
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

CONTROLLING OVER-OPTIMISM IN TIME-WARP

VIA CPU-BASED FLOW CONTROL

Vinay Sachdev
Maria Hybinette
Eileen Kraemer

Computer Science Department

415 Boyd Graduate Studies Research Center
The University of Georgia
Athens, GA 30602, U.S.A.

ABSTRACT

In standard optimistic parallel event simulation, no restric-
tion exists on the maximum lag in simulation time between
the fastest and slowest logical processes (LPs). Over-
optimistic applications exhibit a large lag, which encourages
rollback and may degrade performance. We investigate an
approach for controlling over-optimism that classifies LPs as
FAST, MEDIUM, or SLOW and migrates FAST and/or
SLOW processes. FAST LPs are aggregated, forcing them
to compete for CPU cycles. SLOW LPs are dispersed, to
limit their competition for CPU cycles. The approach was
implemented on distributed Georgia Tech Time
Warp(GTW)(Das et al. 1994) and experiments performed
using the synthetic application P-Hold(Fujimoto 1990).
For over-optimistic test cases, our approach was found to
perform 1.25 to 2.75 times better than the standard approach
in terms of useful work and to exhibit execution times
shorter than or equal to the standard computation.

1 INTRODUCTION

Parallel simulation based on the optimistic Time Warp pro-
tocol(Jefferson and Sowizral 1985) is widely used in large-
scale simulations such as those of air-traffic control and the
World Wide Web. A primary concern of such simulations is
good performance. However, these simulations are subject
to the problem of over-optimism, in which some logical
processes (LPs) progress far beyond others. To facilitate
discussion of the nature of inefficiencies that result from
over-optimism, we first present some essential background
on optimistic discrete event simulation using Time Warp.

A discrete event simulation consists of a collection of
logical processes (LPs), which may execute on different
processors (PEs). The simulation is driven by the ex-
change of timestamped message by the LPs. Consistency
in the processing of messages requires that all events be

processed in timestamp order. Two main synchronization
protocols exist: conservative and optimistic. The conserva-
tive protocol enforces consistency by avoiding the possibil-
ity of ever receiving an event in the past. In contrast, the
optimistic protocol permits the receipt of an event from the
past but responds by “rolling back” events that were opti-
mistically processed too early.

Each LP in an optimistic simulation maintains a cur-
rent logical clock (local virtual time, or LVT); whenever an
LP receives a message with a timestamp earlier than LVT,
it rolls back its execution to the time-stamp before that of
the arrived message. Such an out-of-order message is
called a straggler message. When rollback is necessary an
LP reverts to the appropriate previous state and “un-
schedules” any messages sent prior to the rollback. To
support this, LPs maintain a history of state information
and keep a record (an anti-message) for each message sent.
In the case of rollback, the LP sends anti-messages, which
annihilate the original messages sent. Anti-messages may
cause additional rollbacks, called secondary rollbacks.

The earliest timestamp of any unprocessed or partially
processed message in the system defines Global Virtual
Time (GVT). A message is guaranteed not to rollback if its
timestamp is earlier than GVT. Thus, memory for events
with timestamps before GVT, along with their correspond-
ing state and anti-messages, can be reclaimed in a process
known as fossil collection.

Over-optimism results in poor memory utilization be-
cause it creates a wide gap between GVT and the most re-
cent timestamp in the system. State information, event his-
tories, and anti-messages must be stored for all
computation with a simulation time later than GVT. If
over-optimism is not controlled, the memory requirement
may grow to the point that memory becomes exhausted.

Another inefficiency caused by over-optimistic behav-
ior is that rollbacks may be quite long when slower LPs
send a message to faster (over-optimistic) LPs. Previously

Sachdev, Hybinette, and Kraemer

processed events are rolled back and anti-messages are sent
to cancel the events scheduled as a result of the events cur-
rently being rolled back. This nullifies all the useful com-
putation done by both the over-optimistic LPs and the LPs
to which the anti-messages were sent. Further, useful CPU
cycles are wasted in undoing the work already done.

Finally, long and frequent rollbacks result in a large
number of anti-messages being sent. These anti-messages
utilize bandwidth that could otherwise have been used for
useful communication. Thus, over-optimistic behavior of
LPs can cause inefficiencies including poor memory utiliza-
tion, excessive rollbacks and communication overheads.

Simulations that are susceptible to over-optimism in-
clude those operating in heterogeneous environments,
those subject to external workloads, and those for which
application-specific characteristics of the simulation
promote over-optimistic behavior.

Networks of workstations (NOWs), an important plat-
form for large scale simulations, are typically heterogene-
ous, with computing and memory resources varying among
machines. Logical processes running on fast processors
may progress faster in simulated time than logical proc-
esses running on slower processors.

A large scale simulation may run on a system that is
shared among many users. Here, logical processes may
compete with other applications for shared resources, caus-
ing some logical processes to run on more heavily loaded
processors, while others run on less loaded processors.
Logical processes running on heavily loaded processors
make less progress in simulation time compared to logical
processes on less loaded processors.

