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ABSTRACT 

In standard optimistic parallel event simulation, no restric-
tion exists on the maximum lag in simulation time between 
the fastest and slowest logical processes (LPs).  Over-
optimistic applications exhibit  a large lag, which encourages 
rollback and may degrade performance.  We investigate an 
approach for controlling over-optimism that classifies LPs as 
FAST, MEDIUM, or SLOW and migrates  FAST and/or 
SLOW processes.  FAST LPs are aggregated, forcing them 
to compete for CPU cycles.  SLOW LPs are dispersed, to 
limit their competition for CPU cycles. The approach was 
implemented on distributed Georgia Tech Time 
Warp(GTW)(Das et al. 1994) and experiments performed 
using the synthetic application P-Hold(Fujimoto   1990).  
For over-optimistic test cases, our approach was found to 
perform 1.25 to 2.75 times better than the standard approach 
in terms of useful work and to exhibit execution times 
shorter than or equal to the standard computation.   

1 INTRODUCTION 

Parallel simulation based on the optimistic Time Warp pro-
tocol(Jefferson and Sowizral 1985)  is widely used in large-
scale simulations such as those of air-traffic control and the 
World Wide Web. A primary concern of such simulations is 
good performance.  However, these simulations are subject 
to the problem of over-optimism, in which some logical 
processes (LPs)  progress far beyond others. To facilitate 
discussion of the nature of  inefficiencies that result from 
over-optimism, we first present some essential background 
on optimistic discrete event simulation using Time Warp.   

A discrete event simulation consists of a collection of 
logical processes (LPs), which may execute on different 
processors (PEs).  The simulation is driven by the ex-
change of timestamped message by the LPs.  Consistency 
in the processing of messages requires that all events be 

 

processed in timestamp order.   Two main synchronization 
protocols exist: conservative and optimistic.  The conserva-
tive protocol enforces consistency by avoiding the possibil-
ity of ever receiving an event in the past.  In contrast, the 
optimistic protocol permits the receipt of an event from the 
past but responds by “rolling back” events that were opti-
mistically processed too early.   

Each LP in an optimistic simulation maintains a cur-
rent logical clock (local virtual time, or LVT); whenever an 
LP receives a message with a timestamp earlier than LVT, 
it rolls back its execution to the time-stamp before that of 
the arrived message. Such an out-of-order message is 
called a straggler message. When rollback is necessary an 
LP reverts to the appropriate previous state and “un-
schedules” any messages sent prior to the rollback. To 
support this, LPs maintain a history of state information 
and keep a record (an anti-message) for each message sent.  
In the case of rollback, the LP sends anti-messages, which 
annihilate the original messages sent. Anti-messages may 
cause additional rollbacks, called secondary rollbacks.   

The earliest timestamp of any unprocessed or partially 
processed message in the system defines Global Virtual 
Time (GVT).  A message is guaranteed not to rollback if its 
timestamp is earlier than GVT.  Thus, memory for events 
with timestamps before GVT, along with their correspond-
ing state and anti-messages, can be reclaimed in a process 
known as fossil collection.   

Over-optimism results in poor memory utilization be-
cause it creates a wide gap between GVT and the most re-
cent timestamp in the system.  State information, event his-
tories, and anti-messages must be stored for all  
computation with a simulation time later than GVT.  If 
over-optimism is not controlled, the memory requirement 
may grow to the point that memory becomes exhausted. 

Another inefficiency caused by over-optimistic behav-
ior is that rollbacks may be quite long when slower LPs 
send a message to faster (over-optimistic) LPs.  Previously 
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processed events are rolled back and anti-messages are sent 
to cancel the events scheduled as a result of the events cur-
rently being rolled back. This nullifies all the useful com-
putation done by both the over-optimistic LPs and the LPs 
to which the anti-messages were sent. Further, useful CPU 
cycles are wasted in undoing the work already done.   

Finally, long and frequent rollbacks result in a large 
number of anti-messages being sent.  These anti-messages 
utilize bandwidth that could otherwise have been used for 
useful communication.  Thus, over-optimistic behavior of 
LPs can cause inefficiencies including poor memory utiliza-
tion, excessive rollbacks and communication overheads.   

