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ABSTRACT 

The human behavior modeling community has traditionally 
been divided into those addressing individual behavior mod-
els, and those addressing organizational and team models. 
And yet it is clear that these extremes do not reflect the 
complex reality of the mutually-constraining interactions be-
tween an individual and his/her organizational environment. 
In this paper we argue that realistic models of organizations 
may require not only models of individual decision-makers, 
but also explicit models of a variety of individual differences 
influencing their decision-making and behavior (e.g., cogni-
tive styles, personality traits, and affective states).  Follow-
ing a brief review of individual differences and cognitive ar-
chitectures research, we describe two alternative approaches 
to modeling the individual within an organizational simula-
tion: a cognitive architecture and a profile-based social net-
work. We illustrate each approach with concrete examples 
from existing prototypes. 

1 INTRODUCTION 

The human behavior modeling community has traditionally 
been divided into researchers and practitioners addressing 
individual behavior models, and those addressing organ-
izational and team models. And yet it is clear that these ex-
tremes do not reflect the complex reality of the mutually-
constraining interactions between an individual and the or-
ganization environment within which s/he operates. We 
cannot effectively model the individual if we ignore the 
organizational constraints within which s/he operates, nor 
can we effectively model an organization if we abstract 
away the behavioral idiosyncrasies of the individuals who 
make up that organization. 

The purpose of this paper is  twofold: first, to motivate 
the need for modeling the individual within an organiza-
tion, in particular, the need to explicitly represent a variety 
of individual differences or behavior moderators to assure 
adequate model fidelity; and second, to provide examples 
of two approaches to modeling the individual within an or-
ganizational context: a cognitive architecture human be-
havior model, and a profile-based social network model.  

The paper is organized as follows. Section 2 provides 
a brief summary of relevant background research, focusing 
on the effects of individual differences on decision-making 
(section 2.1), and existing cognitive architecture models 
(section 2.2). Section 3 then describes the two alternative 
modeling approaches, and section 4 provides examples of 
each approach.  Section 5 briefly outlines how these ap-
proaches could be integrated within organizational models. 
The paper concludes with a brief summary of the utility of 
these models and organizational simulation in general. 

2 RELATED RESEARCH  

2.1 Effects of Individual Differences on  
Decision-Making and Behavior 

Individual behavior is determined by range of internal and 
external factors, and by the interactions among them.  De-
pending on the breadth of focus, these have variously been 
termed behavior determinants (Hudlicka et al. 2002; 
2004), behavior moderators (Pew and Mavor 1998), and 
individual differences (Revelle 1995)). These factors in-
clude a variety of static and dynamic factors, most notably 
cognitive factors (baseline attention and working memory 
speed, capacity and accuracy; skill level; cognitive style), 
stable personality characteristics (traits such as the “Big 5” 
(openness, conscientiousness, extraversion, agreeableness, 
neuroticism) (Matthews and Deary 1998), and transient 
emotions and moods (states such as joy, sadness, fear, an-
ger, disgust) (Ekman and Davidson 1994).  

These factors, along with the decision-maker’s indi-
vidual history and cultural context, in turn determine the 
individual’s internal mental dynamic context consisting of 
activated beliefs, expectations, attitudes and goals, which 
eventually lead to the selection of a particular observable 
behavior. Variability among these factors then causes the 
types of behavior variability observed in humans (but gen-
erally not represented in models).  
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Traits and states affect observable behavior via a vari-
ety of distinct influences on perception, cognition, and mo-
tor processes, both transient and long-term. A number of 
these influences have been identified, at varying levels of 
specificity and generalizability, both at the “lower” levels 
of processing (e.g., attention orientation during an acute 
fear episode, increased working memory capacity corre-
lated with positive affect),  and at “higher” levels involving 
goals, situation assessments, expectations, and self sche-
mas (e.g., complex feedback relationships between affec-
tive state and self-schemas).   