The manner in which a particular application is im-
plemented can also influence over-optimistic behavior.
Applications that exhibit self-instantiation and uneven
granularity of load per LP may demonstrate over-
optimistic behavior. Self-instantiation means that an LP
schedules events to itself rather than to a remote LP. De-
gree of self-instantiation refers to the number of messages
an LP sends to itself before sending a remote message.
Applications that consist mainly of LPs with a high degree
of self-instantiation communicate with other LPs infre-
quently. Because of this infrequent communication, when-
ever an LP that is far behind sends a message to an LP that
is far ahead, it causes long rollbacks due to out-of-order
messages. For example, the implementation of a Personal
Communication Systems (PCS), described in (Carothers
and Fujimoto 1994), which includes LPs having a high de-
gree of self-instantiation, has been shown to exhibit over-
optimistic behavior.

Another characteristic that may cause over-optimistic
behavior is uneven granularity of load per LP in an appli-
cation. This happens when some LPs incorporate more
work and take more time to process their event set than the
other LPs. Again, when the LPs that are far behind in the
simulation communicate with LPs that are far ahead, long
rollbacks and anti-messages result. Implementations of
Asynchrous Transfer Networks (ATMs) are prone to such
an uneven granularity of load per LP (Hao, et al. 1996).

A goal of our approach is to use the CPU as a flow
control mechanism for over-optimistic execution. We pre-
sent a process migration scheme that controls over-
optimistic processes by isolating their impact on other
processes, while promoting the progress of slower, less op-
timistic processes. We evaluate our approach using a syn-
thetic benchmark application called P-Hold.

2 BACKGROUND

Prior work addressing the problem of over-optimism falls
into three broad categories: protocols using limited optimism,
memory management protocols and adaptive techniques.

2.1 Optimism Limiting Protocols

Blocking is a commonly used technique for reducing the
amount of rollback(Reiher et al. 1989) that limits the pro-
gress of over-optimistic LPs through use of a time window
of size W. LPs are prevented from progressing beyond GVT
+ W, and are blocked until LPs that are far behind catch up.
Window size may be determined statically or dynamically.

The aggressive no-risk protocol(Dickens and Reynolds
1990) avoids sending a message until it is guaranteed that
the message will not cause rollbacks. Messages sent by an
LP are stored in its PE’s buffer and not sent until GVT ad-
vances beyond the send timestamp of the message, assur-
ing that the messages will not be rolled back later.

The look ahead information approach (Lubachevsky
et al. 1989), also may be used to decide whether it is safe
to process a given message. A hybrid conservative and op-
timistic protocol is employed that begins with the conser-
vative protocol to determine which events are safe to proc-
ess and later adds optimistic synchronization features to
“unsafe” events.

Another approach introduces additional rollbacks at
stochastically selected intervals (Madisetti et al. 1983).
These additional rollbacks prevent overly optimistic execu-
tion of LPs that could be rolled back to GVT if a rollback
decision were determined for that LP. Probability vectors
are used to determine if the LP should be rolled back.

The breathing time protocol(Steinman 1983) limits the
number of events a particular LP can process beyond GVT
and involves determination of the minimum time stamp
among events that will be produced in the future.

2.2 Memory Management Protocols

Two protocols used to limit memory utilization in an over-
optimistic simulation are artificial rollback (Jefferson
1990) and cancel back (Lin and Preiss 1991). These proto-
cols are used when the system runs out of memory and fos-

Sachdev, Hybinette, and Kraemer

sil collection attempts cannot reclaim the memory needed
for the simulation to progress. These schemes roll back
some of the logical processes and utilize the freed memory
to continue. Artificial rollback works by identifying the
most over-optimistic LPs (those furthest ahead in simula-
tion time) and then rolling them back. Cancel back, on the
other hand, achieves the same effect by sending back cer-
tain messages to the sender LP, rolling back the sender.

2.3 Adaptive Techniques

S. Das and R. Fujimoto proposed an adaptive technique
combining memory management and limited optimism
synchronization protocols(Das and Fujimoto 1997). The
amount of memory allocated to a Time Warp simulation
automatically limits the amount of optimistic execution,
i.e., the degree to which processes may advance ahead of
other processes. This protocol seeks to provide sufficient
memory for Time Warp to execute efficiently, but not so
much memory that overly optimistic execution can occur.
The protocol attempts to simultaneously address rollback
thrashing and memory management issues. The approach
is adaptive; it monitors the execution of the Time Warp
program and automatically adjusts the memory provided to
the parallel simulator. An adaptive protocol was necessary
because the the synchronization and memory management
protocol parameters depend on characteristics of the appli-
cation such as symmetry and homogeneity among the
simulation processes and memory required to execute the
program using Time Warp.