Simulations that are susceptible to over-optimism in-
clude those operating in heterogeneous environments, 
those subject to external workloads, and those for which 
application-specific characteristics of the simulation 
promote over-optimistic behavior.   

Networks of workstations (NOWs), an important plat-
form for large scale simulations, are typically heterogene-
ous, with computing and memory resources varying among 
machines. Logical processes running on fast processors 
may progress faster in simulated time than logical proc-
esses running on slower processors. 

A large scale simulation may run on a system that is 
shared among many users. Here, logical processes may 
compete with other applications for shared resources, caus-
ing some logical processes to run on more heavily loaded 
processors, while others run on less loaded processors.  
Logical processes running on heavily loaded processors 
make less progress in simulation time compared to logical 
processes on less loaded processors. 

The manner in which a particular application is im-
plemented can also influence over-optimistic behavior. 
Applications that exhibit self-instantiation and uneven 
granularity of load per LP may demonstrate over-
optimistic behavior. Self-instantiation means that an LP 
schedules events to itself rather than to a remote LP. De-
gree of self-instantiation refers to the number of messages 
an LP sends to itself before sending a remote message. 
Applications that consist mainly of LPs with a high degree 
of self-instantiation communicate with other LPs infre-
quently. Because of this infrequent communication, when-
ever an LP that is far behind sends a message to an LP that 
is far ahead, it causes long rollbacks due to out-of-order 
messages. For example, the implementation of a Personal 
Communication Systems (PCS), described in (Carothers 
and Fujimoto 1994), which includes LPs having a high de-
gree of self-instantiation, has been shown to exhibit over-
optimistic behavior. 

Another characteristic that may cause over-optimistic 
behavior is uneven granularity of load per LP in an appli-
cation. This happens when some LPs incorporate more 
work and take more time to process their event set than the 
other LPs. Again, when the LPs that are far behind in the 
simulation communicate with LPs that are far ahead, long 
rollbacks and anti-messages result.  Implementations of 
Asynchrous Transfer Networks (ATMs) are prone to such 
an uneven granularity of load per LP (Hao, et al. 1996). 

A goal of our approach is to use the CPU as a flow 
control mechanism for over-optimistic execution. We pre-
sent a process migration scheme that controls over-
optimistic processes by isolating their impact on other 
processes, while promoting the progress of slower, less op-
timistic processes.  We evaluate our approach using a syn-
thetic benchmark application called P-Hold. 

2 BACKGROUND 

Prior work addressing the problem of over-optimism falls 
into three broad categories: protocols using limited optimism, 
memory management protocols and adaptive techniques.  

2.1 Optimism Limiting Protocols 

Blocking is a commonly used technique for reducing the 
amount of rollback(Reiher et al. 1989) that limits the pro-
gress of over-optimistic LPs through use of a time window 
of size W.  LPs are prevented from progressing beyond GVT 
+ W, and are blocked until LPs that are far behind catch up. 
Window size may be determined statically or dynamically.  

The aggressive no-risk protocol(Dickens and Reynolds 
1990) avoids sending a message until it is guaranteed that 
the message will not cause rollbacks.   Messages sent by an 
LP are stored in its PE’s buffer and not sent until GVT ad-
vances beyond the send timestamp of the message, assur-
ing that the messages will not be rolled back later. 

The look ahead information  approach (Lubachevsky 
et al. 1989), also may be used to decide whether it is safe 
to process a given message.  A hybrid conservative and op-
timistic protocol is employed that begins with the conser-
vative protocol to determine which events are safe to proc-
ess and later adds optimistic synchronization features to 
“unsafe” events.   

Another approach introduces additional rollbacks at 
stochastically selected intervals (Madisetti et al. 1983).  
These additional rollbacks prevent overly optimistic execu-
tion of LPs that could be rolled back to GVT if a rollback 
decision were determined for that LP. Probability vectors 
are used to determine if the LP should be rolled back.   

The breathing time protocol(Steinman 1983) limits the 
number of events a particular LP can process beyond GVT 
and involves determination of the minimum time stamp 
among events that will be produced in the future.  

