
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

EFFICIENT SIMULATION-BASED DISCRETE OPTIMIZATION

Seth D. Guikema
Rachel A. Davidson

Zehra Çağnan

School of Civil & Environmental Engineering
Hollister Hall

Cornell University
Ithaca, NY 14850, U.S.A.

ABSTRACT

In many practical applications of simulation it is desirable
to optimize the levels of integer or binary variables that are
inputs for the simulation model. In these cases, the objec-
tive function must often be estimated through an expensive
simulation process, and the optimization problem is NP-
hard, leading to a computationally difficult problem. We
investigate efficient solution methods for this problem, and
we propose an approach that reduces the number of runs of
the simulation by using ridge regression to approximate
some of the simulation calls. This approach is shown to
significantly decrease the computational cost but at a cost
of slightly worse solution values.

1 INTRODUCTION

Simulation-based optimization of discrete decision vari-
ables is difficult both because the optimization problem it-
self is NP-hard and because using a simulation model to
evaluate each trial solution can be computationally de-
manding. At the same time, simulation-based discrete op-
timization problems are of great practical significance. For
example, Çağnan and Davidson (2004) and Davidson and
Çağnan (2004) developed a discrete event simulation
model that estimates the amount of time needed to restore
electric power to utility customers after an earthquake
given a set number of available crews. Optimizing the
number of crews at each possible location is an important
way to reduce the duration of electric power outages after
earthquakes given a fixed budget. However, the response
of the electric power system and similar infrastructure sys-
tems is complex, making analytical solutions or expert
guesses about the best crew allocation unreliable in these
situations. A numerical, simulation-based optimization
routine is needed. Lee and Azadivar (1985) and Nair,
Keane, and Shimpi (1998) provide further examples of dis-
crete simulation-based optimization.
The computational complexity of the simulation to-
gether with the NP-hard nature of the optimization problem
suggest two main methods for reducing the computational
burden of solving this type of problem. The first is by re-
ducing the number of potential solutions that must be
evaluated to find a good solution, and the second is by re-
ducing the computational time required to evaluate each
potential solution that is generated. In this paper we inves-
tigate the use of genetic algorithms for solving this prob-
lem, and we present a new approach that focuses on the
second of these methods – reducing the computational time
required to evaluate each potential solution – by approxi-
mating the results of the full simulation run for some can-
didate solution evaluations.

2 BACKGROUND

A number of different approaches have been proposed for
the joint simulation-based discrete optimization (SBDO)
problem that focus primarily on reducing the number of
potential solutions examined. In an overview, Swisher et
al. (2000) discuss the use of ordinal optimization, simu-
lated annealing, genetic algorithms, tabu search, and the
Nelder-Mead algorithm. Lee and Azadivar (1985) show
how a modified simplex algorithm can be used for the
SBDO problem, and Shi, Chen, and Yücesan (1999) pre-
sent a procedure based on nested partitions and statisti-
cally-based control of the number of simulation runs.
While the simulation control approach used by Shi, Chen,
and Yücesan (1999) does attempt to reduce the number of
simulation runs needed to evaluate each potential solution,
the main focus of the paper was on combining this with
nested partitions to reduce the number of solutions that are
examined. Tompkins and Azadivar (1995) and Azzaro-
Pantel et al. (1998) both present genetic algorithms for
solving the SBDO problem in the context of production
and manufacturing. These algorithms seek to find good so-
lutions by successively generating candidate solutions and
then evaluating the objective function value for each of

Guikema, Davidson, and Çağnan

these solutions based on running a simulation model. If n
potential solutions are to be examined, n complete runs of
the simulation model are needed. If the simulation model is
computationally expensive to run, this limits the number of
potential solutions that can be evaluated. In the work that
follows, we use a genetic algorithm as our optimization
approach because genetic algorithms are widely used in
simulation-based optimization. However, the general ap-
proach that we develop – using ridge regression to reduce
computational burden – could be applied in conjunction
with any iterative optimization procedure.

A second approach for reducing the computational
burden of solving the SBDO problem is to try to reduce the
amount of computational effort required to evaluate the ob-
jective function value for each candidate solution, either
through reducing the number of replications needed for
each simulation run or by reducing the number of simula-
tion runs required. Noisy genetic algorithm theory (e.g.,
Aizawa and Wah 1993; Giguère and Goldberg 1998) aims
to achieve this in the context of optimizing continuous de-
cision variables on the basis of a simulation model by con-
trolling the number of candidate solutions to evaluate for
each iteration of the optimization algorithm and the num-
ber of simulation replications used to evaluate each candi-
date solution. In this approach, the number of replications
of the simulation program begins small and grows through
successive generations according to pre-defined rules.

