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ABSTRACT 

This paper develops a variant of Simulated Annealing (SA) 
algorithm for solving discrete stochastic optimization prob-
lems where the objective function is stochastic and can be 
evaluated only through Monte Carlo simulations.  In the 
proposed variant of SA, the Metropolis criterion depends 
on whether the objective function values indicate statisti-
cally significant difference at each iteration. The differ-
ences between objective function values are considered to 
be statistically significant based on confidence intervals 
associated with these values.   Unlike the original SA, our 
method uses a constant temperature. We show that the con-
figuration that has been visited most often in the first m it-
erations converges almost surely to a global optimizer.  

1 INTRODUCTION 

In this paper, we consider a class of optimization problems 
where the objective function is a stochastic discrete func-
tion and can be evaluated only through Monte Carlo simu-
lation. A general problem of discrete stochastic optimiza-
tion can be defined as  
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where S  , the search space, is a large, finite, and discrete 
set; i  is the design parameters; )(if is the performance 
measure of interest; and )( ω,iY  represents the sample per-
formance function based on a sample realization ω (ω can 
be thought of as representing the randomness in the sys-
tem, e.g., all the random numbers in a simulation run). If 
the expected value )]([ ωi,YE  can be found analytically for 
all i  then, (1) represents a deterministic optimization prob-
lem which can be solved either analytically or numerically 
by methods of numerical programming. We are interested 
in those systems whose )(if cannot be easily obtained 
through analytical means and therefore must be estimated 
from sample paths, e.g., via discrete event simulation. 
Many real-life systems such as communication networks, 
computer systems, production systems, transportation net-
works, reliability systems, flow networks and flexible 
manufacturing systems can be modeled as discrete-event 
systems. These systems are driven by the occurrence of 
discrete events. Due to the complex interactions of such 
discrete events overtime, the performance analysis and op-
timization of these systems can be difficult tasks. At the 
same time, since such systems are becoming more wide-
spread as a result of modern technological advances, it is 
important to develop efficient methods for optimizing the 
parameters of these systems. 
     Simulated annealing (SA) was proposed originally by 
Kirkpatrick et al. (1983) for solving complex deterministic 
optimization problems with discrete space. SA has shown 
successful applications in a wide range of combinatorial 
optimization problems, and this fact has motivated re-
searchers to use SA in simulation optimization. However 
SA still needs to evaluate the objective function values ac-
curately, and there have been few theoretical studies for the 
SA algorithm when the objective function is estimated 
through simulation.    
     Gelfand and Mitter (1989) presented a theoretical 
analysis for the SA algorithm when the objective function 
includes noise. They showed that under suitable conditions 
on the noise, the modified annealing algorithm exhibits the 
same convergence in probability to the globally minimum 
energy states as the original annealing algorithm. Gutjahr 
and Pflug (1996) generalized the classical convergence re-
sult for the SA algorithm to the case where cost function 
observations are disturbed by random noise. They showed 
that for a certain class of noise distributions, the conver-
gence assertion remains valid, provided that the standard 
deviation of the noise is reduced in the successive steps of 
cost function evaluation with a speed O( γ−k ), where γ  is 
an arbitrary constant larger than one.  
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      Roenko (1990) applied SA algorithm to a stochastic 
optimization problem. His approach, however, makes it 
necessary to store all feasible solutions encountered during 
the execution of the algorithm and to compare them with 
each newly generated solution. It seems that this approach 
is not realistic for practical applications due to the compu-
tational burden involved.   
     Alrefaei and Andradottir (1999) presented a modifica-
tion of the SA algorithm for discrete stochastic optimiza-
tion problems. Their modification differs from the original 
SA algorithm in that it uses a constant (rather than decreas-
ing) temperature. Also for estimating the optimal solution 
they considered two approaches. The first approach uses 
the number of visits the algorithm makes to the different 
states (divided by a normalizer) to estimate the optimal so-
lution. The second approach uses the state that has the best 
average estimated objective function value as an estimate 
of the optimal solution. They showed that both approaches 
are guaranteed to converge almost surely to the set of 
global optimal solutions.  
     Alkhamis et al. (1999) presented a variant of the SA al-
gorithm for discrete stochastic optimization problems. The 
basic idea of their modification is to make the comparison 
between state (solution) i and state j based on whether the 
objective function value indicates statistically significant 
difference at each iteration. The differences between objec-
tive function values are considered to be statistically sig-
nificant based on confidence intervals associated with 
these values. They showed that under suitable conditions 
on the random noise, the modified annealing algorithm 
converges in probability to the set of optimal solutions. 

In this paper we present different variant of SA that is 
based on the approach of Alkhamis et al., but instead of us-
ing decreasing temperature we use constant temperature, 
also for estimating the optimal solution we use the state 
that is visited most often by the algorithm as the estimated 
optimal solution (this is similar to the approach proposed 
by Andradottir (1995, 1996), Alrefaei and Andradottir 
(1999)). We show that our new variant of SA algorithm 
converges almost surely to the set of optimal solutions. 