2.2 Memory Management Protocols   

Two protocols used to limit memory utilization in an over-
optimistic simulation are artificial rollback (Jefferson  
1990) and cancel back (Lin and Preiss 1991). These proto-
cols are used when the system runs out of memory and fos-
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sil collection attempts cannot reclaim the memory needed 
for the simulation to progress. These schemes roll back 
some of the logical processes and utilize the freed memory 
to continue.  Artificial rollback works by identifying the 
most over-optimistic  LPs (those furthest ahead in simula-
tion time)  and then rolling them back. Cancel back, on the 
other hand, achieves the same effect by sending back cer-
tain messages to the sender LP, rolling back the sender.   

2.3 Adaptive Techniques 

S. Das and R. Fujimoto proposed an adaptive technique 
combining memory management and limited optimism 
synchronization protocols(Das and Fujimoto 1997). The 
amount of memory allocated to a Time Warp simulation 
automatically limits the amount of optimistic execution, 
i.e., the degree to which processes may advance ahead of 
other processes. This protocol seeks to provide sufficient 
memory for Time Warp to execute efficiently, but  not so 
much memory that overly optimistic execution can occur. 
The protocol attempts to simultaneously address  rollback 
thrashing and memory management issues. The approach 
is adaptive; it monitors the execution of the Time Warp 
program and automatically adjusts the memory provided to 
the parallel simulator. An adaptive protocol was necessary 
because the the synchronization and memory management 
protocol parameters depend on characteristics of the appli-
cation such as symmetry and homogeneity among the 
simulation processes and memory required to execute the 
program using Time Warp.   

A load distribution system for background execution 
of Time Warp(Carothers and Fujimoto 2000) is designed to 
use free cycles of a collection of heterogeneous machines 
to run a Time Warp simulation. The load management pol-
icy involves both processor allocation and load balancing. 
The processor allocation policy dynamically determines 
the set of processors to be used for a Time Warp simula-
tion. LPs are grouped into clusters by the application to re-
duce migration overhead. Clusters, rather than individual 
LPs are migrated, with the goal of equalizing the progress 
of all the processors, taking into consideration the external 
and internal workload, processor speeds, etc. The metrics 
for classifying the processors and individual clusters are 
PAT (Processor Advance Time) and CAT (Cluster Alloca-
tion Time),  respectively.  

A load balancing technique for the Time Warp distrib-
uted system for object-oriented simulation(Burdorf and 
Marti 1993) distributes objects across nodes and provides 
optimistic concurrency control. The scheme consists of 
static and dynamic load balancing monitors. The static 
monitor determines pre-assignment of objects to proces-
sors.  The dynamic load balancing module monitors load 
imbalance and initiates migration of objects, using knowl-
edge of simulation time (LVT) to reduce rollback. That is, 
it minimizes the distance between the simulation time of 
the farthest ahead object and the furthest behind object. 

Another interesting approach that applies load balanc-
ing and optimism limiting protocol (Jones and Das 1998) 
combines the throttling of over-optimistic processes and 
scheduling (or load balancing) to control over-optimistic 
behavior.  Throttling is implemented by a moving time 
window protocol.  In the scheduling component LPs are 
remapped to processors so the N slowest LPs in simulation 
time are mapped to different processors, where N is the 
number of processors on which the simulation is run.  

2.4 Comparison   

S. Das’s adaptive memory management technique that uses 
memory as a flow control for controlling over-optimism is 
similar to our approach, which uses CPU as a flow control 
mechanism. Unlike Carothers and Fujimoto’s approach,  
which uses available CPU cycles to load balance logical 
processes, we use the CPU itself to control over-optimism. 
By aggregating over-optimistic LPs to one CPU, we force 
these LPs to compete with each other for available CPU 
cycles. This slows down their progress while isolating their 
impact on other LPs. In addition, we spread out the less op-
timistic LPs, limiting their competiton for CPU cycles.   

S. Das and K. Jones approach of using throttling with 
scheduling is similar to our approach in terms of making 
the less optimistic LPs progress to catch up with LPs that 
are ahead in simulated future. But for LPs that are far 
ahead in simulation time, Das and Jones use blocking,  
which wastes CPU cycles,  unlike our approach which iso-
lates these LPs on one PE to slow their progress. Too much 
throttling is harmful as too few events are admitted for 
processing. Another important difference is that their ap-
proach was implemented on a simulated distributed sys-
tem, whereas our implementation is deployed on a real dis-
tributed system on real processors.  

