
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, B. A. Peters, eds.

VISUALIZING COERCIBLE SIMULATIONS

Joseph C. Carnahan
Paul F. Reynolds, Jr.

David C. Brogan

151 Engineer’s Way, PO Box 400740
Department of Computer Science, University of Virginia

Charlottesville, VA 22904-4740, U.S.A
ABSTRACT

The labor intensive aspects of simulation development and
maintenance make exploration of reuse essential. However,
reuse is generally difficult to achieve in practice due to
inflexible assumptions and changing requirements. This
paper discusses a technology for simulation reuse called
COERCE and the visualization tools that this technology
requires. COERCE addresses techniques to make simula-
tions more flexible (coercibility) and the process of trans-
forming a simulation to meet new objectives (coercion).
We address the following question: Given that COERCE is
a semi-automated technology, what visualization capabili-
ties are necessary to support it? We address this question
empirically by studying the role of visualization in the con-
struction of a new coercible simulation and in the coercion
of an existing example simulation. Based on this study, we
propose a set of requirements for any visualization toolkit
meant to support COERCE.

1 INTRODUCTION

A computer simulation is written at a specific time to solve
a specific problem, but many simulationists would like to
reuse and adapt simulations to serve new purposes. New
observational data often becomes available, challenging the
validity of a simulation as it was originally developed or
offering ways that the simulation could be expanded. Sci-
entists are working to develop dynamic data-driven sim-
ulations, which automatically respond to new streams of
observational data and incorporate this data in generating
new simulation results (Knight 2003). Simulation compos-
ability is another important area of research, where users
wish to dynamically assemble new simulations using ex-
isting simulations as components (Dahmann, Calvin, and
Weatherly 1999; Kasputis and Ng 2000; Petty and Wiesel
2003). As with other software, a high level of flexibility
and modularity would reduce the costs of developing sim-
ulations by allowing more code to be reused (Mili et al.,
2000).

Unfortunately, practical necessity forces simulation de-
signers to build certain assumptions into their simulations.
These assumptions include the settings for various simula-
tion parameters, the formulas selected to compute certain
values within the simulation, and the format of inputs and
outputs to the simulation system. When a simulation is
reused in a new setting, these assumptions may no longer
be valid.

1.1 COERCE: An Approach to Simulation Reuse

COERCE is a technology for facilitating simulation reuse
by addressing the problem of inflexibility in simulations.
COERCE is composed of two parts, coercibility and co-
ercion. Simulation coercibility is the study of designing
simulations to be more easily coerced. This can be ac-
complished by enabling the designers to identify flexible
points in the simulation. Simulation coercion is the process
of manipulating these flexible points, thereby transforming
a simulation to meet new requirements. When possible,
optimization and other tools are used to partially automate
the process (Waziruddin, Brogan, and Reynolds 2003).

In this paper, we explore requirements for visualiza-
tion tools to support COERCE. Coercing a simulation to
meet a new requirement is a semi-automated process: An
expert practitioner must be involved to direct the search and
provide constraints for the optimization (Reynolds 2002).
The expert practitioner directs the process, deciding when
to apply optimization techniques and when it is necessary
to modify the simulation code directly. When optimiza-
tion is used, an expert practitioner has to identify precisely
which parameters are most relevant to the new requirement
and specify ranges of values over which the optimization
should search. This semi-automated approach to coercing
simulations has been demonstrated successfully by Drewry,



Carnahan, Reynolds and Brogan
Coercible
Simulation
Library

Simulation
Instance
Library

Viewing,
Editing,
Constructing

Making
coercible

I.

Viewing,
Editing,
Instantiating

CoercingII.

Viewing,
Logging EvaluatingIII.

modification
Extract for

Insert coerced
simulation

New simulation insertion

Replace

Extract for definition

Extract for use

Run on data sets

Figure 1: Life Cycle of Coercible Simulations
Reynolds, and Emanuel (2002) and Carnahan, Reynolds,
and Brogan (2003).

