
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

INCREMENTAL HLA-BASED DISTRIBUTED SIMULATION CLONING

Dan Chen
Stephen John Turner

Wentong Cai

School of Computer Engineering
Nanyang Technological University

639798, SINGAPORE

Boon Ping Gan
Malcolm Yoke Hean Low

Singapore Institute of Manufacturing Technology

638075, SINGAPORE

ABSTRACT

Distributed simulation cloning technology is designed to
analyze alternative scenarios of a distributed simulation con-
currently within the same execution session. The goal is to
optimize the execution time for evaluating different scenar-
ios by avoiding repeated computation. In terms of High
Level Architecture (HLA) based simulations, a federate may
make clones to explore different scenarios at decision points.
It is desirable to use an incremental cloning mechanism to
replicate only those federates whose states will be affected.
This paper discusses the theory and issues involved in in-
cremental distributed simulation cloning, which employs an
event checking algorithm to ensure accurate sharing and ini-
tiates cloning only when absolutely necessary. Experiments
have been performed to compare the performance of entire
cloning and incremental cloning mechanisms. The experi-
mental results indicate that cloning technologies can effec-
tively reduce the time of executing multiple scenarios, and
the incremental cloning mechanism significantly surpasses
entire cloning in execution efficiency.

1 INTRODUCTION

Distributed simulation technology facilitates the construc-
tion of a large-scale simulation with simulation models
(federates) distributed geographically. The High Level Ar-
chitecture (HLA) defines the rules and interface specifica-
tion to support reusability and interoperability amongst the
simulation federates. The Runtime Infrastructure (RTI)
software supports and synchronizes the interactions
amongst different federates conforming to the standard
HLA specification (Dahmann, Kuhl, and Weatherly 1998).

Using traditional simulation technology, in order to
examine alternative decision policies, an analyst has to re-
peat executing a simulation to collect multiple sets of re-
sults for analysis. Basically this task is time-consuming
and onerous in which a lot of computation is repeated un-
necessarily. Especially for a large-scale distributed simula-

tion, it can be costly to reconfigure and execute the overall
simulation again and again due to the complexity and dis-
tribution of the individual simulation federates.

When reaching a decision point, a federate has differ-
ent choices to examine. Instead of simulating each choice
from the start in a conventional manner, distributed simula-
tion cloning technology can be used to replicate the feder-
ate and allow the replicas to examine these choices concur-
rently from the decision point onwards. Thus the execution
time can be reduced and the analyst may quickly obtain
multiple sets of results that represent the impacts of alter-
native decisions. One important goal of cloning technology
is to optimize execution by avoiding repeated computation
amongst independent scenarios.

In this project, we have enabled cloning of HLA-based
distributed simulations using a decoupled federate architec-
ture (Chen et al. 2003a, 2004). When a federate makes
clones on its own initiative and creates new scenarios,
other federates in the original scenario have to interact with
each of these clones properly in the new scenarios. One di-
rect solution is to clone all other federates immediately,
thus each independent set of clones form a new standalone
scenario. Therefore a full set of independent federates are
exploited to examine each scenario after cloning. However,
when performing distributed simulation cloning, it is desir-
able to replicate only those federates whose states will alter
at a decision point. The remaining federates may keep in-
tact and become shared between the original scenario and
the new ones; only when absolutely necessary will those
shared federates be cloned. Hence such an incremental
simulation cloning mechanism is expected to further share
computation amongst scenarios (Chen et al. 2003b).

Sharing federates in different scenarios needs accurate
control to achieve correctness and efficiency. Clones de-
veloped from the same federate (sibling clones) may have
different impacts on those shared federates. An event
checking algorithm is designed for shared federates to deal
with events from multiple scenarios, which checks whether
the events from sibling clones are identical or not. The

Chen, Turner, Cai, Gan, and Low

checking determines whether a shared clone remains
shared or requires cloning. It guarantees the simulation re-
sults of alternative scenarios obtained using distributed
simulation cloning technology are the same as those ob-
tained by repeating simulation executions.

The rest of this paper is organized as follows: Section
2 addresses related work and introduces some basic con-
cepts as well as the theory and issues involved in incre-
mental cloning. Section 3 gives an overview of the pro-
posed cloning technology. Section 4 details the algorithms
for managing shared clones. A distributed simulation ex-
ample is presented in section 5, which compares the per-
formance of using entire cloning technology with incre-
mental cloning technology. In section 6, we conclude with
a summary and proposals on future work.

2 DISTRIBUTED SIMULATION CLONING

Hybinette and Fujimoto (2001) proposed using simulation
cloning technology as a concurrent evaluation mechanism in
the parallel simulation domain. This technique aimed to de-
velop a parallel model that supports an efficient, simple, and
effective way to evaluate and compare alternative scenarios.
The method was targeted for parallel discrete event simula-
tors that provide the simulation application developer with a
logical process (LP) execution model. In Hybinette and Fu-
jimoto (2004), they suggested a just-in-time cloning mecha-
nism to avoid unnecessary cloning of a LP as long as it keeps
receiving identical messages from other replicated LPs.