As might be expected, traits tend to exert their influ-
ence via more stable structures (e.g., types of schemas 
stored in LTM, preferential processing pathways among 
functional components), whereas states tend to produce 
transient changes that influence the dynamic characteristics 
of a particular cognitive or perceptual process (e.g., atten-
tion and WM capacity, speed, and accuracy).  Traits also 
contribute to the dynamic characteristics of the affective 
states themselves, particularly their generation, intensity, 
duration, and expression.  

 
Table 1: Examples of Trait and State Effects on Cogni-
tion and Behavior 
Anxiety and Attention & Working Memory 
Reduction in capacity 
Faster threat detection / slower otherwise 
Obsessiveness and Performance   
Delayed decision-making 
Excessive ‘checking’ behaviors 
Affect and Judgment & Perception  
Negative affect lowers estimates of degree of control 
Anxiety  bias towards threat interpretation 
Positive affect increases estimates of degree of control  
High Neuroticism and Attention / Perception  
Preference for self and affective state stimuli 
Bias toward negative appraisal (self and non-self) 
High E / High N and Behavior Preferences 
High extraversion preference for approach behavior 
High  neuroticism preference for avoidance behavior 
Traits and Reward / Punishment Behaviors 
High extraversion and reward seeking 
High neuroticism and punishment avoidance 

 
Last, but not least, we mention cultural factors as addi-

tional behavior determinants (Matsumoto 2001; Hofstede 
1991; Klein et al. 2002). In spite of the vast literature ad-
dressing cultural issues, there is relative paucity of attributes 
defined at a sufficient level of specificity to enable computa-
tional modeling and inferencing; that is, cultural characteris-
tics which could be operationalized to enable computational 
models of the effects of culture on individual (and organiza-
tional) decision-making, culture-based profiling, and, more 
importantly, likely to yield useful behavior predictions for 
particular individuals, groups, and organizations.   
Recent attempts to address these issues, and to develop 
a practical cultural-profiling approach, have explored a no-
tion introduced by Karabaich (2004) that proposes to con-
sider each group to which an individual belongs as repre-
senting a distinct culture; that is, the assumption that every 
group creates its own culture (Hudlicka et al. 2004). This 
approach is motivated by the observation that national and 
ethnic groups are in fact not as diagnostic with respect to 
behavior prediction as are smaller groups to which an indi-
vidual belongs (e.g., student group, social group, political 
group, family, etc.).  

It should also be noted that any cultural influence ul-
timately functions at the individual level, and must there-
fore be translated to one or more of the individual behavior 
determinants outlined above.  Thorough understandings of 
the critical behavior determinants, and a determination of 
the mappings of the cultural factors onto these behavior de-
terminants, are therefore critical to the effective modeling 
of cultural differences. 

2.2 Modeling the Individual 

Computational cognitive models have a long history in ar-
tificial intelligence and cognitive science, going back to the 
seminal work of Newell on the general problem solver 
(which led to the Soar architecture (Newell 1990)), and 
Selfridge’s Pandemonium in the 50’s (Selfridge 1959) 
(which laid the foundation for the now-popular blackboard 
systems and blackboard cognitive architectures. 

Recently, the integrated-architecture approach, which 
aims to model end-to-end information processing required 
for intelligent adaptive behavior, has become the most 
prominent method, and forms the basis for intelligent be-
havior in synthetic agents and robots. Associated develop-
ments in virtual environments and robotics have further 
motivated the development of intelligent agents, capable of 
functioning in simulated or real environments.  

Below we provide a brief overview of several represen-
tative cognitive architectures, including also recent attempts 
to model individual differences and emotions. For more ex-
tensive and detailed reviews of existing cognitive architec-
tures see Pew and Mavor (1998) and Ritter et al. (1999). 