3 OUR APPROACH 

The idea behind our approach is to aggregate fast LPs onto 
one processor so that they must compete for processor cy-
cles, slowing their progress. Slow logical processes are 
dispersed to different processors to limit their competition 
for CPU cycles. Migration costs are minimized by reduc-
ing the number of LPs moved.  This is done by selecting a 
fast repository (CPU on which the fast LPs will be aggre-
gated) that already has the most fast LPs mapped to it. The 
cost of moves are justified in our approach in that we move 
only LPs that are either too fast and waste work, or too 
slow and likely require more resources.  

Our approach to controlling over-optimism involves 
the following steps: 

(i) Ranking of LPs: LPs are ranked according to how 
far ahead in simulation time they are compared to the rest 
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of the simulation. We use a metric called GVTLag, the dif-
ference between an LP’s current simulation time and  GVT 
(GVTLag = LVT- GVT). LPs are ranked according to their 
GVTLag value. 

(ii) Classification of LPs: LPs are then classified as 
one of FAST, MEDIUM and SLOW.  The k * N LPs that 
have the highest value of GVTLag are selected to be la-
beled as FAST, where k is a scaling factor and N is the 
number of processors on which the GTW kernel is cur-
rently running. The factor k is an experimental parameter 
and depends on the migration cost in the system.  A se-
lected number of the slowest LPs are classified as SLOW; 
the remaining LPs are classified as MEDIUM.  In our ex-
periments, the number of SLOW LPs is fixed at N-1.   

(iii)  Identification of the FAST-REPOSITORY:  The 
FAST-REPOSITORY is the CPU on which the over-
optimistic (FAST) LPs will be aggregated.  The CPU con-
taining the greatest number of LPs labeled as FAST is se-
lected as the FAST-REPOSITORY.  This reduces the 
number of LPs that will be moved in subsequent steps. 

(iv) Isolation of FAST LPs:  All FAST LPs not cur-
rently mapped to the FAST-REPOSITORY are migrated to 
it.  This is done to isolate the effects of the over-optimistic 
LPs from the rest of the LPs in the simulation and to force 
these optimistic LPs to compete for CPU cycles.   

(v) Spreading of SLOW LPs: SLOW LPs are redis-
tributed to the processors other than the FAST-
REPOSITORY, one per processor.  The goal of this step is 
to limit the contention of the least optimistic LPs for CPU 
cycles, in the hopes of allowing them to “catch up” with 
the rest of the simulation. 

3.1 Implementation 

Our load balancing algorithm is implemented on the dis-
tributed Georgia Tech Time Warp system (GTW) (Das et 
al. 1994), which is a parallel and distributed discrete event 
simulation executive based on  Jefferson’s Time Warp 
(Jefferson 1985).  GTW runs on both shared memory and 
distributed memory machines. Details of GTW can be 
found in (Fujimoto et al. 1997). 

Distributed GTW employs an additional thread on 
each machine(Carothers and Fujimoto 2000) that handles 
all the external communication with other machines. The 
Parallel Virtual Machine (PVM) communication library is 
used for remote communication. We implemented our 
process migration algorithm in a separate thread called 
MonitorOPT on top of distributed GTW. 

The software architecture of distributed GTW, includ-
ing our thread, is shown in Figure1. GTW provides the 
APIs for the simulation application to exchange informa-
tion with GTW regarding the number of LPs, number of 
processors, event handlers for each LP and other informa-
tion. Once GTW has the application-specific information it 
sets up various data structures to carry out the execution of 
the simulation. Distributed GTW consist of two libraries: 
the kernel library and the kernel communication library. 
The kernel library consists of the core functionalities of 
GTW, including the state saving mechanism, scheduler of 
events, mechanism for computing GVT and communica-
tion thread. The kernel communication library consists of 
various methods that invoke PVM calls. The kernel library 
calls the method in the communication library in order to 
execute PVM functionality. 