Schulze, Straßburger, and Klein (2000) introduced a
cloning approach to extend the flexibility of system com-
position to run-time. Their approach included the parallel
management of different time axes in order to provide
forecast functionality. Internal cloning and external cloning
techniques were suggested to clone federates at run-time.

Our design targets users who may have their own ex-
isting complex simulation models; thereby we have the ad-
ditional aim to provide reusability and transparency while
enabling simulation cloning. Our research and discussion
are based on HLA-compliant distributed simulations. We
also need to support easy utilization and deployment. Our
approach focuses on optimizing and controlling a large-
scale distributed simulation using the cloning technology.

2.1 Concepts and Definition

A federate may make clones on its own initiative to ex-
plore different scenarios when it reaches a decision point,
and such a federate is said to perform active cloning. An
active cloning results in the creation of new scenarios.
Other federates who interact with this federate may have to
spawn clones to perform proper interaction with each of
the replicas, and those federates are said to perform pas-
sive cloning.
We can perform passive cloning on all other federates
immediately in the scenario created as a result of active
cloning, this approach is known as entire cloning. Alterna-
tively incremental cloning only requires cloning those
federates whose states will alter at this decision point. As
for those federates whose states are not affected, the in-
cremental cloning mechanism allows them to operate in the
new scenarios in addition to the original one as shared
federates (clones).

The clones created from the same root federate are re-
ferred to as sibling clones. Those federates that interact
within the same scenario are known as partner federates.
Figure 1 illustrates the different effects of an active cloning
using entire cloning versus incremental cloning.

Fed
A[0]

Simulation
Time

0

T

Fed
B[0]

Fed
X[0]

Initial
Scenario

Fed B[0]
makes active

cloning

Fed
A[0]

Fed
B[0]

Fed
X[0]

Fed
A[0]

Fed
B[0]

Fed
X[0]

Original
Scenario

New
Scenario 1

Fed
A[1]

Fed
B[1]

Fed
X[1]

Fed
A[n]

Fed
B[n]

Fed
X[n]

...

...

...

...

...

...

New
Scenario n

Fed
B[1]

Fed
B[n]

...

...

...

Entire
Simulation Cloning

Incremental
Simulation Cloning

Scenario Operating inFederate Concurrent

Figure 1: Entire Cloning vs. Incremental Cloning

In order to manage concurrent scenarios within a sin-

gle federation, we use Data Distribution Management
(DDM) to partition scenarios (Chen et al. 2003b). Each
scenario is specified with an exclusive characteristic
point region which is associated to the clones that operate
in the respective scenario. To provide reusability to exist-
ing simulation federates, a middleware approach is
adopted to hide the implementation of any cloning related
modules. To tackle the problems involved in replicating
running federates, a decoupled federate architecture is
used to separate the simulation model from the local RTI
component (Chen et al. 2003a). A virtual federate is built
up with the same code as the original federate, while a
physical federate associates itself with a real local RTI
component serving the virtual federate with RTI services.

A clone needs to inherit identical states from the origi-
nal federate, including the RTI entities known to the simu-
lation model, for example the registered object instances
(Kuhl, Weatherly, and Dahmann 1999). We name the ob-
ject instances registered by the original federate prior to
cloning as Original Object Instances whereas we use Im-
age Object Instances to denote those object instances re-
registered (representing the original ones) by the clones of
this federate in the state replicating procedure.

Chen, Turner, Cai, Gan, and Low

2.2 Theory and Issues in Incremental Cloning

The incremental cloning mechanism enables a shared clone
to execute in multiple scenarios as long as it keeps receiv-
ing identical events from corresponding federates in all
scenarios in which it participates. This design aims to
avoid repeating identical computation amongst scenarios as
much as possible. The shared clone persists in this mode
until the condition for triggering passive cloning is met.

A typical shared clone is shown in Figure 2. The
shared clone (SC) executes in n concurrent scenarios, and
those scenarios are said to be SC’s related scenarios (writ-
ten as RELASCEN = {relaScen[i]| i = 1,2, …, n}). Let X =
{x[i]| i = 1,2, …, n} denote the set of sibling clones that are
created from the same simulation federate x , with x[i] op-
erating in relaScen[i]. SC may receive events from x[i] and
generate events for each related scenario. It is unnecessary
to perform extra processing on the events generated by SC,
as those events must be identical in any scenario. However,
the events received by SC have to be checked.

 relaScen[1]

 relaScen[2]

 relaScen[n]

Scenario

...