Among the first implemented cognitive architectures 
were Soar (Newell 1990), and ACT (Adaptive Character of 
Thought) (Anderson 1990). Soar’s original aim to model 
learning and intelligent behavior and uses rules and rule 
chunking as the primary representational and inferencing 
mechanisms. ACT was initially aimed to model lower-level 
memory processes, and account for observed empirical data, 
but was later developed into a full-fledged agent architec-
ture, using a combination of rules and semantic nets. 

Originating from a different tradition, and built for a 
different purpose, is the Sim_Agent architecture. 
Sim_Agent was developed by Sloman and colleagues in 
the 1980’s, with the objective to explore the architectural 
components and processes necessary to exhibit adaptive 
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behavior, including emotions, and address the fundamental 
questions of what specific architectural features are neces-
sary for different types (and complexity) of cognition, 
emotion, and behavior (Sloman 2003).  

Over the past decade, a number of new architectures 
have been developed, including: OMAR, focusing on mod-
eling multi-tasking and multiple operators in the air traffic 
control domain, and using a hierarchical representation of 
procedures;  MIDAS (Man-machine Integrated Design and 
Analysis System), used for human-machine system design, 
primarily within the commercial aviation cockpit; 
COGNET, used to model multitasking, interface design and 
adversary models and uses a blackboard architecture; 
SAMPLE, focused on modeling recognition-primed decision 
making in a variety of settings, including piloting and air 
traffic control and uses a combination of, fuzzy logic, belief 
nets, and rules (Pew and Mavor 1998). Many other architec-
ture-based models have been developed in academic labora-
tories, as research vehicles, as components of synthetic vir-
tual agents, or in the context of robotics. 

2.2.1 Modeling Individual Differences and Emotions 

With increasing awareness of the effects of individual dif-
ferences on behavior, and increasing need for more realis-
tic simulations, attempts have begun to incorporate indi-
vidual differences effects within cognitive architectures 
and agents (Hudlicka 1997; 2003; see also Pew and Mavor 
1998). Models that focus on modeling individual differ-
ences range from individual processes to integrated archi-
tectures.  The most frequently modeled process has been 
cognitive appraisal, whereby external and internal stimuli 
(emotion elicitors) are mapped onto a particular emotion. 
A number of models have been implemented, both as 
stand-alone versions, and integrated within larger agent ar-
chitectures  (e.g., Scherer 1993; Bates et al. 1992; Elliot et 
al. 1999; Andre et al. 2000).  Other emotion model imple-
mentations include models of emotions as goal manage-
ment mechanisms (Frijda & Swagerman 1987), models of 
interactions of emotion and cognition (Araujo 1993), and 
effects of emotions on agent belief generation (Marsella 
and Gratch 2002).  Examples of integrated architectures 
focusing on emotion include most notably the work of 
Sloman and colleagues (Sloman 2003), and more recent 
efforts to explicitly model the effects of a range of interact-
ing individual differences on cognition and behavior (Hud-
licka 2002; 2003), and efforts to integrate emotion effects 
in Soar (Jones et al. 2002) and in ACT (Ritter et al. 2002). 

3 TWO APPROACHES FOR MODELING  
THE INDIVIDUAL DECISION-MAKER 

In this section we describe two approaches suitable for 
modeling the individual within an organizational context: a 
cognitive architecture and a profile-based social network 
model. We also briefly outline the knowledge and data re-
quirements for each approach.   

The objective of the cognitive architecture approach 
is to emulate the structures and processes used by the hu-
man decision-maker. The resulting architecture can then 
function in a simulation environment to represent the indi-
vidual decision-maker’s behavior for training purposes, 
and can also help in behavior prediction. In contrast to this, 
the profile-based approach does not require knowledge 
that allows emulation of the actual decision processes. In-
stead, these models require knowledge that enables auto-
matic inferencing by a decision-aid (e.g., an expert system) 
about the decision-maker, to derive additional knowledge 
about the decision-maker’s profile, and to predict likely 
decisions and behavior, within a particular context. 