A load distribution system for background execution
of Time Warp(Carothers and Fujimoto 2000) is designed to
use free cycles of a collection of heterogeneous machines
to run a Time Warp simulation. The load management pol-
icy involves both processor allocation and load balancing.
The processor allocation policy dynamically determines
the set of processors to be used for a Time Warp simula-
tion. LPs are grouped into clusters by the application to re-
duce migration overhead. Clusters, rather than individual
LPs are migrated, with the goal of equalizing the progress
of all the processors, taking into consideration the external
and internal workload, processor speeds, etc. The metrics
for classifying the processors and individual clusters are
PAT (Processor Advance Time) and CAT (Cluster Alloca-
tion Time), respectively.

A load balancing technique for the Time Warp distrib-
uted system for object-oriented simulation(Burdorf and
Marti 1993) distributes objects across nodes and provides
optimistic concurrency control. The scheme consists of
static and dynamic load balancing monitors. The static
monitor determines pre-assignment of objects to proces-
sors. The dynamic load balancing module monitors load
imbalance and initiates migration of objects, using knowl-
edge of simulation time (LVT) to reduce rollback. That is,
it minimizes the distance between the simulation time of
the farthest ahead object and the furthest behind object.

Another interesting approach that applies load balanc-
ing and optimism limiting protocol (Jones and Das 1998)
combines the throttling of over-optimistic processes and
scheduling (or load balancing) to control over-optimistic
behavior. Throttling is implemented by a moving time
window protocol. In the scheduling component LPs are
remapped to processors so the N slowest LPs in simulation
time are mapped to different processors, where N is the
number of processors on which the simulation is run.

2.4 Comparison

S. Das’s adaptive memory management technique that uses
memory as a flow control for controlling over-optimism is
similar to our approach, which uses CPU as a flow control
mechanism. Unlike Carothers and Fujimoto’s approach,
which uses available CPU cycles to load balance logical
processes, we use the CPU itself to control over-optimism.
By aggregating over-optimistic LPs to one CPU, we force
these LPs to compete with each other for available CPU
cycles. This slows down their progress while isolating their
impact on other LPs. In addition, we spread out the less op-
timistic LPs, limiting their competiton for CPU cycles.

S. Das and K. Jones approach of using throttling with
scheduling is similar to our approach in terms of making
the less optimistic LPs progress to catch up with LPs that
are ahead in simulated future. But for LPs that are far
ahead in simulation time, Das and Jones use blocking,
which wastes CPU cycles, unlike our approach which iso-
lates these LPs on one PE to slow their progress. Too much
throttling is harmful as too few events are admitted for
processing. Another important difference is that their ap-
proach was implemented on a simulated distributed sys-
tem, whereas our implementation is deployed on a real dis-
tributed system on real processors.

3 OUR APPROACH

The idea behind our approach is to aggregate fast LPs onto
one processor so that they must compete for processor cy-
cles, slowing their progress. Slow logical processes are
dispersed to different processors to limit their competition
for CPU cycles. Migration costs are minimized by reduc-
ing the number of LPs moved. This is done by selecting a
fast repository (CPU on which the fast LPs will be aggre-
gated) that already has the most fast LPs mapped to it. The
cost of moves are justified in our approach in that we move
only LPs that are either too fast and waste work, or too
slow and likely require more resources.

Our approach to controlling over-optimism involves
the following steps:

(i) Ranking of LPs: LPs are ranked according to how
far ahead in simulation time they are compared to the rest

Sachdev, Hybinette, and Kraemer

of the simulation. We use a metric called GVTLag, the dif-
ference between an LP’s current simulation time and GVT
(GVTLag = LVT- GVT). LPs are ranked according to their
GVTLag value.

(ii) Classification of LPs: LPs are then classified as
one of FAST, MEDIUM and SLOW. The k * N LPs that
have the highest value of GVTLag are selected to be la-
beled as FAST, where k is a scaling factor and N is the
number of processors on which the GTW kernel is cur-
rently running. The factor k is an experimental parameter
and depends on the migration cost in the system. A se-
lected number of the slowest LPs are classified as SLOW;
the remaining LPs are classified as MEDIUM. In our ex-
periments, the number of SLOW LPs is fixed at N-1.

(iii) Identification of the FAST-REPOSITORY: The
FAST-REPOSITORY is the CPU on which the over-
optimistic (FAST) LPs will be aggregated. The CPU con-
taining the greatest number of LPs labeled as FAST is se-
lected as the FAST-REPOSITORY. This reduces the
number of LPs that will be moved in subsequent steps.

(iv) Isolation of FAST LPs: All FAST LPs not cur-
rently mapped to the FAST-REPOSITORY are migrated to
it. This is done to isolate the effects of the over-optimistic
LPs from the rest of the LPs in the simulation and to force
these optimistic LPs to compete for CPU cycles.

(v) Spreading of SLOW LPs: SLOW LPs are redis-
tributed to the processors other than the FAST-
REPOSITORY, one per processor. The goal of this step is
to limit the contention of the least optimistic LPs for CPU
cycles, in the hopes of allowing them to “catch up” with
the rest of the simulation.