An alternate approach is to base the evaluation of
some or all of the candidate solutions on an approximation
to the simulation model rather than on the simulation
model itself. Nair, Keane, and Shimpi (1998) and Kodiya-
lam, Nagendra, and DeStafano (1996) both explore this
approach, the former in designing a truss and the later in
designing a composite structure for a spacecraft. Both of
these papers use linear regression to approximate the re-
sults of a computationally expensive structural design
model together with a genetic algorithm for the optimiza-
tion of discrete decision variables. In both cases, the objec-
tive function values returned by the structural models were
treated as the dependent variables, and the decision vari-
able values were treated as the independent variables. With
this approach, the approximation model is first fit based on
a small number of runs of the computationally expensive
structural model and is then used to evaluate successive
candidate solutions. The approximation model can be up-
dated occasionally based on one or more runs of the expen-
sive structural model. This approach thus reduces the com-
putational burden by reducing the number of times the
expensive model must be run. However, as discussed by
Nair, Keane, and Shimpi (1998) and discussed further be-
low, approximation by ordinary least squares regression
has significant drawbacks.

Approximating the simulation results with an ordinary
least squares (OLS) regression model and then using this
approximation for at least some of the iterations of an op-
timization algorithm for the SBDO problem is intuitively
appealing, but subject to several limitations. If properly
formulated and fitted, the regression model would hope-
fully approximate the simulation results well enough to
keep the optimization routine converging towards a good
solution without running the simulation model. The ap-
proximation need not be perfect, just good enough to guide
the optimization algorithm. However, OLS suffers from
several drawbacks in this context. First, as discussed by
Nair, Keane, and Shimpi (1998), the approximation is gen-
erally only reasonable for a bounded region containing the
candidate solutions used to fit the model. For problems in
which the decision variables are integer-valued, this region
may be small. Approximations outside this region may be
significantly in error, leading the optimization routine to
move in the incorrect direction on its next step.

The second and potentially more severe limitation of
using OLS regression to approximate simulation results is
that in many cases an OLS fit based on a population of
candidate solutions can suffer from the problem of colin-
earity. This colinearity can arise in two ways. First, if the
number of candidate solutions used to fit the model is large
relative to the number of decision variables, the input data
for the fit would likely be at least nearly collinear, leading
to numerical instability in the estimation of the OLS pa-
rameters. Second, assuming that the optimization algorithm
examines multiple candidate solutions in each iteration,
one would hope that as the algorithm converges towards a
good solution, the candidate solutions it generates become
more similar. These late-iteration solutions would almost
certainly be collinear. This colinearity can make it difficult
or impossible to fit standard OLS models, and, even when
these models can be fit, the resulting parameter estimates
are often highly sensitive to small changes in the input data
(see, for example, Montgomery and Peck 1992). In these
cases, use of OLS can give poor predictions at points not in
the data set used to fit the model.

In this paper we present a more robust approach for
approximating the results of the simulation model based on
ridge regression. We show that this approach can over-
come the problems of OLS and lead to a significant reduc-
tion in the number of simulation runs required and thus in
the computational burden of solving SBDO problems.

3 RIDGE REGRESSION

When OLS regression is used with nonorthogonal (collin-
ear) data, the resulting estimates of the regression parame-
ters (β̂) typically have inflated variance and are unstable
(Montgomery and Peck 1992). That is, the parameter esti-
mates are highly sensitive to the input data, and thus may
give poor predictions when used with other data sets. This
problem arises because OLS produces the minimum vari-
ance estimates among all possible unbiased β̂ s. Ridge re-
gression, originally proposed by Hoerl and Kennard
(1970), is one of the primary methods used to deal with the
problem of colinearity in regression modeling. It does not

Guikema, Davidson, and Çağnan

require that the parameter estimates be unbiased. Instead, it
seeks to minimize the variance in the parameter estimates
(Rβ̂) and adds a biasing parameter, k, to the regression
equation to remove the problem of colinearity. The stan-
dard OLS and ridge regression equations for parameter es-
timation are shown in equations (1) and (2) respectively,
where X is a matrix of the independent variables, y is a
vector of the dependent variables, I is the identity matrix,
and k is the biasing parameter (see Montgomery and Peck
1992, pp. 329-331).

 OLS: () yXXX ''ˆ 1−=β (1)

 Ridge: () yXkIXXR ''ˆ 1−−=β (2)

As the biasing parameter (k>0) increases, the bias in the

parameter estimates increases, but the variance decreases.
High bias would tend to systematically skew the estimates
produced by a regression model while high variance would
make the regression estimates very sensitive to the particular
set of input data used. Thus, there is a trade-off between bias
and variance that needs to be made in selecting a k to use in
an analysis. One method for selecting a value for k uses a
simple graphical technique in which the parameter estimates
are plotted versus k, and a value of k is selected such that the
parameter estimates are relatively stable (e.g., Hoerl and
Kennard 1970). Other more quantitative methods are based
on various measures of the improvement in the fit over OLS,
with the goal being the maximization of the improvement
(e.g., Mallows 1973, Wahba, Golub, and Health 1979). We
use the graphical approach.