The distinguishing characteristic of the cognitive ar-
chitecture approach is thus the need to identify the internal 
structures and processes mediating the performance of in-
terest, and to capture these in terms of the architecture 
components; that is, the architecture modules, the mental 
constructs manipulated by these modules, and the algo-
rithms comprising processing within these modules. Typi-
cally the performance of interest will be a set of concrete 
tasks within the domain of interest.   

In contrast, the profile-based approach requires 
knowledge and data characterizing a decision-maker and 
predicting his/her behavior, and the knowledge of how to 
use the available data to derive the information of interest 
(e.g., particular unknown characteristic or likely behavior). 

Ideally, a profile would consist of a small set of factors 
from which all other characteristics and likely behaviors 
could then be predicted. Unfortunately, the complexity of 
human personality and decision-making precludes its char-
acterization in terms of a single set of orthogonal covering 
dimensions. To obtain a detailed characterization of an in-
dividual, and to define the behavior determinants, it is 
therefore necessary to analyze the individual from a variety 
of perspectives, and at varying levels of abstraction. This 
requires the use of multiple sets of profile attributes, whose 
relative importance for particular behavior predictions may 
vary, depending on the operational context. 

There are thus overlapping but distinct requirements 
for the types of knowledge necessary to construct these 
two types of models, for the data required to populate the 
model structures, and for the data required to support dy-
namic simulations.  For example, the individual profile 
may include the individual’s situations, expectations, and 
goals.  However, while in the cognitive architecture ap-
proach these situations, expectations and goals are derived 
by the architecture via the emulated decision-processes, in 
the profile-based approach they are either provided directly 
by the modeler (as input data), or derived via some infer-
encing mechanism that makes no attempt to emulate hu-
man decision-making, but instead simply captures the ob-
served regularities (e.g., situation A frequently leads actor 
X to generate behavior B). 
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3.1 Knowledge and Data Requirements 

There are three primary sources of knowledge and data for 
developing individual models: (1) existing empirical litera-
ture; (2) task analysis and knowledge elicitation interviews; 
and (3) empirical studies collecting specific required data. 
These serve as the basis for the following aspects of the 
models: (1) theories of decision-making to emulate within 
the cognitive architecture approach;  (2) the long-term mem-
ory schemas used in the cognitive architecture approach; (3) 
the mappings among these schemas that enable the actual 
transformation of incoming data to selections of particular 
adaptive behavior within the architecture approach; (4) the 
structure and contents of the individual profiles used in the 
profile-based approach; and (5) data necessary for the dy-
namic simulation of the evolving context during model exe-
cution.  A detailed analysis of these sources can be found 
elsewhere (Hudlicka & Zacharias 2005).  

4 EXAMPLES OF ALTERNATIVE APPROACHES 
TO INDIVIDUAL MODELING  

Below we present examples of the the cognitive architecture 
and a profile-based social network model approaches, high-
lighting in each case the means and ability of representing 
individual differences, and the ability to model the influence 
of those differences on decision-making and behavior. 

4.1 Modeling the Individual in Terms  
of a Cognitive Architecture 

There are a number of possible architectures that could be 
used to model the individual within an organizational 
simulation  (see partial review earlier). Given the critical 
role that individual behavioral variations may play in or-
ganizational behavior, it is important to select an architec-
ture that is capable of representing these variations, in a 
rapid and empirically justified manner. Below we describe 
an architecture developed specifically to address the mod-
eling of a range of multiple, interacting individual differ-
ences: MAMID (Methodology for Analysis and Modeling 
of Individual Differences), developed by Psychometrix As-
sociates (Hudlicka 2002; Hudlicka and Billingsley 1999).  

The initial MAMID prototype demonstrated an ability 
to model the effects of selected individual differences 
within an Army peacekeeping demonstration scenario 
(Hudlicka 2003). Below we describe the individual differ-
ences modeling methodology, outline the key components 
of the MAMID cognitive architecture, and illustrate its op-
eration and results from an initial evaluation.  