A natural alternative to our approach to coercibility is
the use of parameters for each aspect of the simulation that
is expected to change (i.e. a data-driven approach). We
have identified the following problems with this approach:
1) The parameter space may become prohibitively large and
intractable; 2) A large parameter space can make simulation
performance unacceptable; 3) Why simulate for more con-
ditions than planned use may require? 4) Parameterization
cannot generally capture the infinitude of patterns, and their
effects, in a dynamic flow of data into an executing simula-
tion; 5) An approach involving control and data flexibility in
the simulation, coupled with judicious uses of optimization,
should prove to be better. We find these points sufficient
for rejecting a parameters-only approach, and consequently
advocate the identification and capture of opportunities for
expansion in a simulation. Our exploration of visualization
support for COERCE reflects this conclusion.

The role of expert insight and direction in COERCE
means that it is necessary to provide feedback to the ex-
pert user. Today, simulations model increasingly complex
and adaptive systems, where the user needs to explore and
summarize large amounts of high-dimensional data in or-
der to understand the simulation. Because of the difficulty
of adequately describing such complex systems, COERCE
must address the issue of how the user will receive feedback
about the simulations that are being manipulated. Visual-
ization tools are one way to facilitate understanding of these
complex simulation systems.
1.2 Challenges of Visualizing Coercible Simulations

As depicted in Figure 1, COERCE requires a visualization
capability in each phase of building and using a coercible
simulation. In Phase I, making coercible, a user indicates
opportunities within a simulation for altering its meaning.
We refer to this activity as “identifying flexible points.”
Flexible points include considerations for

• data type widening,
• value substitution for constants,
• changing loop convergence criteria,
• adding and removing stochastic elements,
• modifying branching criteria, and
• rearranging execution order.

To make the coercible simulation useful, the user also iden-
tifies the effects of employing selected combinations of
flexible points and code modifications. Note that Phase I
can either be applied to legacy simulations or concurrently
with the development of a new simulation.

In Phase II, coercing, a user acquires a simulation from
the coercible simulation library or the simulation instance
library and experiments with selected bindings to flexible
points and code modifications to meet a new set of simula-
tion requirements. Optimization contributes to Phase II by
automating the process of finding the best bindings for the
flexible points in the simulation. In Phase III, evaluating,
the user applies a coerced simulation by running it on one
or more data sets and examining the results.



Carnahan, Reynolds and Brogan
Considering the phases of COERCE, we observe nu-
merous opportunities for visualization, such as

• demonstrating the significance of each flexible
point identified in Phase I, as well as the complex
ways that these flexible points may be related,

• viewing and evaluating the progress of coercing a
simulation in Phase II, and

• logging and displaying the behavior of a coerced
simulation instance so that it can be evaluated in
Phase III.

From this, we can see that COERCE requires at least two
types of visualization: Data visualization to display the dif-
ferences between observed and desired simulation outputs,
and software visualization to display the structure and run-
time behavior of a simulation, supporting the discovery of
flexible points and highlighting which of these points have
the most bearing on any new simulation requirements that
arise.

In order to better understand the importance of vi-
sualization to coercible simulations, we have studied two
examples of COERCE in action and documented the role
of visualization in each. Based on these examples, we are
able to outline the requirements for a COERCE visualiza-
tion toolkit and evaluate how well existing toolkits satisfy
these requirements.

2 VISUALIZATION TECHNOLOGY

As we observed in section 1.2, COERCE requires data visu-
alization and software visualization to support construction
and manipulation of coercible simulations. Data visualiza-
tion and software visualization are both active areas for
research in the scientific computing, graphics, and soft-
ware engineering communities. In this paper, we are not
discussing an expansion of either technique, but instead a
consideration of the application of these techniques to the
challenges of simulation coercibility and coercion. How-
ever, before establishing the requirements for a COERCE
visualization system, it is important to review the capabilities
that modern visualization technology offers.

In data visualization, much of the current research is
focused on real-time interaction between the user and large
data sources. Flexible interfaces allow the user to dynam-
ically change the way the data is being displayed (North
and Shneiderman 2000). As coercion is applied to a data-
driven simulation, it will be important for the practitioner
to be able to change the mode of visualization while the
simulation is running. Researchers are also exploring per-
formance improvements to support rendering of large data
sets, including compression, caching, and data-culling tech-
niques (Guthe, Wand, Gonser, and Straßer 2002). As more
data becomes available to the user of the coercion system,
these techniques enable the practitioner to make decisions
about how to transform the simulation. Finally, research
in feature extraction techniques (Bryson et al., 1999) and
dimensionality reduction (Bingham and Mannila 2001) will
ease the computational burden on the visualization system
and the cognitive burden on the user as he or she tries to
understand the data.