Clone
X[1]

Clone
X[2]

Clone
X[n]

Federate

inEv[n]

Outgoing Event
...

inEv[2]

inEv[i]

inEv[1]

...

...

Shared Clone
SC

Figure 2: A Typical Shared Clone

Definition 1 (Sensitive Update) If an object instance

ObjX registered by federate x has been discovered by SC,
then SC treats ObjX and its image objects (see section 3.2)
as a set of sensitive object instances. Obviously, the object
class to which ObjX belongs must be published by x and
subscribed by SC. Let inEv[i] represent an update of ObjX
(or its image objects) issued by any x[i]∈X, then inEv[i] is
defined as a sensitive update for the shared clone SC.

Definition 2 (Sensitive Interaction) Any interaction
class published by x and subscribed by the shared clone SC
is regarded as a sensitive interaction class. Let inEv[i]
represent an interaction of any sensitive interaction class
sent by any x[i]∈X, then inEv[i] is defined as a sensitive
interaction for the shared clone SC.

A sensitive event is defined as a sensitive update or
interaction. A shared clone may present non-sensitive
events straightforwardly to its simulation model without
extra checking, whereas it has to check each sensitive
event before conveying it to the simulation model. A non-
sensitive event can be an event sent by another shared
clone executing in all related scenarios of the receiver. A
sensitive event needs to be compared with corresponding
counterpart events. In each round of event comparison, the
first received sensitive event is referred to as the target
event by subsequent counterpart events.

Definition 3 (Comparable Updates) Any two sensi-
tive updates for a shared clone are comparable to each
other only when following conditions are satisfied:

• They carry equivalent timestamps.
• They are updates of two individual image objects

(or an original object and one of its image ob-
jects) representing the same original object.

Definition 4 (Comparable Interactions) Any two

sensitive interactions are comparable only when following
conditions are satisfied:

• They carry equivalent timestamps.
• They belong to the same sensitive interaction class.
• They originate from two individual sibling clones.

A shared clone should not compare received interactions

that are not sent by sibling clones even if they belong to the
same interaction class. According to definition 3 and the
definition of original and image object instance, it is obvious
that comparable events must originate from sibling clones.

Definition 5 (Identical Events) Comparable events
are called identical if they have the same associated at-
tributes/parameters and the values of all attrib-
utes/parameters are identical.

Comparable events need to be checked to verify
whether they are identical. If a shared clone detects any
two comparable events are not identical, the shared clone
has to perform passive cloning to handle this situation. On
the other hand, the shared clone may remain intact if:

• All received comparable events are identical.
• The shared clone receives comparable events

from all the sibling clones in the related scenarios
before it is granted a simulation time greater than
(or equal to) the target event’s timestamp.

If the second condition is not met, it means that the

shared clone has obtained different behaviors from related
scenarios and requires passive cloning. As a consequence,
the federate previously shared and each of its clones cre-
ated in this passive cloning, operate as a normal clone in
only one individual scenario (at least until the next deci-
sion point). Normal clones are those clones that operate in
a single scenario (e.g. x[i] in Figure 2); this term is used in
this paper to distinguish them from shared clones.

Chen, Turner, Cai, Gan, and Low

2.3 Example of Incremental Cloning

Figure 3 illustrates a simple supply chain simulation com-
prising three federates, namely simAgent (SA), simFac-
tory(SF) and simTransportation(ST). Two object classes
“Order”, “Products” and one interaction class “deliveryRe-
port” are defined to represent the types of events exchanged
amongst the federates. A cloning trigger is predefined for
federate simFactory, which contains a cloning condition
“ ?MAXOrderSize> ” and several candidate policies. The
simulation emulates the supply chain operation of one-year
duration. The simFactory reports the cost incurred in each
order and in the whole year at the end of simulation.

Figure 3: A Distributed Simulation Example

Figure 4 depicts the simulation execution using incre-

mental simulation cloning to examine three candidate poli-
cies. Each scenario is marked as Scen[i] (i = 0, 1, 2), in
which Scen[0] denotes the initial scenario. The incremental
simulation cloning occurs along the time axis as follows:

At time 0, the simulation initializes with a single sce-
nario Scen[0]. When simulation progresses to time T1,
SF[0] performs active cloning due to an order with extra
large volume, which results in the creation of clones SF[1]
& SF[2], and new scenarios Scen[1] & Scen[2]. The re-
maining federates do not need to be cloned immediately,
and they only need to expand their associated region to en-
able them to continue interacting with SF[1] & SF[2].
Thus SA[0] and ST[0] become shared clones in both sce-
narios. The event flow from SF[i] (i = 0,1,2) to C[0] is
named as ev_F[i] (i = 0,1,2). ST[0] keeps intact as long as
ev_F[i](i = 0,1,2) remain identical.