4.1.1 MAMID Modeling Methodology 

MAMID is a generic methodology for modeling a range of 
multiple, interacting individual differences within symbolic 
cognitive architectures, via parametric manipulations of the 
architecture processes and structures. The underlying the-
sis of the approach is that the combined effects of a broad 
range of cognitive, affective, and trait individual differ-
ences, as well as a variety of cultural and individual history 
factors, can be modeled by varying the values of these pa-
rameters, rather than the architectural components them-
selves (Hudlicka 1997; 2002). This then allows a rapid 
specification of cognitive architecture configurations capa-
ble of modeling a wide range of individual stereotypes, 
represented by distinct individual differences profiles.  

The architecture parameters control speed of module 
processing, capacity of working memory associated with 
each module, and structure and contents of long-term 
memories mediating perceptual and cognitive processing.  
They also determine the values of the attributes of internal 
mental constructs such as cues, situations, expectations and 
goals (e.g., threat level of cues, salience of situations, de-
sirability of goals, etc.), thereby controlling when a par-
ticular construct will be processed (e.g., cue attended, 
situation derived, goal selected, etc.).  

Distinct individual types (e.g., normal, anxious, ag-
gressive) are represented by distinct individual profiles, 
which are then mapped onto specific configurations of the 
architecture parameters. The parameters cause ‘micro’ 
variations in architecture processing, (e.g., number and 
types of cues processed by the attention module, number 
and types situations derived by the situation assessment 
modules; focus on goal A vs. goal B), which then lead to 
‘macro’ variations in observable behavior (e.g., high trait-
anxious team leader requires more time and resources for a 
particular operation than a low trait-anxious; high-anxious 
operator misses a critical cue on operating console due to 
attentional narrowing, failing to diagnose an electrical mal-
function, etc.). Figure 1 illustrates the general relationship 
between a representative set of individual differences, the 
architecture parameters, and the architecture itself.  Figure 
2 shows an expanded view of the MAMID architecture. 
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Figure 1: Schematic Illustration of MAMID Behavior 
Moderator Modeling  Approach and Architecture  
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Figure 2: MAMID Cognitive Architecture and Mental 
Constructs that Comprise Input / Output of the Archi-
tecture Modules 

4.1.2 MAMID Architecture 

MAMID is a sequential ‘see-think-do’ cognitive architec-
ture, consisting of six processing modules which map the in-
coming stimuli (cues) onto the outgoing behavior (actions), 
via a series of intermediate internal representational struc-
tures (situations, expectations, and goals). We term these in-
ternal structures mental constructs.   The remainder of this 
section describes the MAMID cognitive architecture and the 
parameter space available for encoding behavior moderators. 

The MAMID modules consist of the following: sen-
sory pre-processing, translating the incoming raw data into 
high-level task-relevant perceptual cues; attention, filtering 
the incoming cues and selecting a subset for further proc-
essing; situation assessment, integrating individual cues 
into an overall situation assessment; expectation genera-
tion, projecting the current situation into one or more pos-
sible future states;  affect appraiser deriving the affective 
state from the variety of influencing factors:  static (traits, 
individual history) and dynamic (current affective state, 
current situation, goal, expectation); goal selection, select-
ing the most relevant goal for achievement; and action se-
lection,  selecting the most suitable action for achieving the 
current goal within the current context. Figure 2 illustrates 
the MAMID cognitive architecture, its constituent mod-
ules, and the mental constructs that comprise the input and 
output of these modules; that is, cues, situations, expecta-
tions, goals and actions.   

4.1.3 MAMID Evaluation Results 

The MAMID prototype was evaluated in the context of a 
peacekeeping scenario, where separate instances of the ar-
chitecture controlled the behavior of simulated battalion 
commanders, moving through an unsecured territory. Dur-
ing the evaluation experiment,  the simulated commanders 
encountered a series of surprise events (e.g., destroyed 
bridge, enemy illumination rounds, hostile crowd.  