3.1 Implementation

Our load balancing algorithm is implemented on the dis-
tributed Georgia Tech Time Warp system (GTW) (Das et
al. 1994), which is a parallel and distributed discrete event
simulation executive based on Jefferson’s Time Warp
(Jefferson 1985). GTW runs on both shared memory and
distributed memory machines. Details of GTW can be
found in (Fujimoto et al. 1997).

Distributed GTW employs an additional thread on
each machine(Carothers and Fujimoto 2000) that handles
all the external communication with other machines. The
Parallel Virtual Machine (PVM) communication library is
used for remote communication. We implemented our
process migration algorithm in a separate thread called
MonitorOPT on top of distributed GTW.

The software architecture of distributed GTW, includ-
ing our thread, is shown in Figure1. GTW provides the
APIs for the simulation application to exchange informa-
tion with GTW regarding the number of LPs, number of
processors, event handlers for each LP and other informa-
tion. Once GTW has the application-specific information it
sets up various data structures to carry out the execution of
the simulation. Distributed GTW consist of two libraries:
the kernel library and the kernel communication library.
The kernel library consists of the core functionalities of
GTW, including the state saving mechanism, scheduler of
events, mechanism for computing GVT and communica-
tion thread. The kernel communication library consists of
various methods that invoke PVM calls. The kernel library
calls the method in the communication library in order to
execute PVM functionality.

GTW Kernel Library

PVM

GTW Communication
Library (PVM Wrapper)

Simulation Application

Hardware

MonitorOPT

Figure 1: A Software Architecture for Dis-
tributed GTW

We implemented an optimism controlling module

consisting of a central monitoring process called “Moni-
torOPT” that is heart of our algorithm. The process runs
on a dedicated machine. MonitorOPT executes periodi-
cally to collect statistics from other processing elements
(PEs). The specific period is an experimental parameter
and could be varied. MonitorOPT computes the moves of
the LPs based on the collected statistics of the whole sys-
tem and uses this for controlling over-optimism of the
LPs. The MonitorOPT process responsible for migration
decisions communicates with the kernel communication
library in order to exchange messages with the communi-
cation thread of the kernel library.

Once the new mapping of LPs to PEs is computed, a
move-list is generated, containing information about which
LPs to move, and their source and destination PEs. If
MonitorOPT determines that some moves are to be made, a
HALT message is sent to each processor. This is done to
stop each PE’s computation and roll back all LPs to GVT.
This helps to synchronize all PEs and to perform load re-
distribution effectively, reducing the cost of LP migration
as the history information of the LPs will not be moved
from source processor to the destination.

After all the processors roll back their computations to
GVT, they send an acknowledgment message, HALT-ACK,
to the MonitorOPT process. The MonitorOPT process then
sends a MOVE message for each move in the move-list to
the source processor from which an LP will be moved.
The source PE transfers all the information regarding the

Sachdev, Hybinette, and Kraemer

LP to the destination PE, and then sends a MOVE-LP mes-
sage to the destination PE. The destination PE updates all
the necessary information and then sends a MOVE-LP-
ACK message to the source PE, after which the source PE
sends a MOVE-ACK to the MonitorOPT.

Once the MOVE messages have been sent for each
move in the move-list, the MonitorOPT process computes
an updated mapping of all LPs to PEs. It then sends a
MAPPING message to all the processors to reflect this new
mapping. Once all PEs update their local mapping struc-
tures for the mapping message they send a MAPPING-
ACK message to MonitorOPTLB. Next, a RESUME mes-
sage is sent so that the normal computation can resume on
all processors. The load balancing interval starts with this
message and at the interval expiry new computations and
data collection can begin. This process continues until the
end of the simulation.

4 EXPERIMENTS AND DISCUSSION

Experiments were performed to compare the performance
of our approach with that of the standard Time Warp simu-
lation without process migration. The experiments pre-
sented in this study were performed in a heterogeneous en-
vironment consisting of 8 machines: one SGI Origin 2000
with sixteen 195 MHZ MIPS R 10,000 processors running
IRIX version 6.5 and seven 167-MHZ Sun Sparc Ultra -1
workstations running version 2.5 of the Solaris operating
system. In all experiments the GTW kernel was executed
on a total of 8 processors with one processor from each of
the machines involved in the experiment. MonitorOPT was
executed on the SGI machine. The benchmark application
used to perform these experiments is P-Hold.

4.1 The Benchmark Application: P-Hold

P-Hold is a benchmark application using a synthetic work-
load model(Fujimoto 1990). The benchmark uses a fixed
message population. Processing of each message takes a
finite amount of time, after which a new message is sent to
another LP with a specified time stamp increment. The ini-
tial messages have a timestamp that is exponentially dis-
tributed between 0 and 1. As the messages are forwarded
their new timestamp increments are fixed at 1. The total
number of LPs for these experiments was fixed at 256.
These LPs were initially evenly distributed on 8 proces-
sors, with 32 LPs per processor. The experiments used a
fixed message population of 6,400.