 

GTW    Kernel    Library 

PVM 

GTW Communication 
Library (PVM Wrapper) 

Simulation Application  

Hardware 

MonitorOPT 

 
Figure 1:  A  Software Architecture for Dis-
tributed GTW 

 
We implemented an optimism controlling module 

consisting of a central monitoring process called “Moni-
torOPT” that is heart of our algorithm. The process runs 
on a dedicated machine. MonitorOPT executes periodi-
cally to collect statistics from other processing elements 
(PEs). The specific period is an experimental parameter 
and could be varied. MonitorOPT computes the moves of 
the LPs based on the collected statistics of the whole sys-
tem and uses this for controlling over-optimism of the 
LPs. The MonitorOPT process responsible for migration 
decisions communicates with the kernel communication 
library in order to exchange messages with the communi-
cation thread of the kernel library.  

Once the new mapping of LPs to PEs is computed, a 
move-list is generated, containing information about which 
LPs to move, and their source and destination PEs.  If 
MonitorOPT determines that some moves are to be made, a 
HALT message is sent to each processor. This is done to 
stop each PE’s computation and roll back all LPs to GVT. 
This helps to synchronize all PEs and to perform load re-
distribution effectively,  reducing the cost of LP migration 
as the history information of the LPs will not be moved 
from source processor to the destination.  

After all the processors roll back their computations to 
GVT, they send an acknowledgment message, HALT-ACK, 
to the MonitorOPT process. The MonitorOPT process then 
sends a MOVE message for each move in the move-list to 
the source processor from which an LP will be moved.  
The source PE transfers all the information regarding the 
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LP to the destination PE, and then sends a MOVE-LP mes-
sage to the destination PE.  The destination PE updates all 
the necessary information and then sends a MOVE-LP-
ACK message to the source PE, after which the source PE 
sends a MOVE-ACK to the MonitorOPT. 

Once the MOVE messages have been sent for each 
move in the move-list, the MonitorOPT process computes 
an updated mapping of all LPs to PEs.  It then sends a 
MAPPING message to all the processors to reflect this new 
mapping. Once all PEs update their local mapping struc-
tures for the mapping message they send a MAPPING-
ACK message to MonitorOPTLB. Next, a RESUME mes-
sage is sent so that the normal computation can resume on 
all processors. The load balancing interval starts with this 
message and at the interval expiry new computations and 
data collection can begin. This process continues until the 
end of the simulation.  

4 EXPERIMENTS AND DISCUSSION 

Experiments were performed to compare the performance 
of our approach with that of the standard Time Warp simu-
lation without process migration. The experiments pre-
sented in this study were performed in a heterogeneous en-
vironment consisting of 8 machines: one SGI Origin 2000 
with sixteen 195 MHZ MIPS R 10,000 processors running 
IRIX version 6.5 and seven 167-MHZ Sun Sparc Ultra -1 
workstations running version 2.5 of the Solaris operating 
system. In all experiments the GTW kernel was executed 
on a  total of 8 processors with one processor from each of 
the machines involved in the experiment. MonitorOPT was 
executed on the SGI machine. The benchmark application 
used to perform these experiments is P-Hold.  

4.1 The Benchmark Application: P-Hold  

P-Hold is a benchmark application using a synthetic work-
load model(Fujimoto 1990).  The benchmark uses a fixed 
message population. Processing of each message takes a 
finite amount of time, after which a new message is sent to 
another LP with a specified time stamp increment. The ini-
tial messages have a timestamp that is exponentially dis-
tributed between 0 and 1. As the messages are forwarded 
their new timestamp increments are fixed at 1. The total 
number of LPs for these experiments was fixed at 256. 
These LPs were initially evenly distributed on 8 proces-
sors, with 32 LPs per processor. The experiments used a 
fixed message population of 6,400.  

In order to effect an imbalance, P-Hold was instru-
mented with two distinct synthetic workloads: null and one 
millisecond. In the null case, event processing is made as 
small as possible; in the one millisecond case event proc-
essing includes a 1 msec delay loop. 

To make the application more imbalanced,  P-Hold 
was also configured as self-instantiated, and the degree of 
self-instantiation of an event was varied. The experiments 
used two degrees of self-instantiation: 50 and 200. When 
an event is processed in which the source LP differs from 
the destination LP, the destination LP schedules the next d 
generations of the event to itself. After d generations of the 
event have been produced, a new destination LP is ran-
domly selected. 

For the first set of experiments, two classes of 
LP/event restrictions are generated: 

Class [200: 1 msec]: This includes events with degree 
of self-instantiation 200 and LPs that take a 1 millisecond 
delay (event granularity of 1 msec) to execute every event. 