At simulation time T2, ev_F[0] deviates from ev_F[1]
and ev_F[2], this triggers a passive cloning of ST[0] and
results in the creation of clones ST[1] & ST[2]. This pas-
sive cloning does not trigger any change of existing scenar-
ios. SA[0] persists as a shared clone after that.

Clones are created incrementally according to the
changing external conditions. We always have: Total no. of
federates ≤∑No. of federates executing in each scenario.
For example, from simulation time T0 to T1 there exists
only 5 federates simulating 3 scenarios whereas there has
to be 9 federates examining the same scenarios in the con-
text of traditional distributed simulations or using the entire
cloning approach. Both cloning approaches avoid repeating
the computation of the original scenario before cloning in

OrdersimAgent simFactory
simTransp

ortation

Products

deliveryReport
(Interaction)

Event
Flow Federate

Candidate
Policies

Cloning Trigger :
OrderSize > Max?
the new scenarios. Moreover, the incremental cloning ap-
proach enables sharing computation amongst independent
co-existing scenarios after cloning.

Scenario Sending to

SA[0]

Federate

Simulation
Time

0

T1

SF[0] ST[0] Scen [0]

SA[0] SF[0] ST[0] Scen [0]

ev_F[0]

SF[1] Scen [1]

ev_F[1]

simFactory
makes active

cloning

T2

SA[0] SF[0] ST[0] Scen [0]

SF[1] Scen [1]ST[1]

simTransportat
ion makes

passive
cloning

Concurrent

SF[2] Scen [2]

SF[2] Scen [2]

ev_F[2]

simAgent simFactory simTransport

ST[2]

Figure 4: Execution with Incremental Cloning

3 OVERVIEW OF THE DISTRIBUTED
SIMULATION CLONING ARCHITECTURE

Cloning of HLA-based distributed simulations has been
enabled using a decoupled federate architecture. This sec-
tion gives an overview of the design of the modules sup-
porting cloning and introduces the cloning algorithm in-
cluding the entity mapping approach.

3.1 Modules

A RTI++ library to enable simulation cloning is built as the
middleware between the simulation model and the real
RTI, and performs the necessary functionalities related to
simulation cloning. The user can specify the conditions ac-
cording to which the cloning should be triggered and the
different actions to be taken. Figure 5 gives an overview of
the RTI++’s structure and internal modules. The Control
Module monitors the states in which the user is interested
and evaluates the conditions for cloning the federate at a
decision point. The Cloning Manager module (CMM)
creates new clones for the request issued by the Control
Module, and it initiates the creation and update of the sce-
narios (Chen et al. 2004). The Scenario Manager module
creates and stores the scenario tree. The Region Manager
module creates DDM regions and manages the regions.
The RTI++ services invoked by a federate are eventually
executed by the physical federate that calls the real RTI
services and conveys callbacks to the RTI++ middleware.

Chen, Turner, Cai, Gan, and Low

Customized Library

Scenario
Manager

DDM services

RTI++

Real RTI

Cloning
Manager

Region
Manager

Ca
ll

ba
ck

U
pdateR

et
ur

n
co

nt
ro

l

R
et

ur
n

sc
en

ar
io

 ID
 &

 R
eg

io
n

Control
cloning

Q
uery

ID
®ion create &

update
region

Q
uery

region

Create&
update scenario

R
et

ur
n

re
gi

on

Control
Module

Standard RTI Interface

Via Physical Federate

Figure 5: RTI++ and Internal Modules

The internal components inside the CMM are high-

lighted in Figure 6. The Cloning Executor answers the
cloning request issued by the Control Module, and makes
replicas of the simulation model and initiates new physical
federate instances. The RTI States Manipulator saves
RTI states and replicates them on simulation cloning. The
Cloning Executor directly replicates static states for new
clones, while the Buffer Manager takes charge in copying
dynamic states such as managing the replicated RTI enti-
ties. During cloning of a federate, the Federation Coordi-
nator should synchronize other federates within the whole
simulation run including the sibling clones.

Cloning Executor

Federation
Coordinator

Stable
Storage

Other
Federates

RTI States
Manipulator

Scenario/Region
Manager

Cloning
Manager Static/Dynamic

States

Trigger/Decision
Point/Control

Standand RTI interface

Buffer
Manager

Objects/
Events

Control Module

Passive Cloning
Decision

Callback
Processor

Figure 6: Cloning Manager Module

3.2 Mapping Entities

A federate simulation model obtains the information in the
HLA object model via RTI services using handles assigned
by the RTI. For example, when an object instance is regis-
tered, a federation unique handle is returned to identify that
object instance. This handle is used to represent an entity
known to the model as well as other federates who have
discovered this object instance.