In order to effect an imbalance, P-Hold was instru-
mented with two distinct synthetic workloads: null and one
millisecond. In the null case, event processing is made as
small as possible; in the one millisecond case event proc-
essing includes a 1 msec delay loop.

To make the application more imbalanced, P-Hold
was also configured as self-instantiated, and the degree of
self-instantiation of an event was varied. The experiments
used two degrees of self-instantiation: 50 and 200. When
an event is processed in which the source LP differs from
the destination LP, the destination LP schedules the next d
generations of the event to itself. After d generations of the
event have been produced, a new destination LP is ran-
domly selected.

For the first set of experiments, two classes of
LP/event restrictions are generated:

Class [200: 1 msec]: This includes events with degree
of self-instantiation 200 and LPs that take a 1 millisecond
delay (event granularity of 1 msec) to execute every event.

Class [50: null]: This include events with degree of
self-instantiation 50 and LPs that execute events without
any delay (null event granularity).

The percentage of LPs in Class [200:1msec] was var-
ied from 0 to 100 percent in increments of 20 percent. The
remaining LPs in the simulation operated under Class[50 :
null]. By varying the percentage of LPs executing in either
of the two classes, we created different levels of optimism
and imbalance. LPs under Class [200: 1msec] progress
slowly as their event granularity is larger than event granu-
larity of Class [50: null]. Additionally, whenever the LPs
in Class [200:1msec] send remote messages to LPs in
Class [50:null], it may roll back the computation of the
Class [50:null] LPs.

A second set of experiments was performed for com-
parison. While keeping all other operating parameters the
same, we swapped the delay of event execution on the two
classes of LPs. LPs under these experiments were made to
execute under the two classes of operating restrictions.

Class [50: 1msec]: Events with degree of self-
instantiation 50 and LPs execute event with 1 millisecond
delay (1 msec event granularity).

Class [200: null]: Events with degree of self-
instantiation 200 and LPs execute events without any delay
(null event granularity).

An empirically determined sample period of 50 sec-
onds was used. Results represent an average of four trials.

4.2 Experiments under Set 1

In Figure 2 below, we show the performance of three
variations of our migration algorithm: (1) with fast reposi-
tory and slow LP spreading, (2) without fast repository but
with slow LP spreading, (3) with fast repository but with-
out slow LP spreading. We measure performance as the ra-
tio of the useful work with process migration to the useful
work without process migration. Useful work is the ratio of
events that were committed (not rolled back) to all events
processed. The three variations are described below:
Both Fast Repository and Slow LP spreading: The num-
ber of FAST LPs is N * k, where k = 5 and N = 8. The
numbers of LPs classified as SLOW is fixed to 7 (N-1,
where N is the number of processors in the system).

Sachdev, Hybinette, and Kraemer

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

% [200:1msec]

Ratio of improvement in % useful work

Both
Slow LP spreading only
Fast repository only

Figure 2: Ratio of Percentage Improvement in
Useful Work as Compared to without Process Mi-
gration, (Set 1)

Slow LP spreading only: The number of FAST LPs is 0;
accomplished by setting k =0. We classify 8 (N=8) LPs as
SLOW and the remaining LPs as MEDIUM.
Fast Repository only: 40 LPs (k=5) are classified as
FAST. The remaining LPs are classified as MEDIUM.

From Figure 2 we see that in cases where over-
optimism exists the simulation performs better with proc-
ess migration (“Both”) than without process migration in
terms of percentage of useful work, by a factor of 1.25 to
2.75 over useful work without process migration. The best
performance is at data point 20%, where “Both” (Fast re-
pository and slow spreading) performs approximately 2.75
times better than the simulation without process migration.
None of the variations of process migration perform better
than the simulation without process migration at data
points 0 and 100. At these points the simulation is bal-
anced; all LPs execute under one class of event granularity,
so it is likely that it is not over-optimistic. At data point 0,
all the LPs execute under Class [50 : null], whereas at data
point 100 all LPs operate under Class [200:1 msec]. The
LPs all have the same event granularity and progress at the
same pace, causing less rollback. The ratio of useful work
of less than one in these cases in which over-optimism is
absent is a result of the overhead of process migration.

When the application is unbalanced, process migra-
tion(Both) demonstrates maximum benefits performing by
a factor of 1.25 to 2.75 times better than the results without
process migration. When the application is overly optimis-
tic, with no migration, the simulation spends much of its
time rolling back its computation rather than progressing
forward and hence results in less useful work. On the other
hand, due to process migration, the over-optimistic LPs are
isolated on a separate processor slowing their progress
down and less optimistic LPs are allowed to make progress
by redistributing them on different processors. This helps
in reducing the differences among the progress of the LPs
and the number of rollbacks.