Class [50: null]:  This include events with degree of 
self-instantiation 50 and LPs that execute events without 
any delay (null event granularity).  

The percentage of LPs in Class [200:1msec] was var-
ied from 0 to 100 percent in increments of 20 percent. The 
remaining LPs in the simulation operated under Class[50 : 
null]. By varying the percentage of LPs executing in either 
of the two classes, we created different levels of optimism 
and imbalance. LPs under Class [200: 1msec] progress 
slowly as their event granularity is larger than event granu-
larity of Class [50: null]. Additionally, whenever the LPs 
in Class [200:1msec] send remote messages to LPs in 
Class [50:null], it may roll back the computation of the 
Class [50:null] LPs.  

A second set of experiments was performed for com-
parison. While keeping all other operating parameters the 
same, we swapped the delay of event execution on the two 
classes of LPs. LPs under these experiments were made to 
execute under the two classes of operating restrictions.  

Class [50: 1msec]: Events with degree of self-
instantiation 50 and LPs execute event with 1 millisecond 
delay (1 msec event granularity).  

Class [200: null]: Events with degree of self-
instantiation 200 and LPs execute events without any delay 
(null event granularity).  

An empirically determined sample period of 50 sec-
onds was used.  Results represent an average of four trials. 

4.2 Experiments under Set 1 

In Figure 2 below, we show the performance of three 
variations of our migration algorithm: (1) with fast reposi-
tory and slow LP spreading, (2) without fast repository but 
with slow LP spreading, (3) with fast repository but with-
out slow LP spreading. We measure performance as the ra-
tio of the useful work with process migration to the useful 
work without process migration. Useful work is the ratio of 
events that were committed (not rolled back) to all events 
processed.  The three variations are described below: 
Both Fast Repository and Slow LP spreading:  The num-
ber of FAST LPs is N * k, where k = 5 and N = 8. The 
numbers of LPs classified as SLOW is fixed to 7 (N-1, 
where N is the number of processors in the system).  
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Figure 2: Ratio of Percentage Improvement in 
Useful Work as Compared to without Process Mi-
gration, (Set 1)                                             
 

Slow LP spreading only: The number of FAST LPs is 0; 
accomplished by setting k =0.  We classify 8 (N=8) LPs as 
SLOW and the remaining LPs as MEDIUM.  
Fast Repository only:  40 LPs (k=5) are classified as 
FAST.  The remaining LPs are classified as MEDIUM.  

From Figure 2 we see that in cases where over-
optimism exists the simulation performs better with proc-
ess migration (“Both”) than without process migration in 
terms of percentage of useful work, by a factor of 1.25 to 
2.75 over useful work without process migration. The best 
performance is at data point 20%, where “Both” (Fast re-
pository and slow spreading) performs approximately 2.75 
times better than the simulation without process migration. 
None of the variations of process migration perform better 
than the simulation without process migration at data 
points 0 and 100. At these points the simulation is bal-
anced; all LPs execute under one class of event granularity, 
so it is likely that it is not over-optimistic. At data point 0, 
all the LPs execute under Class [50 : null], whereas at data 
point 100 all LPs operate under Class [200:1 msec]. The 
LPs all have the same event granularity and progress at the 
same pace, causing less rollback. The ratio of useful work 
of less than one in these cases in which over-optimism is 
absent is a result of the overhead of process migration.   

When the application is unbalanced, process migra-
tion(Both) demonstrates maximum benefits performing by 
a factor of 1.25 to 2.75 times better than the results without 
process migration. When the application is overly optimis-
tic, with no migration, the simulation spends much of its 
time rolling back its computation rather than progressing 
forward and hence results in less useful work. On the other 
hand, due to process migration, the over-optimistic LPs are 
isolated on a separate processor slowing their progress 
down and less optimistic LPs are allowed to make progress 
by redistributing them on different processors. This helps 
in reducing the differences among the progress of the LPs 
and the number of rollbacks.  