Several ‘stereotype’ commanders were defined (anx-
ious, aggressive, normal, obsessive) and MAMID gener-
ated distinct internal processing and differences in observ-
able behavior, as shown in figures 3 and 4.  
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Figure 3: Contrasting Internal Model Processing for 
Normal and Anxious Commanders during ‘Hostile 
Crowd’ Encounter 
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Figure 4: Summary of Behavior Generated by the 
MAMID Models of the ‘Normal’, ’Anxious’, and 
‘Aggressive’ Commanders 

 
While much work remains to be done to fully evaluate 

and validate the MAMID modeling methodology and ar-
chitecture, and a number of extensions to the architecture 
are possible, the initial evaluation demonstrates the feasi-
bility of the overall approach to modeling individual dif-
ferences in terms of parametric changes to the architecture 
processes, constructs and memory structures. 

4.2 Modeling the Individual in Terms of  
a Profile within a Social Network  

We now describe an alternative approach to modeling in-
dividual behavior, based on the use of profiles, embedded 
within social networks. This approach makes no attempt to 
emulate the human decision-making process, but rather 
aims to collect as much relevant information about the in-
dividual as possible in terms of a profile consisting of the 
critical behavior determinants, and past behaviors, as out-
lined earlier.  A series of mappings among these determi-
nants then enable the derivation of additional profile in-
formation, from existing data, as well as the prediction of 
likely behaviors. 
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Similarly to the cognitive architecture approach de-
scribed above, the profile-based approach is able to repre-
sent a variety of individual differences that cause variations 
in individual behavior.  

Below we describe a specific profile-based approach 
developed by Charles River Analytics and implemented 
within a prototype PSYOP (Psychological Operations) deci-
sion-aid.  This approach originated with C2WARS and is 
now being extended under the IODA (Information Opera-
tions Decision Aid) program  (Hudlicka et al. 2002; Hud-
licka et al. 2004). We first describe the individual behavior 
determinant profile, discuss how its components are used to 
derive additional individual data and behavior predictions, 
and provide examples of rules deriving this information. 

4.2.1  Individual Behavior Determinant Profile 

Below we outline a catalog of behavior determinants we have 
identified as relevant to PSYOP decision aiding, but which 
also apply to other domains. These determinants include in-
dividual differences and behavior moderators, but go beyond 
these to include the individual’s goals, characteristic beliefs 
and attitudes. The profile also include the psychosocial and 
information environment within which the individual oper-
ates, represented in terms of the variety of relationships of the 
individual to his/her social environment. These relationships 
then define the individual’s social network and are a critical 
component of modeling the individual’s organizational mi-
lieu.  The primary categories of profile attributes are shown 
in Table 2. An example of a social network generated from 
the IODA profile information is shown in Figure 5. 
 

Table 2: Categories of Behavior Determinants in Target 
Profiles 
Demographic Info. Training & Education 
Individual History Role 
Intra / Inter personal  
Conflicts 

Vulnerabilities, Pressure 
Points 

Psychological Factors  Psychosocial Relationships 
Attitudes / Beliefs Situation Assessments 
Goals / Goal Personnel Goals Scripts 
Info. Environment Data Triggering Beliefs 

4.2.2 Deriving Profile Values and Predicting 
Individual Behavior 

The individual profile summarizes the knowledge about 
the individual, both static and dynamic.  To derive addi-
tional information from the existing profile data, and to 
generate behavior predictions, the profile-based approach 
needs a means of manipulating this knowledge to derive 
the information of interest. This can be accomplished via a 
number of means. The approach adopted for the IODA de-
cision-aid uses a combination of rules and belief nets, 
which map the individual profile attributes onto other at- 
 

 
Figure 5:  Example of a Social Network for a 
Set of Fictitious Individuals Modeled within the 
IODA Decision-Aid 

 
tributes, eventually allowing the derivation of the likely 
predicted behavior for the individual. 