In the area of software visualization, research continues
to focus on how software itself should be displayed, including
how to display causal relationships between different threads
in a program (Elmqvist and Tsigas 2003) and how to show
the ways that different objects in the code are used and
how frequently (Wang et al., 2003). It is also important
to interface with running programs in a way that does not
significantly impede the performance of the system, with
different researchers looking at augmented virtual machines
(Reiss 2003) and others continuing to focus on compiled-in
libraries for visualization (Schroeder, Martin, and Lorensen
1998).

3 COERCE/VISUALIZATION EXAMPLES

Previous work on COERCE references a simulation support
tool called SimEx (Carnahan, Reynolds, and Brogan 2003).
As part of SimEx, we have developed a customized visu-
alization toolkit, which is available online at <http://
www.cs.virginia.edu/˜mrm/visualization>.

For our research here we study two applications of
COERCE, employing this visualization toolkit:

• Building a coercible simulation of a multi-server
machine shop, where the number of repair tech-
nicians, number of machines, and other system
behaviors can be easily or even automatically cus-
tomized

• Coercing an agent-based simulation of evolving
creatures to a new requirement, namely that the
simulation reflect a more realistic relationship be-
tween the creatures’ size and abilities.

These two simulations are selected based on the following
criteria: First, both are conceptually simple and do not
require significant domain expertise to understand. Second,
the two examples represent different types of simulations,
namely a discrete-event simulation and a time-stepped sim-
ulation. Finally, they have different levels of familiarity
to the researchers. Together, they allow us to verify that
our visualization tools are useful for becoming acquainted
with a new simulation as well as for gaining insight into
simulations that are already familiar.

The first example centers on Phase I of the COERCE
life cycle (see Figure 1), making a simulation coercible.
The second example consists of coercing a simulation in



Carnahan, Reynolds and Brogan
Phase II, and both examples require a Phase III evaluation
of the results.

3.1 The Multi-Server Machine Shop

Consider a factory or workshop consisting of machines of
different types. As long as the machines are running, they
produce income. However, they eventually break down
and must be repaired. The shop has repair technicians
available to fix the machines, but the repair staff must
be paid regardless of whether any machines are currently
broken. We wish to maximize the shop’s profit by finding
the optimal balance between the cost of staff salaries and
the benefit of having additional staff available to repair
machines.

To explore this problem, we can build a model of
the shop. This can be implemented as a discrete-event
simulation, where machine breakdowns and machine repair
completions are the events of interest. Important parameters
to this simulation include

• the number of machines of each type,
• the value of the work accomplished by a machine

of each type in one hour,
• a distribution that describes the frequency of fail-

ures of each type of machine,
• a distribution that describes the time required to

repair each type of machine, and
• the number of repair technicians.

Given the problem statement, a simulationist would normally
define the number of machines and the hourly income
from each machine as simulation constants. The event
list would consist of one event for each machine’s next
failure and one event for each staff member’s next repair
completion, and the simulation code would sample the
specified distributions to generate future failure and repair
times. The resulting simulation would be easy to implement
and relatively efficient.

However, consider ways that the problem statement
could change: Suppose that more machines could be ordered
after the shop has already opened or that the number of repair
staff could fluctuate. There are an infinite number of ways
that this scenario could change, and most of these changes
would require a considerable amount of simulation rework.
Instead of paying the cost of this rework, we would like to
build a coercible version of this simulation in anticipation
of future requirements.

3.1.1 COERCE Objectives and Techniques

For this example, we construct a coercible simulation S’
based on an existing machine-shop simulation S and meeting
the following requirements:
1. S’ produces exactly the same results as S for the
original problem.

2. S’ simulates the original problem with comparable
performance to S.

3. S’ facilitates changing important simulation param-
eters, even permitting dynamic changes to occur
during the execution of the simulation.