The two variations of process migration also perform 
better than no process migration when the application is 
unbalanced (data points 20% – 80%). In some cases the 
fast repository (which limits fast LPs) produces the benefit, 
while in other cases the spreading of slow LPs (which 
promotes progress by the slow LPs) produces the benefit. It 
depends upon the application state which type of LPs 
dominates the simulation. To complement each of these 
two approaches, we combined the two variations in our 
implementation of the process migration algorithm. In this 
combined approach, we control both the less optimistic and 
over-optimistic LPs, consistently providing better perform-
ance in cases where over-optimism exists. 

Figure 3 shows the execution time performance for the 
above experiment, comparing the simulation run with proc-
ess migration and its various variations against the simula-
tion without process migration. It was observed that process 
migration did not provide any benefit in terms of execution 
time when the optimism is balanced(data point 0 and 100 
when all LPs have same event granularity).The most benefit 
in terms of execution time is obtained at 20% and 40% of 
Class [200:1msec]. At these two points there is also a better 
percentage of useful work, as shown in Figure 2. For data 
points 60 and 80 it is observed that process migration takes 
almost equal execution time compared to without process 
migration. The percentage of useful work performed by the 
process migration run for data point 60 is approximately 2 
times better than without process migration and for data 
point 80 is 1.15 times better than without process migration.  
That is, although we do not benefit in terms of execution 
time at these two data points,  we do benefit in terms of use-
ful work.  This is the result of migration overhead.  If this 
overhead consists largely of communication costs, then it 
may be possible for  external workloads to benefit from this 
reduced work, as the CPU cycles not used in performing 
wasted work would be available.  However, we have yet to 
characterize the computation/communication trade-offs of 
process migration, and plan to do so in future work.  For 
point 100, without process migration(None) performs better 
for both the percentage of useful work in Figure 2 and the 
execution time in Figure 3.   This is due to the application 
being balanced at this instant as all LPs belong to one class 
of self- instantiation and event granularity and thus progress 
at the same pace. The overheads of process migration exceed 
the benefits obtained when the application is balanced and 
least optimistic. 
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Figure 3:  Execution Time Performance (Set 1) 
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Figure 4 shows the results of varying the value of k, 
used to determine the number of LPs to be classified as 
FAST.  This experiment is performed for the data point 40 
of the previous experiment (60% [200:1], 40% [50:0])  It is 
observed that as the number of fast LPs is increased, the 
percentage of useful  work also improves. However, if k is 
large migration cost will dominate. 
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Figure 4:  FAST LPs Scaling Performance 

4.3 Experiments under Set 2 

Another set of experiments was performed, in which the 
self-instantiation degree of messages and the delays of LP 
execution were swapped in the two classes of operating re-
strictions to create imbalance in the application. With all 
the other experimental parameters being the same as set 1, 
but instead of varying the messages with self-instantiation 
of 200 with LPs having event granularity one millisecond 
as in previous experiments, we combined messages with 
self-instantiation 50 with LPs having event granularity of 
1millsecond. Again in this set of experiments we vary the 
percentage Class [50: 1msec] from 0 to 100 in increments 
of 20 percent. The remaining LPs in the system execute 
with null event granularity (Class [200: null]).  

Figure 5 shows the performance in terms of percentage 
of useful computation for simulation runs with and without 
process migration. Each of the two scenarios were plotted 
to show the performance of the simulations with various 
levels of optimism created by varying LPs with different 
event granularity. As shown in Figure 5, it was observed 
that process migration performs better than without it at all 
the levels except at data point 100. This is because the 
simulation application is balanced at data point 100. At 
data point 100, all the LPs had one millisecond event 
granularity. This caused all LPs to progress at the same 
rate. In this scenario the overhead of process migration ex-
ceeded the benefits obtained by it and hence, the simula-
tion without process migration performed better. In all the 
other instances, when the simulation is unbalanced, simula-
tion with process migration performs 1.2 to 1.79 times bet-
ter than without process migration.  
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Figure 5: Percentage of Useful Work (Set 2) 