A variety of mappings may be constructed and en-
coded in the rules and belief nets, relating different attrib-
utes within the profile (e.g., relating traits with attitudes 
and goals), and eventually resulting in the derivation of the 
likelihood of particular behaviors of interest (e.g., selection 
of a particular strategy to achieve a particular goal). These 
mappings are derived from a combination of knowledge 
from academic and applied psychological studies (e.g., cor-
relations or particular trait configurations with specific atti-
tudes, beliefs, values and goals), and practical field knowl-
edge (e.g. correlations of particular characteristics with 
likely behavior). 

An example of a belief net deriving the vulnerability 
‘Mixed Family Loyalties’ is shown in figure 6.  Examples 
of rules deriving profile attributes are shown in Table 3 be-
low; examples of behavior prediction rules are shown in 
Table 4 below. 
 

 
Figure 6: Example of a Belief Net Deriving a Particu-
lar Individual Vulnerability: ‘Mixed Family Loyalties’ 

 
The profile-based approach described above was im-

plemented in several prototypes, using fictitious but realis 
tic operational scenarios, and focusing on distinct objec-  
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Table 3: Examples of Rules Deriving Profile Attributes 
from Existing Data 
High preference for face-to-face contact 
IF (extraversion=high)  AND (agreeableness = high)  
THEN 
(preference for face-to-face contact = high)  
(preference for team collaborative decision-making = high) 
(diverse sources of information = high) 
High need for collaborative decision making 
IF (need for affiliation = high) And (Trust = high) AND 
(paranoia = low)  
THEN  (Need for consensus = high) (need for collabora-
tive decision making = high) 
 (general relationship with subordinates = empowers) 

Table 4: Examples of Behavior Prediction Rules 
IF Person Y’s religious 

extremism = high 
Person Y’s event his- 
tory includes violence 

THEN Person Y’s likelihood  
of violence = high 

IF Person Y’s goals in- 
clude “Peaceful co- 
existence”  
Person Y’s religious  
extremism = low 

THEN Person Y’s likelihood  
of violence = low 

IF Person Y’s event his- 
tory includes violence 

THEN Person Y’s likelihood  
of violence = high 

 
tives. The C2WARS prototype implemented a proof-of-
concept demonstration, instantiating profiles of specific in-
dividuals within a Balkans-like PSYOP training scenario, 
deriving additional individual information from existing 
data, and focusing on the identification of specific vulner-
abilities (e.g., ‘Mixed Family Loyalties’ shown in Figure 
9).  The IODA prototype implemented a different training 
scenario, involving civil-war context in a multi-ethnic en-
vironment, and focused on behavior prediction, expanding 
the profile and inferencing accordingly. 

5 INTEGRATING INDIVIDUAL MODELS 
WITHIN ORGANIZATIONAL SIMULATIONS 

We now briefly discuss how the two approaches described 
above would be integrated within organizational simula-
tions, and what enhancements would be required. In each 
case, the primary objective is to capture the set of relation-
ships between the individual and the organization, and the 
resulting interactions and mutual influences. Exactly what 
information about the organization is required, how this 
information is represented, and at what level of abstraction 
the organization is represented, depend on the objectives of 
the particular simulation.   

5.1  Integrating Cognitive Architecture Models  
within Organizational Simulations 

There are several ways in which a cognitive architecture 
can be integrated within an organizational simulation. A 
given instance of an architecture can represent an individ-
ual within the organization, so that multiple instances can 
represent multiple interacting individuals within the or-
ganization. Under some circumstances a given instance of 
an architecture can also represent a group of individuals, a 
component of the organization, or even the organization as 
a whole, depending on the level of modeling fidelity re-
quired by the simulation objectives.  

When using this approach, we must first characterize 
the types of interactions that occur between the individual 
and the organization, and then augment the corresponding 
models accordingly, by adding schemas and knowledge 
that: (1) represent these interactions; (2) allow the percep-
tion and parsing of the ‘messages’ inherent in these inter-
actions; (3) enable modeling of the effects of these ‘mes-
sages’ on the processing in both models; and (4) enable the 
generation of meaningful responses.  