As with the OLS approach of Nair, Keane, and Shimpi
(1998) and Kodiyalam, Nagendra, and DeStafano (1996),
ridge regression can be integrated into SBDO solution pro-
cedures as a replacement for some or all of the simulation
runs. The general idea is to first randomly generate a set of
initial solutions and evaluate their objective function values
using the simulation model, fit the regression model based
on these initial solutions, and then use this fitted model in
place of the simulation model in estimating the objective
function values for at least some of the future candidate so-
lutions generated by the optimization routine. The regression
fit may be updated in some iterations based on new simula-
tion runs. This approach can be used with any optimization
algorithm that iteratively generates candidate solutions, the
objective function values of which must then be estimated
with a simulation run. Before presenting a particular imple-
mentation utilizing a genetic algorithm, we first present the
pseudo-code for using ridge regression below.

1. Randomly generate initial set of candidate solu-
tions, evaluating the objective function for each
by running the simulation model.

2. Set resample = R, iter = 1.
3. Fit the ridge regression model based on the feasi-
ble solutions in the cumulative set of candidate
solutions.

4. If iter ≠ resample
a. Run optimization routine to generate a new

set of candidate solutions with objective func-
tion evaluation based on the current ridge re-
gression model.

b. iter = iter +1.
 Else

c. Run optimization routine to generate a new set
of candidate solutions with objective function
evaluation based on simulation model runs.

d. iter = iter + 1, resample = resample + R
e. Add all newly generated feasible candidates

to the database used to fit the ridge model.
f. Re-fit the ridge model based on the cumula-

tive database.
5. If the stopping criteria is not met, goto (4), else

stop. The optimal solution is the best solution in
the final set of candidate solutions.

Note that if R, the resampling interval, is set equal to

one, the ridge regression will never be used to estimate ob-
jective function values. Conversely, if R is set equal to or
greater than the maximum number of iterations, the ridge
regression model will be used as the basis for all objective
function estimates after the initialization. In the next sec-
tion we describe a particular implementation of ridge re-
gression approximation using a genetic algorithm. This
case serves as the test problem that we will use to compare
our proposed approach with a genetic algorithm that does
not use ridge regression.

4 TEST PROBLEM

In order to demonstrate the use of ridge regression for the
SBDO problem and compare it with other approaches, we
use, as an illustration, a discrete event simulation model of
the process of restoring electric power after the occurrence
of an earthquake. The problem is a simplified version of
the problem addressed by Çağnan and Davidson (2004)
and Davidson and Çağnan (2004). This simulation model
seeks to estimate the time required for a utility company to
restore electric power to their customers after the occur-
rence of an earthquake, given a fixed number of each of
four different types of crews.

As discussed by Çağnan and Davidson (2004) and
Davidson and Çağnan (2004), the electric power system is
modeled as a set of substations, generation plants, and dis-
trict yards as the nodes of the system. In order for power to
be restored to a given area, that area’s substation must be
working, and it must be connected to a working generation
plant. In the process of repairing the system after an earth-
quake, each of the substations and generation plants must
be inspected to determine its damage state before it can be

Guikema, Davidson, and Çağnan

repaired. In the simplified model used in this paper, the in-
spections can be carried out by any of three crew types
(on-duty operators, off-duty operators, and inspection
teams), each of which requires a different amount of (sto-
chastic) travel time to begin its inspection. Each substation
and generation plant can have one or more on-duty or off-
duty operators associated with it. If a node is inspected and
found to be damaged, a repair team is sent from a district
yard to restore that node to service. Inspection and repair
teams can only be located at the district yards. Inter-node
travel times and repair times are stochastic, while inspec-
tion times are assumed to be deterministic. In the simpli-
fied model used in this paper, there are three substations,
one generation plant, and one district yard. The objective
of the optimization is to minimize the time needed to re-
store electric power to all utility company customers.

The decision variables are the numbers of on-duty op-
erators (Ij), off-duty operators (Oj), inspection teams (ISj),
and repair teams (Rj) to locate at each node j. Each type of
crew (indexed in k) has an associated cost (e.g., training
costs and salary) if located at node j given by α(k)

j, and there
is a budget (B) available for crew training that cannot be ex-
ceeded. The objective is to minimize the expected amount of
time (T) needed to restore power to all substations subject to
a budget constraint, and the restoration time is estimated by
the discrete event simulation model using the values of the
decision variables as input parameters. There can be at most
one of each type of operator associated with each node, and
there can be no more than five inspection teams and no more
than five repair teams located at the district yard. The set of
all substations is noted as S, the set of all yards is noted as Y,
and the set of all generation stations is noted as G. The
mathematical formulation of this problem is given below in
equations (3) – (8).