The two variations of process migration also perform
better than no process migration when the application is
unbalanced (data points 20% – 80%). In some cases the
fast repository (which limits fast LPs) produces the benefit,
while in other cases the spreading of slow LPs (which
promotes progress by the slow LPs) produces the benefit. It
depends upon the application state which type of LPs
dominates the simulation. To complement each of these
two approaches, we combined the two variations in our
implementation of the process migration algorithm. In this
combined approach, we control both the less optimistic and
over-optimistic LPs, consistently providing better perform-
ance in cases where over-optimism exists.

Figure 3 shows the execution time performance for the
above experiment, comparing the simulation run with proc-
ess migration and its various variations against the simula-
tion without process migration. It was observed that process
migration did not provide any benefit in terms of execution
time when the optimism is balanced(data point 0 and 100
when all LPs have same event granularity).The most benefit
in terms of execution time is obtained at 20% and 40% of
Class [200:1msec]. At these two points there is also a better
percentage of useful work, as shown in Figure 2. For data
points 60 and 80 it is observed that process migration takes
almost equal execution time compared to without process
migration. The percentage of useful work performed by the
process migration run for data point 60 is approximately 2
times better than without process migration and for data
point 80 is 1.15 times better than without process migration.
That is, although we do not benefit in terms of execution
time at these two data points, we do benefit in terms of use-
ful work. This is the result of migration overhead. If this
overhead consists largely of communication costs, then it
may be possible for external workloads to benefit from this
reduced work, as the CPU cycles not used in performing
wasted work would be available. However, we have yet to
characterize the computation/communication trade-offs of
process migration, and plan to do so in future work. For
point 100, without process migration(None) performs better
for both the percentage of useful work in Figure 2 and the
execution time in Figure 3. This is due to the application
being balanced at this instant as all LPs belong to one class
of self- instantiation and event granularity and thus progress
at the same pace. The overheads of process migration exceed
the benefits obtained when the application is balanced and
least optimistic.

Execution time performance

0

200

400

600

800

1000

0 20 40 60 80 100

% [200:1msec]

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s) None

Both

Fast repository only

Slow LP spreading
only

Figure 3: Execution Time Performance (Set 1)

Sachdev, Hybinette, and Kraemer

Figure 4 shows the results of varying the value of k,
used to determine the number of LPs to be classified as
FAST. This experiment is performed for the data point 40
of the previous experiment (60% [200:1], 40% [50:0]) It is
observed that as the number of fast LPs is increased, the
percentage of useful work also improves. However, if k is
large migration cost will dominate.

0

5

10

15

20

25

30

35

40

0 16 32 48 64

Size of fast repository

%
 u

se
fu

l w
or

k

Figure 4: FAST LPs Scaling Performance

4.3 Experiments under Set 2

Another set of experiments was performed, in which the
self-instantiation degree of messages and the delays of LP
execution were swapped in the two classes of operating re-
strictions to create imbalance in the application. With all
the other experimental parameters being the same as set 1,
but instead of varying the messages with self-instantiation
of 200 with LPs having event granularity one millisecond
as in previous experiments, we combined messages with
self-instantiation 50 with LPs having event granularity of
1millsecond. Again in this set of experiments we vary the
percentage Class [50: 1msec] from 0 to 100 in increments
of 20 percent. The remaining LPs in the system execute
with null event granularity (Class [200: null]).

Figure 5 shows the performance in terms of percentage
of useful computation for simulation runs with and without
process migration. Each of the two scenarios were plotted
to show the performance of the simulations with various
levels of optimism created by varying LPs with different
event granularity. As shown in Figure 5, it was observed
that process migration performs better than without it at all
the levels except at data point 100. This is because the
simulation application is balanced at data point 100. At
data point 100, all the LPs had one millisecond event
granularity. This caused all LPs to progress at the same
rate. In this scenario the overhead of process migration ex-
ceeded the benefits obtained by it and hence, the simula-
tion without process migration performed better. In all the
other instances, when the simulation is unbalanced, simula-
tion with process migration performs 1.2 to 1.79 times bet-
ter than without process migration.
Percentage of Useful Work

0

20

40

60

80

100

0 20 40 60 80 100

[50:1msec]

%
 o

f U
se

fu
l W

or
k

With Optimism
Control
Without Optimism
Control

Figure 5: Percentage of Useful Work (Set 2)

In Figure 6, we compare the execution time perform-

ance for the above experiment with simulation runs with and
without process migration. As mentioned above, due to the
simulation application being balanced at data point 0 and
100 as all the messages and LPs belong to one of the two
classes of self-instantiation and event granularity, we do not
observe any benefits in execution time. At data point 0, the
simulation without process migration performs better that
that with process migration both in terms of execution time
and percentage of useful work. Whereas at data point 100,
we obtain benefits in terms of percentage of useful work but
not in terms of execution time. A similar scenario exists at
point 80, where we obtain the benefits in terms of useful
work but not in execution time. For the remaining propor-
tions of Class [50:1msec], benefits in both execution time
and computation performance were obtained when the simu-
lation was run with process migration as compared to with-
out process migration. When the application is unbalanced,
the improvements in execution time by doing process migra-
tion were approximately 10 to 20 percent.