 
In Figure 6, we compare the execution time perform-

ance for the above experiment with simulation runs with and 
without process migration. As mentioned above, due to the 
simulation application being balanced at data point 0 and 
100 as all the messages and LPs belong to one of the two 
classes of self-instantiation and event granularity, we do not 
observe any benefits in execution time. At data point 0, the 
simulation without process migration performs better that 
that with process migration both in terms of execution time 
and percentage of useful work. Whereas at data point 100, 
we obtain benefits in terms of percentage of useful work but 
not in terms of execution time.  A similar scenario exists at 
point 80, where we obtain the benefits in terms of useful 
work but not in execution time. For the remaining propor-
tions of Class [50:1msec], benefits in both execution time 
and computation performance were obtained when the simu-
lation was run with process migration as compared to with-
out process migration. When the application is unbalanced, 
the improvements in execution time by doing process migra-
tion were approximately 10 to 20 percent.   
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Figure 6: Execution Time Performance (Set 2) 

 
We observed that our algorithm performs better in 

terms of useful work in all the experiments except when the 
application is balanced. We observed that the migration cost 
of LPs do incur a penalty in terms of execution time in some 
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cases. One of the reasons for this penalty is that the PVM 
communication is expensive. Due to resource limitations, 
the experiments were performed on older hardware.  By up-
dating the hardware we might reduce this migration cost to 
some extent. Also it was observed that a higher value of k  
improves the performance in terms of useful work, but  may 
incur higher migration cost in terms of execution time. 
Hence, an appropriate value of k should be selected as a 
tradeoff between useful work and migration cost. 

5 CONCLUSIONS AND FUTURE WORK 

In a standard optimistic parallel event simulation, no restric-
tion exists on how far an LP can proceed ahead of other LPs. 
This imbalance may degrade performance as LPs may spend 
more time rolling back than progressing forward. In order to 
control such over-optimistic behavior, we implemented a 
process migration system on distributed Georgia Tech Time 
Warp (GTW). The process migration system classifies LPs 
with respect to optimism as FAST, MEDIUM and SLOW 
depending on how far each LP is making progress in simula-
tion time compared to other LPs. The statistic collected to 
classify an LP is called GVTLag,  the difference between an 
LP’s current simulation time and the system’s GVT. We ag-
gregate the FAST LPs on one processor, the FAST-
REPOSITORY, to make them compete with each other for 
available CPU cycles to slow their progress and conse-
quently isolate their impact on other logical processes. At 
the same time we spread the SLOW LPs, by redistributing 
each SLOW LP to a different processor. This provides 
SLOW LPs with sufficient CPU cycles to make progress 
and help them to catch up with the FAST LPs. 

We performed various experiments with a synthetic 
benchmark application called P-Hold. We implemented P-
Hold using two computation event granularities: null and 
1msec. Additionally, P-Hold was configured to be self-
instantiating. In order to create imbalance in the applica-
tion LPs and events were classified into two classes having 
a self-instantiation degree of either 50 or 200 and with or  
without a 1 msec delay in event processing.  

It was observed that whenever the application is unbal-
anced, the simulation with process migration performs 1.25 
to 2.75 times better in terms of useful computation than that 
without process migration. Also, the execution time under 
unbalanced application conditions is either better than or 
equivalent to the time taken without process migration. 

 On the other hand, when the application is balanced 
and over-optimism is minimal, simulations without proc-
ess migration perform better in terms of useful work and 
execution time. This results from the overheads of proc-
ess migration exceeding the benefits obtained when the 
application is balanced. 

Due to high memory requirements and resource limita-
tions, we could not experiment with more than 256 LPs in 
the simulation. We propose to experiment with more than 
256 LPs in the future and observe how the process migra-
tion performs when the number of logical processes in-
creases in the simulation. Also, we propose to modify the 
process migration algorithm to make the process of select-
ing the number of fast LPs dynamic and dependent on how 
the simulation is performing. This could help in improving 
the amount of useful work done and execution time com-
pared to the simulation without process migration. 

A problem our approach may encounter in extreme 
cases is that logical processes might aggregate on the same 
processors, leaving other processors sparsely populated. 
For example, we may encounter a situation in which a mil-
lion LPs are on one processor and one logical process is on 
each of the remaining processors. Another problem could 
be the movement of logical processes that are already bal-
anced. One of the possible solutions to alleviate such sce-
narios is to use a threshold to determine the number of 
processes classified as fast.    

We also propose to cluster LPs in a manner similar to 
(Carothers and Fujimoto 2000), in order to reduce the 
process migration cost. This would require a different met-
ric for evaluating process migration. We propose to evalu-
ate such a possibility and observe its performance com-
pared to without process migration. 
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