 []TEMin

jjj IRISO

,,,I j

 (3)

such that:

 ()∑ ≤+++

j
jjjjjjjj BRISOI)4()3()2()1(αααα (4)

 0,,, ≥jjjj RISOI (5)

 integer ,,, jjjj RISOI (6)

 YjRIS jj ∉= for 0, (7)

 SjOI jj ∉= for 0, (8)

With four types of crews to allocate at only five differ-

ent nodes, there are twenty integer decision variables
(some of which are constrained to be zero), yielding 1x1021
possible solutions, many of which are infeasible. Due to
the computational burden of the simulation model, an effi-
cient optimization algorithm combined with as few simula-
tion runs as possible are needed to solve this problem.

In the test problem, earthquakes occur randomly over
the planning horizon, leading to random occurrence of
damage states. The state of each substation and generation
station is assumed to be binary – damaged or undamaged.
All costs are given based on the same planning horizon
(e.g., 20 years) as the damage probabilities. Table 1 gives
the set of damage probabilities used in the test problem.

Table 1: Test Problem

Node Damage Probability
Substation One 0.1
Substation Two 0.1
Substation Three 0.1
Generating Plant 0.01

 The set of probabilities used in the example problem is
meant to be realistic in terms of an actual infrastructure
system that is subject to rare natural hazards such as earth-
quakes, and to test the ability of the methods to handle the
types of unlikely system states likely to arise in practice.
With only 24 possible system damage states, the restoration
simulation is run a pre-determined number of times (to be
discussed below) for each possible system state to estimate
the expected restoration time conditional on the damage
state. Then these conditional expected values are converted
into an unconditional expected restoration time for a given
set of decision variable values using the calculated prob-
abilities of the 16 different system states. For a larger sys-
tem, importance sampling would be needed to generate the
system damage states.

5 OPTIMIZATION APPROACHES TESTED

In order to examine the impacts of using the ridge regres-
sion approximation in place of some of the simulation runs,
we compared several optimization approaches. In all of
these, a genetic algorithm was our underlying optimization
algorithm. The particular genetic algorithm that we used
was based on the Genetic Algorithm Toolbox for Matlab
described by Chipperfiled et al. (1994). This toolbox pro-
vides the basic building blocks from which our algorithm
was built. Our algorithm uses a non-linear fitness ranking
approach with a selective pressure of two, stochastic uni-
versal sampling for the selection of parents to combine to
form new children, a cross-over rate of 0.7, a high muta-
tion rate of 20%, and fitness-based reinsertion of the chil-
dren solutions with 20% of the parents replaced with the
highest valued children in each generation. The high muta-
tion rate (20%) and replacement rate (20%) mean that our
genetic algorithm will maintain a relatively high degree of
randomness in creating new candidate solutions while at
the same time converging towards good solutions. The mu-

Guikema, Davidson, and Çağnan

tation rate and replacement rates were selected based on
initial exploratory runs varying the mutation rate between
0.2% and 50% and the replacement rate from <5% to 80%.
In these runs, the consistency of the solutions over multiple
runs with fixed parameter values was compared with the
amount of time required to find a solution, and mutation
and replacement rates were selected that balanced these.

We used a population size of 5 individuals with 10
generations (again, selected based on exploratory runs).
For larger problems, more individuals and a larger number
of generations would be needed as discussed below. A
penalty method assigning a value of 99 (plus a random
number between 0 and 1 to avoid ties in the fitness rank-
ing) was used to impose the feasibility constraints, and the
simulation model was not run for infeasible solutions. In
all approaches tested except random generation of candi-
date solutions, the number of replications of the restoration
process run for each damage state was determined by the
duration sizing approach of Aizawa and Wah (1993) with a
base case growth parameter (γ) of 0.005 and an initial
replication size of three. This yields an increasing number
of replications over the course of the optimization, focus-
ing the simulation effort on the later generations where
more accurate objective function estimates are more
important. We also report the results of varying γ . The
optimization approaches that we tested were: (1) the
genetic algorithm with the full simulation run for each
candidate solution evaluation, (2) the genetic algorithm
with some of the simulation runs replaced by the ridge
regression approximation, and (3) pure random search for
comparison. As will be discussed below, the control
parameters for both genetic algorithm approaches were
varied. In order to account for the variability inherent in
the solutions produced by genetic algorithms, we ran each
approach 30 times with identical control parameters in
order to allow fair statistical comparison of the results.