To evaluate S’, we use a legacy C++ simulation of this
problem as S.

In part, the coercible simulation improves on the ex-
isting simulation by applying general purpose techniques
for writing reusable software, such as using a consistent
object-oriented design. Data structures such as the event
list and the queue of broken machines are abstracted as
objects. This abstraction is an important prerequisite to
applying our simulation-specific techniques for building a
coercible simulation.

In the simulation, all global constants are removed and
replaced with instances of classes that bind related simu-
lation parameters together. As an example, the parameters
governing each type of machine are defined in S as

// Mean time to failure
#define TYPE_I_FAILURE 400.0
// Duration of a repair
#define TYPE_I_JOBS 8
#define TYPE_I_JOBTIME 1.0
// Number of machines
#define NUMBER_OF_TYPE_I 300
// Hourly income
#define PROFIT_FROM_I 20.0

In the coercible simulation S’, these parameters are set by
defining a MachinesI object and initializing it:

FlexMachines MachinesI (400.0,
8,
1.0,
300,
20.0,
0, &Events);

Then, references to simulation parameters are replaced by
invoking methods on these objects. Using the MachinesI
example, the code

for (int i = 0;
i<NUMBER_OF_TYPE_I;
i++) {

is replaced by

for (int i = 0;
i<MachinesI.getNumberOfMachines();



Carnahan, Reynolds and Brogan
i++) {

To make the simulation coercible, these objects contain meth-
ods that allow the simulation parameters to be changed at
run time. These parameter-classes also contain all the code
needed to automatically manage dependencies between the
different parameters. For example, adding new Type I ma-
chines means adding new events to the event list, which the
MachinesI.setNumberOfMachines() method han-
dles automatically.

3.1.2 Role of Visualization

Visualization tools play an important role in this example of
Phase I, creating a coercible version S’of a simulation S. The
first requirement, of course, is that S’do everything S can do.
By instrumenting both S and S’ with a visualization toolkit,
quick side-by-side comparisons of the two simulations can be
made after every step of developing S’. These visualization
hooks into a coercible simulation continue to be useful for
the entire lifetime of the simulation.

Visualization tools also make it possible to explore the
new dimensions of flexibility that S’ possesses. That is,
they enable Phase III evaluation of the coercible simulation.
It is crucial to establish what the effects of changing each
flexible point are, so that future users of the simulation can
determine which points to manipulate in order to coerce the
simulation. Using the visualization toolkit, we create plots
to show relationships such as

• the optimal number of repair staff for different
numbers of type I machines,

• the optimal number of repair staff for different
numbers of type II machines,

• the effect of changing the random distribution of
repair times for one type of machine on the uti-
lization of the repair staff, and

• the effect on profit of being able to lay off or
hire new repair staff at either weekly or monthly
intervals.

A collection of visualizations like this makes it extremely
simple for future users of S’ to see the range of workshop
scenarios that can be modeled by this coercible simulation.

3.2 Agent-Based Evolution Simulation

Agent-based simulations are a popular and useful tool for
studying emergent biological and social phenomena. An
example of such a simulation isAchilles, an open-source sim-
ulation of evolving virtual creatures available from <http:
//achilles.sourceforge.net>. Each creature
contains a genetic makeup, determining the creature’s size,
strength, appetite, and behavior. Each creature’s behavior
is driven by a neural network, which determines where the
creature should move and when it should either fight or mate
with other creatures that it encounters. Creatures die from
either fighting, starvation, or old age, and new offspring
are created when two creatures mate. Each new creature’s
physical and behavioral characteristics are determined by
mixing the characteristics of its parents. Since creatures
with better attributes are more likely to survive long enough
to reproduce their genes, stronger creatures with more intel-
ligent behaviors become more common and other creatures
die off.

The Achilles simulation is a very simple model of evolv-
ing creatures. For instance, the documentation indicated that
each of the creatures’ genetic attributes are independent of
each other, meaning that there is no relationship between the
size, strength, or metabolism of any given creature. So, we
propose the following new requirement for this simulation:

Requirement 1: The size of a creature should be
positively correlated with its strength and its metabolism.