The paper is organized as follows. In section 2, we re-
view the original SA algorithm and present our modifica-
tion of SA to handle objective functions disturbed with 
noise. Next, in Section 3, we present our convergence 
proof to the modified annealing algorithm. Finally, section 
4 contains some concluding remarks. 

2 THE MODIFIED SIMULATED  
ANNEALING ALGORITHM 

2.1 SA with Deterministic Cost Function 

In this section, we give a brief description to the original 
SA algorithm so as to further motivate our modification. 
To describe SA algorithm we need the following defini-
tions and assumption.  
Definition 1   For each Si ∈   there exists a subset    
N(i)  of  S - { i }  which is called the   set of neighbors of  
i, such that each point in N(i) can be reached from i  in a  
single transition. 

Definition 2    A function G : S× S →  [0,1] is said to 
be a generating probability function for  S and   N  if 
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Here Gij is the probability of generating solution point j  
as a candidate for the next solution point, when the system 
is in solution point i. We will consider Gij such that the 
probability is distributed uniformly over N(i).  

 
Assumption 1   For any pair ( i , j ) SS ×∈ , j  is 

reachable from i , i.e. there exists a finite se-
quence, { }  and ji ,ii that   such,  somefor  n nn0mm 0
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In SA, one needs a sequence of positive real numbers 
{ } 10k,Tk ,...,= satisfying Tk ≥  0, k  TT k1k ∀<+ , and 

.∞=∞→ kk Tlim  Tk is called the temperature at the kth itera-
tion and the sequence { } ,...1,0k ,Tk = is called the Cooling 
schedule. The SA algorithm can be described as a sequence 
of Markov chains with the state space being the domain of 
the objective function to be minimized. Let Xk denotes the 
state of the system visited by the SA algorithm at the kth step. 
Now we state the original simulated annealing algorithm: 
 
Algorithm 1 
 

1. Obtain an initial solution X0 ∈ S. Set k = 0.  Ob-
tain an initial temperature Tk > 0. 

2. Given Xk = i  , choose a candidate Zk ∈ N( i ) with 
probability distribution P[Zk = j  | Xk = i ] = Gij ,  
j  ∈  N( i ). 

3. Given Zk = j  , generate Uk
  ~ U[0,1], and set  
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here for all  a ∈ R , a+  =  a  if  a >  0 ,  and  a+  
=  0  otherwise)  

4. Set k = k + 1 . Update Tk    and go to step 2. 
 

The stochastic random process {Xk} produced by the SA 
algorithm above is a discrete-time inhomogeneous Markov 
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chain defined over states S, and its state transition probabil-
ity is given by    

 
=)(kPij P[Xk+1 = j | Xk = i] 
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where Gij denotes the generating probability, and 

]min[  f(i))/T-(f(j)- exp  ,1 k  denotes the acceptance prob-
ability, i.e. the probability of accepting state j , once it is 
generated from state i, and Tk denotes the temperature con-
trol parameter. If we fix the temperature Tk at T, i.e., Tk = 
T, for all k, then the Markov chain constructed by algo-
rithm 1 is a time-homogeneous Markov chain with transi-
tion probability matrix P defined as follows: 

 
=ijP P[Xk+1 = j | Xk = i] 
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The Markov chain, defined in (3), has stationary distribu-
tion π(T), whose components are given by   
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 Aarts and Korts (1989), discuss conditions under which 
the above SA algorithm converges asymptotically to the 
global minimum. 
     As it can be seen in algorithm 1, the SA algorithm 
needs to evaluate the objective function value f )i(  accu-
rately. Here we are considering situation where f )i(  can 
only be evaluated via Monte Carlo simulation. Since the 
input processes driving the simulation are random, the out-
put from the simulation is also random. The runs of the 
simulation do not directly yield the desired measures of 
system performance but they only give estimates of the 
performance measures. Since the estimators are themselves 
random variables, they are subject to sampling error. Ac-
cordingly, SA algorithm must be modified to handle the 
stochastic nature of the simulation output. 

2.2 The Modified SA Algorithm  

Now we describe our modified simulated annealing algo-
rithm. On the kth iteration with current configuration 
(state) i  and a candidate configuration j , we generate Nk 
independent observations of the difference Dji = Yj-Yi be-
tween the cost of  Yj of state j  and the cost Yi  of state i . 
Let 
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respectively denote the sample mean and sample standard 
error of the mean based on the observed sample of  Dji . Let  
tk denote a selected upper critical value of student’s t-
distribution with 1Nk −  degrees of freedom. In the pro-
posed variant of SA, the Metropolis criterion has the form   
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The transition matrix for the kth step is given by  
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where  kU  is a uniform random variable defined on the in-
terval [0,1]. Note that if  )i(Nj ∈ , then   
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Before presenting the modified SA algorithm, we need the 
following assumption.  

 
Assumption 2    Let }{ kN be a sequence of positive 

integers such that  ∞→kN  as   .k ∞→    
The steps for the modified  SA algorithm are as follows. 
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Algorithm 2  

 
1. Select a starting point i0 ∈ S. Let )i(V 00 = 1 and 

0=j)(V0  for all j ∈S, j ≠  i0. Let k = 0 and 

0
*
k iX = . Go to step 2. 