A clone inherits identical states from the original fed-
erate, including the RTI entities known to the simulation
model. In order to keep the state consistent and federate
code transparent, our cloning approach needs to ensure that
the clones of a federate use the same reference to the origi-
nal entities at the RTI level as before cloning. The ap-
proach should correctly manage the interactions related to
these entities within the overall federation, for example a
shared clone may receive updates of different object in-
stances even though they refer to the same object in the
simulation model.

The consistency can be achieved using a mapping ap-
proach in the middleware. The middleware maps the origi-
nal handles with the image object handles to ensure user
transparency and consistency. For one original object in-
stance referred to by the simulation models of all clones,
there can be different image object instances accessed by
the physical federates. The middleware keeps transparency
of image objects in the simulation model. The same princi-
ple is applied in processing other entities at the RTI level.

4 MANAGING SHARED CLONES

A shared clone is capable of operating in multiple scenar-
ios as long as it keeps receiving identical events from all
scenarios in which it participates. The shared clone persists
in this mode until the condition of triggering passive clon-
ing is met. Thus during this time, the computation of this
clone can be shared by different scenarios. The incremental
cloning mechanism aims to make full use of the interde-
pendencies amongst related scenarios, which is supported
by a sensitive event checking algorithm.

Sensitive events are checked by the Callback Proces-
sor which is one part of the RTI++ middleware built upon
the decoupled federate architecture (Chen et al. 2003a).
Figure 7 illustrates the primary elements inside the Call-
back Processor designed for checking events. The Sensi-
tive Event Checker checks events and invokes the external
control module to trigger passive cloning when necessary.
Mapping Tables maintain the relationships amongst sce-
narios and federates and object instances (original/image)
registered by related sibling clones. These tables are estab-
lished and updated during the state replicating procedure
on cloning. The checker can identify the source clone and
scenario of each event via the tables, thus it can verify
which events are comparable.

A queue Pending_Sensitive_Events_Queue (PSEQ)
stores the target sensitive events with which other incom-
ing sensitive events must be compared. The queue can be
either empty or contain events with the same timestamp at
any point in the simulation, this timestamp is referred to as
the characteristic timestamp of PSEQ. A set of TSO event
queues, TSO_Queue_Scen[i] or TQS[i] (i = 1, 2, …, n), are
established to buffer the events from each scenario in the
corresponding queue. Events in those queues can be pre-
sented to the simulation model if and when necessary.

The event checking algorithm determines which
events and how these events should be conveyed to the
simulation model. The event checking decides whether or

Chen, Turner, Cai, Gan, and Low

not a passive cloning is required and at which point the
cloning should be triggered. A shared clone is said in to be
in pending-passive-cloning mode during the interval from
deciding that a passive cloning is required to carrying out
the cloning. Event checking is performed when control of a
federate process is still with the RTI. Thus cloning will
only be carried out when the RTI returns control to avoid
potential problems incurred by replicating a federate while
the RTI invokes callbacks.

TSO_Queue_Scen[1]

TSO_Queue_Scen[2]

TSO_Queue_Scen[n]

. . .

Pending_Sensitive_Events_Queue

Within RTI++ Middleware Within Simulation
ModelCallback Processor

Sensitive Event
Checker

Cloning Manager

federateAmb
assador

Processing/
Invoking

Conveying
Event Referring to

Mapping Tables

Passive Cloning
Decision

Control Module

fedID scenID objHDL index ...
...

Incoming Events

Figure 7: Internal Design of the Callback Processor

Figure 8 illustrates the algorithm of checking sensitive

events by the Callback Processor which are as follows:

• Testing sensitive event. A received up-

date/interaction is tested according to definition 1
and 2. In case the event is a sensitive one, the
checking continues. The processing of non-
sensitive events will be covered later.

• Identifying event source. Mapping Tables are
referenced to locate the source of this event.
Hence the event checker can enqueue this event
into the corresponding TQS queue.

• Checking pending sensitive event queue. If
PSEQ is empty, the event checker pushes this
event into PSEQ and sets its timestamp equal to
the event’s, after which current processing ends.
When PSEQ is not empty, the event checker
compares its characteristic timestamp with the
event’s. In case they are not equal (event’s >
PSEQ’s), the shared clone will enter pending-
passive-cloning mode, otherwise the processing
continues.

• Locating target comparable event. The event
processor searches PSEQ to locate the comparable
event to the event in processing. If PSEQ does not
contain any comparable event, the event will be
pushed into PSEQ and the processing ends. Oth-
erwise, the event processor checks if the received
event and the target event in PSEQ are identical.
If they are not identical, the shared clone will also
enter pending-passive-cloning mode, otherwise
the processing continues.

• Checking the progress status of processing. The
event checker examines whether the shared clone
has received identical comparable events from all
other scenarios. If so, the event processor removes
the targets event from PSEQ and flushes the com-
parable events inside the TQS queue set. If not,
then the event checker waits for the next event.