In other words, we are coercing this simulation so that
larger creatures are stronger but also require more food than
their smaller peers.

3.2.1 COERCE Objectives and Techniques

To begin the coercion process, we instrument the Achilles
simulation with the SimEx visualization toolkit, setting up
visualizations to display

• average values across the whole population for sev-
eral individual genes (strength, metabolism, size,
natural lifespan, etc.), and

• correlations between strength and size and between
metabolism and size across the entire population.

These visualizations are constructed as software oscillo-
scopes, dynamic displays that show the values of selected
variables or functions of values on the Y-axis while time
advances left-to-right along the X-axis. These oscilloscope
displays provide an effective way to visualize multidimen-
sional simulation data: For example, the seven different
genes describing each creature’s physical characteristics
could be displayed as seven different traces on the same
oscilloscope screen, making it easy to observe relationships
between the genes and to watch the makeup of the population
change as new creatures entered and left the simulation.

After deciding to use oscilloscope visualizations, linking
the visualization toolkit to the unfamiliar simulation proves
to be reasonably easy. The process consists of the following
steps:

1. Review the simulation documentation to determine
which simulation variables need to be visualized.



Carnahan, Reynolds and Brogan
2. Locate these variables in the code and create data
structures in the visualization code to correspond
to each of these variables.

3. Add code to the simulation main-loop to update the
values of the visualization data structures every time
the simulation updates the corresponding variables.

In the process, we need to locate the simulation main-loop
and the simulation variables for the creatures’ genes. How-
ever, this imposes no additional work, because Requirement
1 relates directly to the values of these variables. Therefore,
any transformation of the simulation to meet Requirement
1 would require locating the same sections of code that are
used by the visualizations.

Unlike previous simulation coercion examples (Drewry,
Reynolds, and Emanuel 2002; Carnahan, Reynolds, and Bro-
gan 2003), this coercion does not involve any optimization.
Instead, we apply the following code modifications: The
function that returned the strength of a creature is modi-
fied so that instead of returning the value of the creature’s
strength gene, it returns an average of the creature’s strength
gene and its size gene. Similarly, the function that returns
the metabolism of a creature was modified so that instead
of returning the value of the creature’s metabolism gene, it
returns an average of the creature’s metabolism gene and
its size gene.

So, creatures keep independent size, strength, and
metabolism genes, but when the simulation evaluates a
creature’s strength or metabolism for purposes of fighting
or feeding, the creature’s size influences the result. With
this modification, the simulation meets the new requirement.

3.2.2 Role of Visualization

While this problem is a relatively simple instance of sim-
ulation coercion (Phase II), visualization is still essential
to the process. Instrumenting the code to set up these vi-
sualizations is a useful exercise in itself, since it involves
locating the relevant variables and determining where in
the simulation their values can change. More importantly,
visualization contributes to the overall understanding of the
complex system that this simulation represents. Agent-based
systems can exhibit discontinuous and even chaotic emer-
gent behaviors, which are difficult to capture with analytical
formulas or static data tables. Using visualization, however,
we are able to explore interactions between different ge-
netic factors and observe the rate at which the population’s
genetic makeup changes over time.

Once the simulation has been modified, visualization
makes it easy to evaluate the simulation (Phase III) and
confirm that the simulation meets its new requirement. Using
coercible simulations is an iterative process, and so if the
requirement has not been met, then the visualization can
provide useful information about the problem that would
guide future coercion steps. For example, consider this
variation of Requirement 1:

Requirement 2: The size of a creature should be
correlated with its strength with a correlation value between
0.5 and 0.75.

The modification that was used to satisfy Requirement
1 would probably not be sufficient: The visualization would
show a correlation that is positive but not exactly in the
specified range. To meet this new requirement, we return
to Phase II and continue coercing the simulation. In this
example, we could add a weighting factor when the size gene
is averaged with the strength gene, changing the amount of a
difference that size makes in the creature’s effective strength.
Then, we could use optimization techniques to search for a
value for this weight-parameter that would yield a correlation
in the range between 0.5 and 0.75. Finally, we would use
visualization to evaluate the simulation and confirm that
this simulation instance met the new requirement.

