the communication overhead becomes a
significant part of the simulation when the computational
load is light.
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Figure 10: Performance of Various Configurations

Figure 11 shows that our algorithm performs better
when the number of processors (P ) is bigger. In our
algorithm, the overall computational load on each processor
becomes small asP increases. Compared with Lorek and
White’s algorithm, the spatial partitioning mechanism in our
algorithm help to limit the number of neighboring boids
especially whenP is lager than 4.

Figure 12 shows that load balancing is effective to
enhance the performance. At the beginning of the simula-
tion, we set the initial positions of boids to a small corner
in the simulated environment, and set the goal at another
opposite corner. Because of the movement of boids, the

method without load balancing will result in severe uneven
distribution. The simple load balancing strategy we used
performs well to reduce the load imbalance.

Ours
Lorek′s
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Figure 11: Comparison between Lorek and White’s and
Our Algorithm (N = 128)

If load balancing is frequently invoked, it will lead to
inefficiency. So we need to define a suitable threshold to
keep a good balance. Table 2 shows the analysis of the
algorithm with load balancing.

From Table 2, we can see that the communication time
increases with the number of processors, and gradually
becomes a significant part of the total time. With the
increase of the number of processors, “other overheads”
including the time for moving boids among processors, the
time for collecting the boundary information and the time
for load balancing become bigger. We can also see that the
number of times that the load-balancing is invoked is not
related to the number of processors. In fact, because the task
to move the boids among processors needs to communicate
with more processors in each frame whenP is bigger, it
becomes a more significant part of “other overheads” asP
increases.
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Figure 12: Performance of Algorithms with and without
Load Balancing
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Table 2: Analysis of the Algorithm with Load Bal-
ancing

Different The Number of Processors (P )
Parts 1 2 4 8 16

Total time 25.24 14.34 7.75 4.29 3.36
Commun. time 0 0.05 0.28 0.54 0.90
Other overheads 0.09 0.17 0.53 0.93 1.25
Number of times

load-balancing 0 13 19 12 19
is invoked

6 CONCLUSIONS

In this paper, we propose a parallel algorithm for the flock-
ing behavior simulation. With our parallel algorithm, the
simulated environment is divided into successive partitions,
and one partition is allocated to one processor. In the sim-
ulation, each processor only needs to communicate with its
logically neighboring processors for collecting necessary
information. Load balancing is used to help distributing
boids evenly among processors. We implement the pro-
posed mechanisms on a PC-cluster. Experimental results
show that the proposed mechanisms result in better perfor-
mances as compared with Lorek and White’s method and
the sequential implementation when the size of the group
is large.

The current implementation provides a good framework
for future work. In our future work, we will investigate
better load-balancing mechanisms and dynamic partitioning
mechanisms. Motion planning method will also be inves-
tigated to realize more sophisticated group behaviors in a
dynamic environment.
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