Receive Event

Sensitive Event Processor

Is sensitive event?

Y

Convey event to
Federate

Ambassador

N

Is PSEQ empty?

Push this event
into PSEQ

Y

Locate source
scenario index (idx)
and push this event

into TQS[idx]

N

Enter Pending
Passive Cloning

Mode

N

YN

Check this event with
the comparable event

in PSEQ

Y

Identical? N

Y

Y

N

Pop target event
from PSEQ and

remove all
comparable events

in the TQS set

Received all
identical

events from all
other

scenarios?

Find
comparable

event (target)
in PSEQ?

This event’s
timestamp =

PSEQ’s?

Is PSEQ empty?

This
event’s

timestamp
= PSEQ ’s?Y

Y

N

N

Add new
target

sensitive
event into

PSEQ

Figure 8: Processing Sensitive Events

The last step ensures the Federate Ambassador reflects

only one single event for one full set of identical events ob-
tained from all related scenarios. This design hides the com-
plexity of checking events from multiple scenarios. As a re-
sult, shared clones operate in multiple scenarios as if they
only interact with one single scenario independently.

In case a non-sensitive event is received, the PSEQ’s
characteristic timestamp also needs to be compared when
PSEQ is not empty. If the event’s timestamp is greater than
the characteristic timestamp, the shared clone requires pas-
sive cloning. This is because the shared clone will no longer
receive identical events from any of the related scenarios to
the target events in PSEQ. In the case that their timestamps
are identical or PSEQ is empty, the event processor delivers
this event to the Federate Ambassador directly.

If PSEQ contains target sensitive events, the decision
of triggering a passive cloning depends on both the incom-
ing events and the next granted time. Once the Callback
Processor gets a granted time greater than PSEQ’s time-

Chen, Turner, Cai, Gan, and Low

stamp, the shared clone enters pending-passive-cloning
mode. If the granted time is equal to PSEQ’s timestamp,
setting pending-passive-cloning or not depends on whether
the shared clone requests the last time advance by calling
timeAdvanceRequest (TAR) / nextEventRequest (NER) or
timeAdvanceRequestAvailable (TARA) / nextEventRe-
questAvailable (NERA).

When a shared clone is in pending-passive-cloning
mode, the Callback Processor buffers the incoming events
as illustrated in Figure 9. Sensitive events should be en-
queued to the corresponding TQS queue, whereas non-
sensitive events should be inserted into all TQS queues
unselectively. The Callback Processor logs the timeAd-
vanceGranted callback and the granted time. Preparations
for the coming passive cloning are made in this procedure;
for example, the received events are sorted according to
their source scenarios. All callbacks are retained and not
delivered to the simulation model until the pending cloning
has been completed. Such a design aims to keep the se-
mantics of the HLA specification and minimize the com-
plexity of dealing with potential callbacks during pending-
passive-cloning.

Until current tick()
returned from Physical

Federate

Is sensitive event?
N

Locate source
scenario index (idx)
and push this event

into TQS[idx]

Tick() returned

Y

Push this event into
all queues of TQS

set

Trigger passive
cloning

Enter pending-
passive-cloning

mode

Callback

N

Log current
granted time

Control module

Pass control

TAGEvent

Figure 9: Processing Events in Pending-Passive-
Cloning

5 EXPERIMENTS AND RESULTS

In order to investigate the performance of the proposed in-
cremental cloning mechanism, a series of experiments have
been carried out to compare the execution time of running
different scenarios of a simple distributed simulation example
using conventional federates and cloning-enabled federates.

The experiments adopt the simulation example shown
in Figure 3, which starts at simulation time 0 and ends at
361 with one time unit representing one real day. The ex-
periments use four computers in total (three workstations
and one server), which are interlinked via a 100Mbps-
based backbone. Each federate (together with its clones if
any) occupies one individual computer, with the RTIEXEC
and FEDEX processes running on another computer. We
have adopted DMSO RTI NG 1.3 V6 in building the feder-
ates and executing experiments.

The experiment architecture and platform specification
are listed in Table 1. Using the same codes, the federates
are built into three different versions by linking to: (1) the
DMSO RTI library directly (Traditional), (2) an RTI++
middleware library supporting entire cloning (Clon-
ing_Entire) and (3) an RTI++ library supporting incre-
mental cloning (Cloing_Incremental). Experiments are car-
ried out to collect the overall execution time using different
types of federates to analyze different policies (listed in
Table 2).