4 DISCUSSION

These examples illustrate how visualization tools contribute
to COERCE technology. In general, visualization supports
construction of coercible simulations in three ways:

• Visualizations can be constructed to show the ef-
fects of changing each flexible point in the simu-
lation.

• Visualization helps with validation, particularly in
cases where another validated instance of a simu-
lation is available for comparison.

• Visualization features in a simulation can be reused
to construct new visualizations and support coerc-
ing this simulation to new requirements in the
future.

Without visualization, future users must rely on the static
documentation and on the code itself in order to understand
a coercible simulation. With visualization, the developer
of a coercible simulation can deliver a dynamic picture
of the ranges of capabilities that it offers, overcoming the
complexity inherent in flexible simulation systems.

We also demonstrated that visualization supports sim-
ulation coercion in several ways:

• Visualizations provide useful information regarding
which internal values of the simulation are related
to the simulation’s new requirement.

• Visualization assists with measuring the progress
of the coercion, even in the presence of complex
simulation behavior.

• Visualization enables the user to verify that the
modification and optimization steps of the coer-
cion process are not interacting with each other or



Carnahan, Reynolds and Brogan
with existing simulation requirements in undesir-
able ways.

Visualization accelerates the coercion process by enabling
the simulationist to take the coercion steps that will be most
effective at making a simulation meet its new requirement.

4.1 Requirements for a COERCE Visualization Toolkit

The examples we studied serve to establish the importance
of visualization to COERCE, and they provide insight into
requirements for a COERCE Visualization Toolkit (CVT).
Taking these examples together with the description of
coercible simulations in section 1.2, we enumerate what
visualization support is necessary for COERCE:

1. Dynamic data display
2. Save and replay capabilities
3. Application-specific extensions

First and foremost, the CVT must be able to display
data dynamically, animating the display as the simulation
is running. At a minimum, this is the software oscilloscope
capability defined in Section 3.2.1, where an arbitrary num-
ber of simulation variables can be plotted against time and
updated as the simulation is running. Typically, simulations
simulate a sequence of events occurring over time in the
order in which the events would occur. As a result, the
most intuitive way to understand the phenomenon that is
being simulated is to watch the simulation itself unfolding
over time. Even for simulations that simulate phenomena
without any temporal component, it is still useful to use time
as another dimension to analyze the simulation’s behavior:
For example, a single-processor simulation of a hundred
coins being flipped simultaneously would still compute the
hundred coin-flips in sequence. Watching the ratio of heads
to tails converge toward 1:1 as the simulation ran would still
give the user insight into the effect that changing the number
of coins has on the simulation, even though the simulated
coins are not sequentially dependent on each other.

Second, the CVT must have the ability to save and
replay visualizations. This is especially important in Phase
I, where a visualization that demonstrates the significance
of each of a coercible simulation’s flexible points could be
stored together with the new coercible simulation in the
library. However, this is also useful for Phase II (coercion),
where the simulationist would like to apply a coercion step
and then compare the modified simulation to the original.
The ability to save and replay the visualization from the
original simulation would save the cost of having to re-run
the original simulation in parallel with the modified version
in order to compare them.

Beyond these two baseline capabilities, numerous vi-
sualization features and tools enable COERCE in different
ways depending on the application. For the Achilles simula-
tion, software oscilloscope visualizations provided all of the
information necessary for COERCE to proceed. However,
bar graphs and both two-dimensional and three-dimensional
scatter plots were used to represent relationships between
variables in the multi-server machine shop example. Mean-
while, when coercing simulations with spatial semantics,
such as the bicyclist simulation used in Carnahan, Reynolds,
and Brogan (2003), a visualization of the trajectory of each
object is indispensable for understanding the overall behavior
of the simulation. As a result, while none of these additional
visualization capabilities (scatter plots, 3-D viewing, etc.)
are required for all instances of COERCE, we recognize
that each of these capabilities contributes substantially to
using COERCE in specific application areas.

The fact that only the first two of these three require-
ments apply uniformly to all simulations means that many
existing visualization toolkits are already sufficient to be
used as COERCE visualization toolkits. The SimEx pro-
totype toolkit developed for this paper meets the require-
ments of a CVT, as do more sophisticated 3-D visualization
toolkits such as VTK <http://www.vtk.org>. In
fact, a simple oscilloscope-only toolkit such as GScope
<http://gscope.sourceforge.net> would still
be very useful for many simulation coercion problems.