2. Given Xk = i  , choose a candidate Zk ∈ N( i ) with 
probability distribution  P[Zk = j  | Xk = i ] = Gij ,  
j  ∈  N( i ). 

3. Given jZ k = , generate two  Nk independent ob-

servations kN
i

2
i

1
i Y  ,...  ,Y  ,Y and kN

j
2
j

1
j Y  ,...  ,Y  ,Y  . 

Evaluate .ˆ and Y ,Y kji σ  
4. Given jZ k = ,  generate ],1,0[U~U k  and set 
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5. Set  k = k +1 , 1XV=)XV k1-kkk +)((  and  Vk(j) 
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The stochastic process {Xk, k = 0, 1, 2, ...} generated by 
algorithm 2 is a time inhomogeneous Markov chain with 
transition matrix  given in (5) . 

3 CONVERGENCE OF THE MODIFIED  
SA ALGORITHM 

In this section we discuss the convergence of our modified 
SA algorithm and show that our approach is guaranteed to 
converge almost surly to the set of global optimal solutions. 

Proposition 1   ijij PkP →)(~   as  ∞→k , for all 

Sj,i ∈  where ijij P  and  kP )(~  are the transition probabili-
ties matrices given in equations (5) and (3) respectively.  

Proof     If ji ≠ ,  then     kP lim ij
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where the third equality follows from the strong law of 
large number and the assumption that ∞→kN as ∞→k . 
Note that 

 
2
i

2
j

pN

1

2
jiji

k

k
DD

1N
1 σσ +→∑ −
− =

)(  as ∞→kN , 

 
therefore 

 
0ˆ p

k →σ   as  ∞→kN . 
 
Proposition 2    The Markov chain with the transition 

matrix P given in equation (3) is irreducible, aperiodic and 
has stationary distribution },{ Sjπ j ∈ given in equation (4). 

Proof    Assumptions 1-3 imply that all states can be 
reached from each other, then the transition probability 
matrix P is irreducible. To proof that the Markov chain is 
aperiodic, we need to show that 0pii > . Since periodicity 

is class properties. Let  ** Si ∈  and  )( *iNi ∈  with 

).()( * ifif <  Then, from the definition of P, 0p **ii >  and 

therefore, P is aperiodic. The proof that  },{ Sjj ∈π is the 
stationary distribution of P can be found in proposition 3.1 
in Mitra et al.  (1986). Note that, the Markov chain with 
the transition matrix P is irreducible aperiodic with posi-
tive recurrent states, that is , 0P Limπ n

ij
n

j >=
∞→

. In this case, 

},{ Sjπ j ∈ is a stationary distribution and there exists no 
other stationary distribution. 

Lemma 1 (Andradottir (1995), Lemma 3.1) 
Suppose that }{ kX is a non-homogeneous Markov chain 
with a finite state space S and transition matrix 

ijij PkP →)(~  as  ∞→k  for all Sj   ,i ∈  and  P is an irre-
ducible and aperiodic Markov chain, let RS:g →  be a 
real valued function on the state space S. Then  

∑ ∑=
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where },{ Sjπ j ∈  is the equilibrium distribution of  P.  
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Corollary 1    Let 
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In other words, if we observe the process {Xk}, the average 
number of visits to state  j during the first  M  iterations 
converges to πj   for large  M. Note  that VM(j) = 

∑
=

M

1k }{ jX k
1 =  which implies that   

M
  )j(VM  asymptoti-

cally equals  πj. Now we state and prove the convergence 
theorem of algorithm 1.  

THEOREM 1    The sequence }{ *
kX  generated by algo-

rithm 2 converges almost surely to S*; i.e., 
P{ 11lim **

k S={Xk
1 ==

∞→
}} , where S* is the set that contains 

the optimal configurations.  
 Proof    The Markov chain with transition matrix P is 

irreducible and aperiodic (Aarts and Korst (1989)). By 
Proposition 1, we have ijij PkP →)(~ as ∞→k .  Suppose 

that Si ∈ * and j *S∉ , then )()( jfif ≤ .  Then by the 

definition of jπ , we have 
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proof. 
Corollary 2    If there is only one point in S* , i*, then   

 surely.almost   k  as  iX k ∞→→ **  

4 CONCLUSION 

In this paper, we have proposed a new variant of Simulated 
Annealing algorithm for solving discrete stochastic optimi-
zation problems where the objective function is stochastic 
and can be evaluated only through Monte Carlo simula-
tions. This variant is important when either the objective 
function cannot be computed exactly or such an evaluation 
is computationally expensive. In the proposed variant, the 
Metropolis criterion depends on whether the objective 
function values indicate statistically significant difference 
at each iteration. The differences between objective func-
tion values are considered to be statistically significant 
based on confidence intervals associated with these values. 
This new variant uses a convergence criterion where we 
use the number of visits by the Markov chain generated by 
the proposed algorithm to the different states to estimate 
the optimal solution.  Unlike the original SA, our method 
uses a constant temperature and is guaranteed to converge 
almost surely to a global optimal solution. 
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