Table 1: Configuration of Experiment Test Bed

Specification Computers
 Work-

station1~2
Server1 Work-

station3
Operating
System

Sun Solaris
OS 5.8

Sun Solaris
OS 5.8

Win2000
Pro

CPU Sparcv9
CPU, at
900 MHz

Sparcv9
CPU * 6, at
248 MHz

Intel 1700
MHz Pen-
tium IV

RAM 1024M 2048M 256M
Compiler GCC

2.95.3
GCC
2.95.3

MS VC++
6.0

Processes
Running On

SimAgent,
simTrans-
portation

simFactory RTIEXEC
& FEDEX

Table 2: Experiments for Studying the Efficiency of Clon-
ing Technology

Type of
Federates

Experiments

Cloning
Stage

Start (Middle, End)

Number of
Policies

2 3 4

Cloning_
Entire

Ec_s(m, e)_2 Ec_s(m, e)_3 Ec_s(m, e)_4

Cloning_
Incremental

Ic_s(m ,e)_2 Ic_s(m, e)_3 Ic_s(m, e)_4

For traditional federates, we execute the policies one by

one, after which the sum of the execution times of the runs
are calculated. As for experiments with cloning-enabled
federates, we let federate simAgent generate different or-
ders. We select three runs in which cloning of simFactory
occurs at time 80, 203 and 320, thus federate simFactory
may trigger active cloning at different stages in each run.
These points represent cloning at the start, middle and end
stages respectively. Furthermore we also specify simFac-
tory to make different numbers of clones to examine alter-
native policies in different experiments (2, 3 or 4 policies
in each run). For example (see Figure 2 and 4), in experi-
ment Ec_m_3 federate simFactory creates 2 clones at time

Chen, Turner, Cai, Gan, and Low

203 and simAgent together with simTransportation also cre-
ate 2 clones immediately to explore 3 scenarios with 9 feder-
ates in total (entire cloning); whereas in experiment Ic_m_3
federate simAgent keeps intact all the time and simTranspor-
tation remains shared until simulation time 224 and performs
passive cloning to create 2 clones (incremental cloning).

The CPU utilization of a single federate (in workstation
1 and 2) is reported as ~80%. In the case of enabling simula-
tion cloning, the CPU utilization of each clone is reported as
~44%, ~30% or ~21% respectively when there are 2, 3 or 4
clones running on a single workstation. Physical federates
have a CPU utilization as low as ~1%. Experimental results
are recorded in seconds in Figure 10. The average time of
executing one single scenario per run is 561 seconds using
traditional federates. The percentage of saved execution time
using cloning technology is shown in Figure 11 which use
the execution times reported by traditional federates running
scenarios sequentially as a reference.

Execution Time for Examining Multiple Scenarios

0

500

1000

1500

2000

2500

Examine 2 Policies Examine 3 Policies Examine 4 Policies

Number of Policies

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

Traditional

EC_S(80)

IC_S(80)

EC_M(203)

IC_M(203)

EC_E(320)

IC_E(320)

Figure 10: Execution Time for Examining Multi-
ple Scenarios

Percentage of Saved Execution Time Using Entire
Cloning and Incremental Cloning

0

10

20

30

40

50

60

70

Examine 2 Policies Examine 3 Policies Examine 4 Policies
Number of Policies

Pe
rc

en
ta

ge
 (%

)

EC_S(80)

IC_S(80)

EC_M(203)

IC_M(203)

EC_E(320)

IC_E(320)

Figure 11: Percentage of Saved Execution Time us-
ing Entire and Incremental Cloning

Figure 10 shows that the cloning enabled federates can

significantly reduce execution time compared with conven-
tional federates. The experimental results indicate that the
more computation there is in common amongst different sce-
narios the more execution time can be reduced using simula-
tion cloning. It also shows that the larger the number of sce-
narios to be examined using cloning the more execution time
can be reduced. The results in Figures 10 and 11 indicate that
the incremental cloning approach has an obvious advantage
over the entire cloning approach in terms of execution effi-
ciency under all given configurations. This is because the in-
cremental cloning approach can further save computation by
supporting federate sharing amongst scenarios.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an in-depth study on the
incremental cloning mechanism for HLA-based distributed
simulations. The theory of incremental simulation cloning
is detailed, and the design is also introduced. Our design
enables distributed simulation cloning using a decoupled
federate architecture. The cloning management module is
developed to ensure correct distributed simulation cloning
when preset conditions are met at decision points. The in-
cremental cloning mechanism initiates cloning only when
strictly necessary. Federate sharing amongst multiple sce-
narios is supported by a sensitive event checking algo-
rithm. The algorithm facilitates accurate sharing of feder-
ates and delays the passive cloning as long as possible. The
proposed mechanism supports correct HLA semantics and
user transparency, and it optimizes the simulation execu-
tion for analyzing different scenarios.

A series of experiments has been performed to inves-
tigate the performance of two alternative cloning ap-
proaches. The experimental results are compared for entire
cloning and incremental cloning in terms of execution effi-
ciency. The experimental results show that the cloning
technology can reduce the time of executing multiple sce-
narios of existing distributed simulations. Furthermore, the
incremental cloning technology can further save computa-
tion of distributed simulations compared with an approach
using entire cloning.