4.2 Future Work

Supported by visualization, COERCE technology continues
to show promise for facilitating simulation reuse. In order
to make coercible simulations easier to develop, we are
exploring programming language constructs and features
that support simulation coercibility. In addition, we are
continuing to expand the theoretical foundations and the
software tools on which COERCE is built.

4.2.1 Language Support for Coercibility

The machine shop problem is an example of building a co-
ercible simulation using existing language tools and features.
Constants and variables were made coercible by replacing
them with function calls, so that their values could be easily
modified and even changed at run time.

However, there are several questions that arise from
this approach to building coercible simulations. The first
issue is performance: Substituting a function call for every
variable evaluation adds a considerable amount of overhead
to a simulation. An ideal framework for building coercible
simulations would preserve flexible points for use in the
future while optimizing the program’s performance for its
use in the present.

More importantly, simulation developers need ways to
identify and take advantage of flexible points other than
simulation constants. In section 1.2, we listed several other



Carnahan, Reynolds and Brogan
kinds of flexible points, such as modifying branching con-
ditions or rearranging the execution order of an existing
algorithm. In order to support new kinds of flexible points,
as well as to handle all kinds of flexible points with better
performance, language support for coercible simulations is
needed.

Note that coercibility language support does not add
requirements to those we have already identified for vi-
sualization for COERCE. For language provisions such as
relaxation of loop convergence criteria, a software oscillo-
scope supports the display of critical loop variables over
time. The impact of relaxing the loop can be observed
through graphics already associated with the simulation.

4.2.2 Development of COERCE Theory and Tools

As stated above, a visualization toolkit is only one part
of SimEx, a software support system for COERCE. With
the development of a useful visualization library, future
work should include building a user-friendly system for
extracting data from the simulation and relaying this data
to the visualization software. In addition, optimization
tools that compute the best values for flexible simulation
parameters could also use this automatically extracted data.
The result is that by linking a single library to a simulation,
it will be possible to visually explore the behavior of the
simulation while also using optimization to tune simulation
parameters for any new requirements that are given.

Meanwhile, important methodological questions remain
about how COERCE can be most effective. The interleaved
use of optimization and manual code modification saves a
considerable amount of developer effort relative to a com-
pletely manual approach to simulation transformation, but
it would be even better if we were able to recommend
exactly when optimization is most beneficial and what the
limitations of optimization on a given simulation will be.
Similarly, a more theoretical analysis could provide guide-
lines on how flexible a coercible simulation needs to be
in order to meet requirements that differ from its initial
requirements in a specified way.

Simulation reuse continues to be the central goal of
COERCE research. Visualization tools can help simulation-
ists reach this goal by improving their understanding of the
simulations that are being reused and the new requirements
that arise in reuse situations. As demonstrated by the exam-
ples in this paper, visualization gives the simulationist the
information needed to effectively apply tools like optimiza-
tion, code modification, and coercible-simulation language
constructs to a simulation. As a result, visualization tools
are an important component of COERCE technology.
ACKNOWLEDGMENTS

We acknowledge our colleagues in the Modeling and Simu-
lation Laboratory at the University of Virginia for providing
ideas, feedback, and additional simulation examples for
exploring simulation coercion. The group web site is lo-
cated at <http://www.cs.virginia.edu/˜mrm>.
We acknowledge the developers of the Achilles simulation,
which was used as an example in this paper. Finally, we
acknowledge the Defense Modeling and Simulation Office
(DMSO), which supported the initial phase of this research.

REFERENCES

Bingham, E., and H. Mannila. 2001. Random projection in
dimensionality reduction: Applications to image and
text data. In Proceedings of the Seventh ACM SIGKDD
International conference on Knowledge Discovery and
Data Mining, 245–250: ACM Press.

Carnahan, J. C., P. F. Reynolds, and D. C. Brogan. 2003. An
experiment in simulation coercion. In Proceedings of the
2004 Interservice/Industry Training, Simulation, and
Education Conference. Arlington, Virginia: National
Training Systems Association.