5.1 Optimization with Complete Simulation Runs

The baseline against which we compared the approach us-
ing ridge regression was the genetic algorithm for which
the evaluation of all candidate solutions was based on a full
run of the simulation (“GA-Full”). That is, each time a
candidate solution was to be evaluated, the simulation was
run r times for each of the sixteen damage states, requiring
16r replications. As discussed above, the r used in each
generation was determined by the adaptive duration sizing
approach of Aizawa and Wah (1993). We ran the Full GA
approach for 10 generations. For larger, more realistic
problems more generations would be needed.

5.2 Optimization with Ridge Approximation

In implementing the ridge regression approximation, we
used the algorithm outlined in the pseudo-code in Section
3. We will term this approach the “GA-Ridge” approach.
In testing GA-Ridge, the simulation was run every R gen-
erations. That is, for generations that were an integer mul-
tiple of R, the genetic algorithm calculations were done on
the basis of the full simulation, but for all other generations
the objective function evaluations were based on the ridge
regression model. A log was kept of all feasible candidate
solutions for which a simulation-based estimate of the ob-
jective function value was available. Each R generations,
the ridge regression model was re-fit based on the newly
updated log of simulated solutions. Thus, while the ridge
fits in the early generations may be poor, they become in-
creasingly better over the course of successive generations.
We used the Ridge GA approach with R equal to 2 and 5.
The number of simulation replications was determined by
the same approach as for GA-Full.

5.3 Optimization with Random Search

In the random search approach, a series of 10 sets of 5 can-
didate solutions were generated, with the lowest-valued
(best) solution from each of the 10 sets saved. The algo-
rithm was constrained to generate only solutions that did
not violate the constraints given by equations (5) to (8). In
evaluating the candidate solutions, the simulation model
was run for only 1 restoration time replication for each
damage state in order to decide if a randomly generated
candidate solution should be kept as a good solution. This
low number of replications was selected to make the CPU
time required for the random search algorithm comparable
to the CPU time required for the other approaches which
also used small numbers of replications for early genera-
tions. The procedure used for generating the candidate so-
lutions was the same algorithm used to generate the initial
set of candidate solutions for the genetic algorithm ap-
proaches. This random solution generator, which is built in
to the GA Toolbox, is relatively expensive computation-
ally. This led to the use of a small number of evaluative
simulation replications with the random search to keep the
CPU time per run comparable to the other methods.

6 RESULTS AND DISCUSSION

Figures 1 and 2 summarize the results of the optimization
runs for a number of different budget levels. Note the log
scale on the x-axis in these figures. Figure 1 gives the
mean and 95% confidence intervals of the feasible solu-
tions found in the 30 runs of the four optimization ap-
proaches (GA-full, GA-Ridge (R=5), GA-Ridge (R=2),
and Random Search). Figure 2 gives the same information
for all solutions found, with a penalty of 99 plus a uniform
(0,1) random number assigned to infeasible solutions. In
some of the cases shown in Figure 2, a significant number
of the optimization runs did not find a feasible final solu-
tion, and these infeasible solutions have been dropped in
Figure 1. The percentage given by each of the confidence

Guikema, Davidson, and Çağnan

intervals in Figure 1 is the percentage of the 30 final solu-
tions that were infeasible.

Figure 1: Mean and 95% Confidence Intervals of the
Feasible Optimal Results from 30 Optimization Runs
for Each Approach for Various Budget Levels

Figure 2: Mean and 95% Confidence Intervals of all
Optimal Results from 30 Optimization Runs for Each
Approach for Various Budget Levels

The results in Figures 1 and 2 show that for the three

lowest budgets (300, 900, and 1000), the problem is diffi-
cult enough that none of the algorithms do particularly well
or clearly outperform the other algorithms in terms of the
quality of the solutions found. The two GA-Ridge ap-
proaches are faster on average than the other two ap-
proaches. All four approaches yield infeasible solutions in
30% - 40% of the optimization runs. These low budgets
represent hard optimization problems in the sense that all
four approaches have a difficult time finding feasible solu-
tions. With the budget of 300, the feasible solutions found
by the GA-Ridge approaches have higher (worse) mean
restoration times than those found by random search and
GA-Full. However, these differences are not statistically
significant due to the high variability in these results. With
budgets of 900 and 1000, the means and 95% confidence
intervals for the feasible solutions found by all four meth-
ods are very similar.