For our future work, we need to further minimize the
overhead incurred in the cloning procedure, which includes
investigating an efficient approach to dealing with in-
transit events on cloning. Another issue is to facilitate fault
tolerance using cloning technology.

REFERENCES

Chen, D., S. J. Turner, B. P. Gan, W. Cai, J. Wei. 2003a. A
Decoupled Federate Architecture for Distributed Simula-
tion Cloning. In Proceedings of the 15th European Simu-
lation Symposium, 131-140. Delft, the Netherlands.

Chen, D., S. J. Turner, B. P. Gan, W. Cai, J. Wei, N. Julka.
2003b. Alternative Solutions for Distributed Simula-
tion Cloning. Simulation: Transactions of the Society

Chen, Turner, Cai, Gan, and Low

for Modeling and Simulation International 79 (5-6):
299-315.

Chen, D., S. J. Turner, B. P. Gan, W. Cai, J. Wei. 2004.
Management of Simulation Cloning for HLA-based
Distributed Simulations. In European Simulation In-
teroperability Workshop 2004, 04E-SIW-010, Edin-
burgh, UK.

Dahmann, J. S., F. Kuhl, R. Weatherly. 1998. Standards
for Simulation: As Simple As Possible But Not Sim-
pler, The High Level Architecture for Simulation.
Simulation: Transactions of the Society for Modeling
and Simulation International 71 (6): 378-387.

Hybinette, M. and R. M. Fujimoto. 2001. Cloning parallel
simulations. ACM Transactions on Modeling and
Computer Simulation, 11: 378-407.

Hybinette, M. and R. M. Fujimoto. 2004. Just-in-time
Cloning. In Proceedings of 18th Workshop on Parallel
and Distributed Simulation, 45-51. Kufstein, Austrian.

Kuhl, F., R. Weatherly, J. Dahmann. 1999. Creating
Computer Simulation Systems: An Introduction to
HLA. ISBN 13-022511-8, Prentice Hall, USA.

Schulze, T., S. Straßburger, U. Klein. 2000. HLA-federate
Reproduction Procedures In Public Transportation Fed-
erations. In Proceedings of the 2000 Summer Computer
Simulation Conference, Vancouver, Canada.

AUTHOR BIOGRAPHIES

DAN CHEN was a research engineer with the Singapore
Institute of Manufacturing Technology. In China, he re-
ceived a BSc from Wuhan University and a MEng from
Huazhong University of Science and Technology in 1994
and 1999 respectively. He received a M.Eng. and is cur-
rently a PhD student at Nanyang Technological University.
His research interests are distributed simulation, network-
ing and other related technologies. His email address is
<chendan@pmail.ntu.edu.sg>.

STEPHEN JOHN TURNER is Director of the Parallel
and Distributed Computing Centre in the School of Com-
puter Engineering, Nanyang Technological University
(Singapore). He received his MA in Mathematics and
Computer Science from Cambridge University (UK) and
his MSc and PhD in Computer Science from Manchester
University (UK). His current research interests include:
parallel and distributed simulation, distributed virtual envi-
ronments, grid computing and multi-agent systems. His
email address is <assjturner@ntu.edu.sg>.

WENTONG CAI is currently an Associate Professor at
School of Computer Engineering (SCE), Nanyang Techno-
logical University (Singapore). He received his B.Sc. in
Computer Science from Nankai University (P. R. China)
and Ph.D. also in Computer Science from University
of Exeter (U.K.). His current research interests are
mainly in the areas of Parallel & Distributed
Simulation and Grid Computing. His email address is
<aswtcai@ntu.edu.sg>.

BOON PING GAN is a Research Engineer at Singapore
Institute of Manufacturing Technology in Singapore.
He received a BSc and MSc from Nanyang Technologi-
cal University of Singapore in 1995 and 1998
respectively. His research interests are parallel and
distributed simulation, parallel programs scheduling, and
application of genetic algorithms. His email address is
<bpgan@simtech.a-star.edu.sg>.

MALCOLM YOKE HEAN LOW is a Research Engi-
neer at the Singapore Institute of Manufacturing Technol-
ogy. He received his Bachelor and Master of Applied Sci-
ence in Computer Engineering from Nanyang
Technological University, Singapore in 1997 and 1999 re-
spectively, and a D.Phil. in Computer Science from Oxford
University in 2002. His research interests include adaptive
tuning and load-balancing for parallel and distributed
simulations, and the application of multi-agent technology
in supply chain logistics coordination. His email address is
<yhlow@simtech.a-star.edu.sg>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 386
	02: 387
	03: 388
	04: 389
	05: 390
	06: 391
	07: 392
	08: 393
	09: 394