Dahmann, J. S., J. O. Calvin, and R. M. Weatherly. 1999. A
reusable architecture for simulations. Communications
of the ACM 42 (9): 79–84.

Drewry, D. T., P. F. Reynolds, and W. R. Emanuel. 2002. An
optimization-based multi-resolution simulation method-
ology. In Proceedings of the 2002 Winter Simulation
Conference, ed. E.Yücesan and C.-H. Chen. Piscataway,
New Jersey: Institute of Electrical and Electronics En-
gineers, Inc. 467–475.

Elmqvist, N., and P. Tsigas. 2003. Growing squares: Ani-
mated visualization of causal relations. In Proceedings
of the 2003 ACM Vymposium on Software Visualization,
17–ff: ACM Press.

Guthe, S., M. Wand, J. Gonser, and W. Straßer. 2002. Interac-
tive rendering of large volume data sets. In Proceedings
of the Conference on Visualization ’02, 53–60: IEEE
Computer Society.

Kasputis, S., and H. C. Ng. 2000. Composable simulations.
In Proceedings of the 2000 Winter Simulation Confer-
ence, ed. J. A. Joines, R. R. Barton, K. Kang, and
P. A. Fishwick, 1577–1584. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers, Inc.

Knight, D. 2003. Data driven design optimization methodol-
ogy: A dynamic data driven application system. Berlin:
Springer-Verlag.

North, C., and B. Shneiderman. 2000. Snap-together visual-
ization: a user interface for coordinating visualizations
via relational schemata. In Proceedings of the Working
Conference on Advanced Visual Interfaces, 128–135:
ACM Press.



Carnahan, Reynolds and Brogan
Petty, M. D., and E. W. Wiesel. 2003. A composability
lexicon. In Proceedings of the 2003 Spring Simulation
Interoperability Workshop. Orlando, Florida: Simula-
tion Interoperability Standards Organization.

Reiss, S. P. 2003. Visualizing java in action. In Proceedings
of the 2003 ACM Symposium on Software Visualization,
57–ff: ACM Press.

Reynolds, P. F. 2002. Using space-time constraints to guide
model interoperability. In Proceedings of the 2002
Spring Simulation Interoperability Workshop. Orlando,
Florida: Simulation Interoperability Standards Organi-
zation.

Schroeder, W., K. Martin, and B. Lorensen. 1998. The
visualization toolkit: An object-oriented approach to
3-d graphics. Upper Saddle River, New Jersey: Prentice
Hall PTR.

Waziruddin, S., D. C. Brogan, and P. F. Reynolds. 2003.
The process for coercing simulations. In Proceedings
of the 2003 Fall Simulation Interoperability Workshop.
Orlando, Florida: Simulation Interoperability Standards
Organization.

AUTHOR BIOGRAPHIES

JOSEPH C. CARNAHAN is a member of the Ph.D. pro-
gram in Computer Science at the University of Virginia.
Joseph earned his B.S. in Computer Science at the College
of William and Mary, and has held the position of Scientist
at the Naval Surface Warfare Center, Dahlgren Division.
His email address is <carnahan@virginia.edu>.

PAUL F. REYNOLDS, JR. is a Professor of Computer Sci-
ence at the University ofVirginia. He has conducted research
in Modeling and Simulation for over 25 years, and has pub-
lished on a variety of M&S topics, including parallel and dis-
tributed simulation, multi-resolution modeling and coercible
simulations. He has advised industrial and government agen-
cies on matters relating to modeling and simulation. He is
a plank holder in the DoD High Level Architecture. His
email address is <reynolds@virginia.edu>.

DAVID C. BROGAN earned his Ph.D. from Georgia Tech
and is currently an Assistant Professor of Computer Science
at the University of Virginia. For more than a decade, he
has studied simulation, control, and computer graphics for
the purpose of creating immersive environments, training
simulators, and engineering tools. His research interests
extend to artificial intelligence, optimization, and physical
simulation. His email address is <brogan@virginia.
edu>.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 411
	02: 412
	03: 413
	04: 414
	05: 415
	06: 416
	07: 417
	08: 418
	09: 419