Execution Time Performance

0
100
200
300
400
500
600
700
800

0 20 40 60 80 100

 [50:1msec]

Ex
ec

ut
io

n
Ti

m
e

(s
ec

s)

With Optimism
Control

Without
Optimism
Control

Figure 6: Execution Time Performance (Set 2)

We observed that our algorithm performs better in

terms of useful work in all the experiments except when the
application is balanced. We observed that the migration cost
of LPs do incur a penalty in terms of execution time in some

Sachdev, Hybinette, and Kraemer

cases. One of the reasons for this penalty is that the PVM
communication is expensive. Due to resource limitations,
the experiments were performed on older hardware. By up-
dating the hardware we might reduce this migration cost to
some extent. Also it was observed that a higher value of k
improves the performance in terms of useful work, but may
incur higher migration cost in terms of execution time.
Hence, an appropriate value of k should be selected as a
tradeoff between useful work and migration cost.

5 CONCLUSIONS AND FUTURE WORK

In a standard optimistic parallel event simulation, no restric-
tion exists on how far an LP can proceed ahead of other LPs.
This imbalance may degrade performance as LPs may spend
more time rolling back than progressing forward. In order to
control such over-optimistic behavior, we implemented a
process migration system on distributed Georgia Tech Time
Warp (GTW). The process migration system classifies LPs
with respect to optimism as FAST, MEDIUM and SLOW
depending on how far each LP is making progress in simula-
tion time compared to other LPs. The statistic collected to
classify an LP is called GVTLag, the difference between an
LP’s current simulation time and the system’s GVT. We ag-
gregate the FAST LPs on one processor, the FAST-
REPOSITORY, to make them compete with each other for
available CPU cycles to slow their progress and conse-
quently isolate their impact on other logical processes. At
the same time we spread the SLOW LPs, by redistributing
each SLOW LP to a different processor. This provides
SLOW LPs with sufficient CPU cycles to make progress
and help them to catch up with the FAST LPs.

We performed various experiments with a synthetic
benchmark application called P-Hold. We implemented P-
Hold using two computation event granularities: null and
1msec. Additionally, P-Hold was configured to be self-
instantiating. In order to create imbalance in the applica-
tion LPs and events were classified into two classes having
a self-instantiation degree of either 50 or 200 and with or
without a 1 msec delay in event processing.

It was observed that whenever the application is unbal-
anced, the simulation with process migration performs 1.25
to 2.75 times better in terms of useful computation than that
without process migration. Also, the execution time under
unbalanced application conditions is either better than or
equivalent to the time taken without process migration.

 On the other hand, when the application is balanced
and over-optimism is minimal, simulations without proc-
ess migration perform better in terms of useful work and
execution time. This results from the overheads of proc-
ess migration exceeding the benefits obtained when the
application is balanced.

Due to high memory requirements and resource limita-
tions, we could not experiment with more than 256 LPs in
the simulation. We propose to experiment with more than
256 LPs in the future and observe how the process migra-
tion performs when the number of logical processes in-
creases in the simulation. Also, we propose to modify the
process migration algorithm to make the process of select-
ing the number of fast LPs dynamic and dependent on how
the simulation is performing. This could help in improving
the amount of useful work done and execution time com-
pared to the simulation without process migration.

A problem our approach may encounter in extreme
cases is that logical processes might aggregate on the same
processors, leaving other processors sparsely populated.
For example, we may encounter a situation in which a mil-
lion LPs are on one processor and one logical process is on
each of the remaining processors. Another problem could
be the movement of logical processes that are already bal-
anced. One of the possible solutions to alleviate such sce-
narios is to use a threshold to determine the number of
processes classified as fast.

We also propose to cluster LPs in a manner similar to
(Carothers and Fujimoto 2000), in order to reduce the
process migration cost. This would require a different met-
ric for evaluating process migration. We propose to evalu-
ate such a possibility and observe its performance com-
pared to without process migration.

REFERENCES

Burdorf, C. and J. Marti. 1993. Load Balancing Strate-
gies for Time Warp on Multi-User Workstations, The
Computer Journal, 36(2):168-176.

Carothers, C. and R. Fujimoto. 1994. Distributed Simula-
tion of Large-Scale PCS Networks. In Proceedings of
the Second International Workshop on Modeling,
Analysis, and Simulation of Computer and Telecom-
munication Systems(MASCOT’94), 2-6.

Carothers, C.D. and R. M. Fujimoto. 2000. Efficient Exe-
cution of Time Warp Programs on Heterogeneous,
NOW Platforms. IEEE Transactions on Parallel and
Distributed Systems, 11(3):299-317.