This type of augmentation will typically require addi-
tional content of the knowledge structures, both knowledge 
and data in long-term memories, and the knowledge neces-
sary to use and manipulate these (e.g., rules, belief nets), as 
well as the generation of simulation-driven dynamic data 
that provide information about the organizational context.  
However, incorporating a cognitive architecture within an 
organizational simulation is not likely to require changes to 
the architecture itself; that is, the modules, their internal al-
gorithms, and the mental constructs they manipulate.  

The exact nature of the additional schemas required, 
and the dynamic data generated during a simulation, de-
pend entirely on the nature and objectives of the associated 
organizational simulation, but are likely to include the fol-
lowing: (1) types of information provided by or about the 
organizational context (e.g., messages sent / received 
among members of the organization or other subgroups); 
(2)  explicit representation of other relevant entities within 
the organization (e.g., individuals, departments, subgroups, 
the organization as whole, as well as  specific resources); 
(3) Baseline knowledge about these entities and their roles 
within the organization (e.g., individual x is head of de-
partment y, department z has n units of resource r); and (4) 
relevant states and behavioral repertoire of the other active 
entities within the organization (individual, organizational 
subgroups, or the organization as a whole) (e.g., ‘person x 
knows fact b’, ‘department y can perform procedure d’, 
‘president x is pleased with outcome y’, ‘organization p is 
lacking resource r’). 

5.2  Integrating Profile-Based Social Network  
Models within Organizational Simulations 

By explicitly representing the individual’s social relation-
ships and information environment, the behavior determi-
nant profile is already well-suited for integration within an 
organizational simulation context. Depending on the nature 
and requirements of the overall organizational simulation, 
integrating an individual profile may only require adding 
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the corresponding content to the existing profile structures; 
that is, the nature and type of relationships between the in-
dividual and his/her organization. Depending on the repre-
sentational resolution of the organization, this may involve 
adding multiple relationships to other individuals compris-
ing the organizations, or adding relationships to subgroups 
within the organization represented as a single model entity 
(e.g., a single ‘node’ in a social network may represent a 
group of individuals or a component of the organization, 
such as a department). 

To support the additional inferencing required, the 
knowledge base associated with the profile must be aug-
mented. For example, the rules or belief nets must be 
added to use the additional ‘organizational’ knowledge and 
derive from it the necessary data, such as an appropriate 
response to a particular ‘message’ arriving from a different 
component of the organization. 

6 CONCLUSIONS 

In order to optimize organizational structure to enhance in-
dividual creativity on the one hand, and limit the possibly 
adverse effects of individual behavior on the other, we must 
improve our understanding of the complex interactions be-
tween the individual within the organizational context.  Such 
improved understanding requires computational modeling 
approaches, due to the complexity of the phenomenon, 
which precludes purely non-computational empirical studies.  
These computational approaches must be able to adequately 
model individual behavior, particularly the types of individ-
ual differences that give rise to idiosyncratic behavior, which 
can be both beneficial and detrimental to the organization as 
a whole. Understanding the effects of individual behavioral 
variations on the organization as a whole is also critical for 
any type of organizational behavior predictions. 

Both of the approaches to modeling the individual de-
scribed here are well-suited to modeling the individual 
within an organization. However, we have yet to develop 
adequate criteria to determine which approach is best 
suited for which application. Systematic evaluations of the 
various modeling approaches are necessary to identify their 
benefits and shortcomings, across various contexts. Addi-
tional research is necessary to explore these, and other, 
modeling approaches, in various contexts, to define these 
criteria, and to contribute to defining a concrete set of 
guidelines for developing organization simulations. Such 
guidelines would help determine which method to use 
when, what level of representational abstraction is most 
appropriate for a particular application or objective, and 
how distinct modeling approaches may be combined.  
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