For the three higher budgets shown in Figures 1 and 2
(1100, 1200, and 1500), the GA-Full and Random Search
approaches yield slightly better objective function values
than the two GA-Ridge approaches, and these differences
are statistically significant. The optimal mean restoration
times found by the GA-Ridge approaches were approxi-
mately 8-10% higher (worse) that those found by the GA-
Full approach. These results thus suggest that based only
on the feasible solutions found, the ridge-based approaches
are not as accurate as the GA-Full or even Random Search
(except for the budget of 1500), but the GA-Ridge ap-
proaches do save a considerable amount of computational
effort. It should also be noted that even though the Random
Search had the advantage of generating only solutions that
did not violate equations (5) – (8), it did not always yield a
feasible solution. The genetic algorithm approaches did
generate solutions that violated the constraints given by
equations (5) – (8).

Figure 3 summarizes the percentage of solutions found
by each approach that were infeasible for each budget. This
figure shows that for low budgets, none of the tested ap-
proaches consistently find feasible solutions. However, for
high budgets (1200 and 1500) all approaches do well in
finding feasible solutions. The percentage of feasible solu-
tions monotonically increases with budget for GA-Full and
GA-Ridge(2), while this is not the case for the GA-
Ridge(5) and Random Search algorithms, suggesting that
the GA-Full and GA-Ridge(2) behave in a less random
manner in terms of their ability to find feasible solutions.

Figure 3: Percentage of Final Solutions that Were In-
feasible for Each Approach for Various Budgets

The different approaches require different amounts of

CPU time to find solutions, as summarized in Figure 4.

Guikema, Davidson, and Çağnan

These results show that for low budgets (i.e., difficult prob-
lems), the GA-Full and GA-Ridge approaches require simi-
lar amounts of computational time. This is due to the fact
that many of the solutions found at these low budgets are
infeasible, reducing the number of runs of the simulation
model and thus the opportunities for the GA-Ridge ap-
proaches to gain an advantage in CPU time required. How-
ever, as the budget is increased, the difference in computa-
tion time between the approaches becomes statistically
significant, with GA-Ridge(5) requiring less time than GA-
Ridge(2) which in turn requires less time than GA-Full. In
all cases, the Random Search procedure required more
computational time. This was primarily due to the compu-
tational burden of randomly generating a constrained value
for each of the 20 decision variables at each iteration using
the algorithm in the Genetic Algorithm Toolbox. While we
may have been able to more efficiently generate random
solutions with a custom algorithm, instead we used the
same algorithm used to generate initial populations for the
GA approaches in order to provide a fair comparison of the
methods. We have not shown the time CPU time required
by the random search approach in Figure 4 because it is
dependent on the particular random generator that we used.

Figure 4: Comparison of CPU Time Required (in Seconds)

Figure 5 shows the means of the 30 optimal values of

each of the 20 decision variables for each of the four optimi-
zation approaches together with the standard deviations of
these optimal decision variable values. The results are based
on a budget of 900 and a gamma value of 0.005. These re-
sults show that all four approaches return similar values for
the first 10 decision variables – the number of on-duty and
off-duty operators at each station. However, the mean values
for these binary variables are all in the vicinity of 0.4 to 0.6,
suggesting that the algorithms are returning highly variable
values for these binary decision variables. The 11th through
20th decision variables correspond to the number of inspec-
tion teams and repair teams located at each station. Variables
11-14 and 16-19 give the number of each of these types of
teams at the substations and generation stations – locations
where these teams cannot be located and still contribute to
restoration. Thus, we would expect the algorithms to return
values of 0 for these decision variables. The random search
does do this because it was constrained to do so. The GA-
Full and GA-Ridge approaches were not so constrained, and
they consequently do yield positive values of these variables
in some runs. Note that although all four approaches yield
similar answers on average for variables 15 and 20, the
number of inspection and repair teams to have at the district
yard, the two GA-Ridge approaches tend to yield lower
numbers for these variables. Thus, the four approaches all
give similar decision variable values for this case.

Figure 5: Means and Standard Deviations of the Opti-
mal Decision Variable Values for 30 Runs of Each Al-
gorithm with a Budget of 900 and gamma = 0.005

Finally, we also varied the value of γ used in the

GA-Ridge and GA-Full approaches over a range from γ
= 0.001 toγ = 0.05. Table 2 gives the percentage of solu-
tions found by each approach that were infeasible for
each γ used.

Table 2: Effect of γ on Percentage of Infeasible Solutions

Percent Infeasible γ GA-Full GA-Ridge(5) GA-Ridge(2)
0.001 30% 30% 50%
0.005 30% 33.3% 40%
0.007 26.7% 33.3% 36.7%
0.01 33.3% 26.7% 43.3%
0.05 16.7% 36.7% 40%

Table 2 shows that the percentage of infeasible solu-

tions found by each of the approaches is similar over the
entire range of γ values used, suggesting that the ability
of the methods to return feasible solutions is not highly de-
pendent on the value of γ used. The results in Table 2 also
show that the GA-Full approach returned a lower percent-

Guikema, Davidson, and Çağnan

age of infeasible solutions than either of the GA-Ridge al-
gorithms in all but one case. Thus, the GA-Full approach
does appear to be more efficient at finding feasible solu-
tions. While not shown here, the optimal mean restoration
times found by the approaches were similar for the differ-
ent values of γ .