Das, S., R. Fujimoto, K. Panesar, D. Allison and M. Hybi-
nette. 1994. GTW: A Time Warp System for Shared
Memory Multiprocessors, In Proceedings of the 1994
Winter Simulation Conference, ed. D.A. Sadowski,
A.F. Seila, M.S. Manivannan, and J.D. Tew,332-339.
San Diego, California: Society for Computer Simula-
tion International.

Das S. and R. M. Fujimoto. 1997. Adaptive Memory
Management and Optimism Control in Time Warp,
ACM Transactions on Modeling and Computer Simu-
lation (TOMACS), 7(2):239-271.

Dickens, P.M. and P. F. Reynolds, Jr. 1990. SRADS with
local rollback. In Proceeding of the SCS Multiconfer-
ence on Distributed Simulation, 22:161-164.

Fujimoto, R. M. 1990. Performance of Time Warp under
Synthetic Workloads, In Proceedings of the SCS Mul-
ticonference on Distributed Simulation, 22: 23-28.

Sachdev, Hybinette, and Kraemer

Fujimoto, R. M. 2000. Parallel and Distributed Simula-

tion Systems, Wiley Series on Parallel and Distributed
Computing, 137 – 138.

Fujimoto, R.M., S. R. Das, K.S. Panesar, M. Hybinette and
C. Carothers, 1997. Georgia Tech. Time Warp Pro-
grammer’s Manual for Distributed Network of Work-
stations, Technical Report GIT-CC97-18, College of
Computing, Georgia Inst. of Technology, Atlanta, GA.

Hao, F., K. Wilson, R. Fujimoto and E. Zegura. 1996.
Logical Process Size in Parallel Simulations. In Pro-
ceeding of the 1996 Winter Simulation Conference,
ed. J. Charnes, D. Morrice, D. Brunner, and J. Swain,
645-652. New York, New York: ACM Press.

Jefferson, D.R. 1985. Virtual Time, ACM Transactions on
Programming Languages and Systems, 7(3):404-425.

Jefferson, D. R. 1990. Virtual Time II: The Cancel Back
Protocol for Storage Management in Distributed Simu-
lation. In Proceedings of the 9th Annual ACM Sympo-
sium on Principles of Distributed Computing, 75-90.

Jefferson, D. R., and H. Sowizral. 1985. Fast Concurrent
Simulation Using the Time Warp Mechanism, Part – I
: Local Control, ACM Transactions Programming
Languages and Systems, 7(3): 404-425.

Jones K. and S. R. Das. 1998. Combining Optimism Lim-
iting Schemes in Time Warp based Parallel Simula-
tions, In Proceedings of the 1998 Winter Simulation
Conference, ed. D.J. Medeiros, E.F. Watson, J.S. Car-
son and M.S. Manivannan, 499-505. Los Alamitos,
California: IEEE Computer Society Press.

Lin, Y.-B., and B. R. Preiss. 1991. Optimal Memory
Management for Time Warp Parallel Simulation, ACM
Transactions on Modeling and Computer Simulation,
283 – 307.

Lubachevsky, B.D., A. Shwartz and A. Weiss. 1989.
Rollback Sometimes Works…if Filtered. In Proceed-
ings of the 1989 Winter Simulation Conference, ed.
E.A. MacNair, K.J. Musselman, and P. Heidelberger,
630-639. New York, New York: ACM Press.

Madisetti V. K, D.A. Hardaker, and R. M. Fujimoto.
1993. The MIMIDIX Operating System for Parallel
Simulation and Supercomputing, J. Parallel and Dis-
tributed Computing, 18(4): 473-483.

Reiher, P.L. F. Wieland, and D. R. Jefferson. 1989. Limi-
tation of Optimism in the Time Warp Operating Sys-
tem. In Proceedings of the 1989 Winter Simulation
Conference, ed. E.A. MacNair, K.J. Musselman, and
P. Heidelberger, 765-770. New York, New York:
ACM Press.

Steinman, J. S. 1993. Breathing Time Warp, In Proceed-
ings of the Seventh Workshop on Parallel and Distrib-
uted Simulation, 23:109-118.
AUTHOR BIOGRAPHIES

VINAY SACHDEV received the MS in Computer Sci-
ence from the University of Georgia in the spring of 2004.

MARIA HYBINETTE is an Assistant Professor of Com-
puter Science at the University of Georgia. She earned the
Ph.D. (2000) and M.S. (1994) in Computer Science from
the Georgia Institute of Technology and a B.S.(1991) in
Math and Computer Science from Emory University, all in
Atlanta, Georgia.

EILEEN KRAEMER is an Associate Professor of Com-
puter Science at the University of Georgia. She earned the
Ph.D. in Computer Science from the Georgia Institute of
Technology in 1995, an M.S. in Computer Science from the
Polytechnic University in Brooklyn, NY in 1986, and a B.S.
in Biology Hofstra University in Hempstead, NY in 1980.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 402
	02: 403
	03: 404
	04: 405
	05: 406
	06: 407
	07: 408
	08: 409
	09: 410