We also applied the GA-Full and GA-Ridge approaches
to a larger test problem with 18 substations and 2 generation
stations in order to examine how well our results generalize
to larger, more difficult problems. We ran the GA-Full ap-
proach with 50 individuals/population for 30, 50, 75, and
100 generations, and we ran the GA-Ridge approach with 50
individuals for: (a) 300 generations with simulation every 50
generations, (b) 300 generations with simulation every 10
generations, and (c) 100 generations with simulation every 3
generations. The summary of the results of these runs are:

• The GA-Ridge approach reduces the computa-

tional time by an order of magnitude in the larger
test problem, from approximately 55 hours to ap-
proximately 5 hour per run on a Pentium III 733
MHz computer.

• The solutions found by the GA-Ridge approaches
are 10%-20% worse than those found by the GA-
Full approach run for 100 generations. This result
held for all GA-Ridge approaches tested for the
larger problem.

• The solutions found by the GA-Full approach are
worse than those found by the GA-Ridge ap-
proaches when GA-Full is run for only 30 or 50
generations. The results for 75 generations are
highly variable between runs, with some runs
yielding better solutions than GA-Ridge and some
worse. When run for only 30 generations, GA-Full
failed to find feasible solutions in most attempts.

While preliminary, these results do suggest that the conclu-
sions based on the small test problem do generalize to lar-
ger problems. The GA-Ridge approach saves a significant
amount of computation time at the cost of a small reduc-
tion in the quality of the solution found.

7 CONCLUSIONS

This paper has presented the results of testing approaches
for efficiently solving simulation-based discrete optimiza-
tion problems. Overall, the results presented in this paper
suggest the following.

1. For problems in which there are either few feasi-
ble or many good solutions, the choice of solution
approach among those tested here does not matter
much. For hard problems with few feasible solu-
tions, all of the tested approaches have difficulties
finding feasible solutions consistently. For easy
problems with many good solutions, all ap-
proaches yield good solutions.

2. The ridge-based optimization approaches save a
significant amount of computational time in solv-
ing SBDO problems.

3. The ridge-based approaches yield slightly worse
solutions than the full genetic algorithm approach.

There is clearly a trade-off between solution accuracy

and computational burden in using ridge-based genetic al-
gorithms for solving simulation-based optimization prob-
lems. As the degree of approximation increases (i.e., as R
increases), the GA-Ridge approaches require much less
computational time but return less accurate solutions. This
trade-off must be managed on a problem-specific basis.
For relatively easy problems in which it is computationally
feasible to solve the problem with the GA-Full approach,
this approach is likely best. However, for problems in
which the simulation model is complex enough that solv-
ing the problem with the GA-Full approach is computa-
tionally prohibitive, the GA-Ridge approach is a good al-
ternative. In many cases, it can provide good solutions with
much less computational burden.

ACKNOWLEDGMENTS

This work was supported in part by the Earthquake Engi-
neering Research Centers Program of the National Science
Foundation under NSF Award Number EEC-9701471, and
in part by NSF Award CMS-0196003. Any opinions, find-
ings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

REFERENCES

Aizawa, A.N. and B.W. Wah. 1993. Dynamic Control of
Genetic Algorithms in a Noisy Environment. In Pro-
ceedings of the 5th International Conference on Ge-
netic Algorithms, 48-55, Urbana-Champaign, IL.

Azzaro-Pantel, C., L. Bernal-Haro, P. Baudet, S. Domenech,
and L. Pibouleau. 1998. A Two-Stage Methodology for
Short-Term Batch Plant Scheduling: Discrete Event
Simulation and Genetic Algorithm. Computers and
Chemical Engineering 22 (10): 1461-1481.

Çağnan, Z. and R.A. Davidson. 2004. Post-earthquake Res-
toration Modeling of Electric Power Systems. In Pro-
ceedings of the 13th World Conference on Earthquake
Engineering, paper no. 109, Vancouver, B.C., Canada.

Chipperfield, A., P. Fleming, H. Pohlheim, and C. Fon-
sedca. 1994. Genetic Algorithm Toolbox For Use With
Matlab, Users Guide, Version 1.2. University of
Scheffield, U.K.

Davidson, R.A. and A. Çağnan. 2004. Restoration Model-
ing of Lifeline Systems. Research Accomplishments
2003-2004, Multidisciplinary Center for Earthquake
Engineering, Buffalo, NY.

Guikema, Davidson, and Çağnan

Giguère, P. and D.E. Goldberg. 1998. Population Sizing

for Optimum Sampling with Genetic Algorithms: A
Case Study of the Onemax Problem. In Proceedings of
the Third Annual Genetic Programming Conference,
Madison, 1 – 9, WI.

Hoerl, A.E. and R.W. Kennard. 1970. Ridge Regression:
Baised Estimation for Nonorthogonal Problems. Tech-
nometrics 12: 55-67.

Kodiyalam, S., S. Nagendra, and J. DeStafano. 1996.
Composite Sandwich Structure Optimization with Ap-
plication to Satellite Components, AIAA Journal 34
(3): 614-621.

Lee, Y.H. and F. Azadivar. 1985. An Application of Optimi-
zation-by-Simulation To Discrete Variable Systems. In
Proceedings of the 1985 Winter Simulation Conference,
Ed. D. Gantz, G. Blais, S. Solomon, 173-177. Piscata-
way, New Jersey: Institute of Electrical and Electronics
Engineers.

Mallows, C.L. 1973. Some Comments on Cp, Technomet-
rics 15: 661-675.

Montgomery, D.C. and E.A. Peck. 1992. Introduction to
Linear Regression, New York, NY: Wiley.

Nair, P. B., A.J. Keane, and R.P. Shimpi. 1998. Combining
Approximation Concepts With Genetic Algorithm-
Based Structural Optimization Procedures. In
Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Con-
ference, AIAA-98-1912.

Shi, L., C. Chen, and E. Yücesan. 1999. Simultaneous Simu-
lation Experiments and Nested Partition for Discrete
Resource Allocation in Supply Chain Management. In
Proceedings of the 1999 Winter Simulation Conference,
Ed. P.A. Farrington, H.B. Nembhard, D.T. Sturrock,
and G.W. Evans, 395-401. Piscataway, New Jersey: In-
stitute of Electrical and Electronics Engineers.

Swisher, J.R., Jacobson, S.H., Hyden, P.D., and Schruben,
L.W. 2000. A Survey of Simulation Optimization Tech-
niques and Procedures. In Proceedings of the 2000
Winter Simulation Conference, Ed. J.A. Joines, R.R.
Barton, K. Kang, and P.A. Fishwick, 119-128. Piscata-
way, New Jersey: Institute of Electrical and Electronics
Engineers.

Tompkins, G. and F. Azadivar. 1995. Genetic Algorithms in
Optimizing Simulated Systems. In Proceedings of the
1995 Winter Simulation Conference, Ed. C. Alexopou-
los, K. Kang, W.R. Lilegdon, and D. Goldsman, 757-
762. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Wahba, G., G.H. Golub, and C.G. Health. 1979. General-
ized Cross-validation as a Method for Choosing a
Good Ridge Parameter. Technometrics 21: 215-223.

AUTHOR BIOGRAPHIES

SETH D. GUIKEMA, Ph.D. is a Postdoctoral Re-
searcher in the School of Civil and Environmental Engi-
neering at Cornell University. He has a B.S. in Civil and
Environmental Engineering from Cornell University
(1997), a M.E. in Civil Engineering from the University
of Canterbury (1999), a M.S. in Civil and Environmental
Engineering from Stanford University (1999) and a Ph.D.
in Management Science and Engineering from Stanford
University (2003). His research interests include risk and
decision analysis, Bayesian probability, game theory, and
discrete optimization and their application in assessing
and managing the risk to infrastructure systems from
natural and human-induced hazards. His e-mail address is
<sdg4@cornell.edu>.

RACHEL A. DAVIDSON, Ph. D. is an Assistant Profes-
sor in the School of Civil and Environmental Engineering
at Cornell University. She has a B.S.E. from Princeton
University (1993), and an M.S. and Ph.D. from Stanford
University (1994, 1997), all in civil engineering. Her re-
search focuses on natural disaster risk assessment and
management and infrastructure systems modeling. Her e-
mail address is <rad24@cornell.edu>.

ZEHRA ÇAĞNAN is a Ph.D. Candidate in the School of
Civil and Environmental Engineering at Cornell Univer-
sity. She has a B.Eng. in Civil and Environmental Engi-
neering from University College London, University of
London (1999) and a M.S. in Civil Engineering from
Middle East Technical University (2001). Her research
interests include modeling post-earthquake restoration
processes of electric power and water supply systems and
discrete event simulation. Her e-mail address is
<zc32@cornell.edu >.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 536
	02: 537
	03: 538
	04: 539
	05: 540
	06: 541
	07: 542
	08: 543
	09: 544

