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ABSTRACT 

Using simulated data to develop and study diagnostic tools 
for data analysis is very beneficial.  The user can gain in-
sight about what happens when assumptions are violated 
since the true model is known.  However, care must be taken 
to be sure that the simulated data is a reasonable representa-
tion of what one would usually expect in the real world.  
This paper discusses the construction of simulated data sets 
and provides specific examples using linear and logistic re-
gression analysis.  It also addresses the execution of simula-
tion based data studies following data construction. 

1 WHY USE SIMULATED DATA? 

The research of analytical techniques through simulation 
analysis provides benefits that are not possible from re-
search based exclusively on theoretical models.  Often as-
sumptions are violated in practice when analyzing real data 
where the true relationships in the data are unknown.  
Simulation allows a level of knowledge and control that 
leads to more robust and defendable solutions.  Many of 
our commonly used analytical techniques have existed for 
long periods of time, are widely accepted, and are used for 
a wide range of application types.  For example, regression 
analysis and the method of least squares dates back to the 
early 20th Century, and is used for analysis on everything 
from biological processes to national economies (Myers 
1990).  However, if the basic assumptions do not hold, it is 
difficult to evaluate results or make comparisons with 
competing techniques.  In an application like regression, 
the early data sets most often studied were characteristi-
cally more simple and smaller than representative modern 
data sets, which are significantly more complex and large.  
Hence, obtaining a straightforward assessment of the tech-
nique’s strengths and weaknesses is not clear-cut.  These 
evolving complex applications can drift away from many 
of the critical theoretical assumptions, so a clear assess-
ment of performance using only real test data sets may not 
be possible.  Using simulated data sets, where the charac-
teristics of the data are controlled and varied, will lead to 
better research of the technique’s abilities in general, and 
to assessments of its performance in specific applications. 

In many modern applications, the researcher truly does 
not know what they don’t know.  It is very common to see 
research where various techniques’ performance is com-
pared against a real data set, to see which model performs 
better.  In many of these studies, alterations or improvements 
of a given technique will be compared to a group of others to 
determine a best method.  This approach seems very com-
mon in emerging fields such as so-called data mining appli-
cations.  Examples of this approach are Foster and Stine 
(2001); Morrison, Bose, and O’Leary (2000); Shirata and 
Terano (2000); Reinartz (1998); and John and Langley 
(1996).  This approach has several weaknesses.  One signifi-
cant concern is the increased likelihood of repeated tuning.  
Salzberg (1997) defines this issue as researchers continually 
striving for algorithm improvements that achieve improved 
performance on a given data set.  The problem is then mod-
eling nuances of the given data and relating them to global 
conclusions about algorithmic improvement. 

Another concern is this approach may result in a com-
parison of one model’s poor performance to another’s, and 
this may even lead the modeler to overestimate the model 
performance.  Hill and Malone (2003) showed in linear re-
gression applications in large data sets it is possible to ob-
tain consistently bad performance.  Simulation allows the 
separation of Type I and II regression errors; this meas-
urement is not possible using real data.  A Type I regres-
sion error is selecting a truly insignificant variable as sig-
nificant, or rejecting a hypothesis when it is true, while a 
Type II regression error is considering a variable insignifi-
cant when it is actually significant (Shaeffer & McClave 
1990).  The Type II regression error is not mentioned in the 
literature, probably because of the inability to detect them 
unless one is using simulated data sets.  In these examples, 
a series of noise models can all exhibit Type I errors while 
a realistically simulated data set is required to show both 
Type I and II errors consistently.  Without the knowledge 
of the true model, it is easy to completely miss these types 
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of errors and consequently see poor performance.  Using 
simulated data allows for better identification of strengths 
and weaknesses of each approach. 

If one had competing techniques available like linear 
or logistic regression, recursive partitioning, or neural net-
works, etc., a common approach would be to take a set of 
real data, specify and estimate the model, then compare the 
model’s performance on prediction using a holdout portion 
of the data.  This type of research would provide a ranking 
of the performance of the competing techniques against the 
prediction application.  However, we may be comparing 
models that are all bad.  The other issue is that the holdout 
data set (especially with large n) might be flawed.  Also if 
the researcher is interested in accurate coefficient estimates 
there is really no way to judge the best model among com-
peting techniques using real data.  On the other hand, the 
same research using simulated data sets with known and 
controlled relationships can lead to the identification of the 
specific issues associated with a given technique.  This 
knowledge could lead to development of new solutions to 
the specific problems, and improved performance in mod-
eling.  This would be difficult if not impossible to achieve 
using real data.  

The use of simulation allows multiple comparisons dur-
ing research of a given analytical technique.  The data can be 
altered methodically to test violations of assumptions of the 
technique under consideration.  For example, in classical 
linear regression analysis assumptions are that independent 
variables are not a perfect linear function of other independ-
ent variables, independent variables are not correlated with 
the error term, the errors are normally distributed with mean 
zero and constant error variance, and the errors are inde-
pendent (Studenmund 2001).  These assumptions could be 
methodically altered to determine their impacts in a speci-
fied setting.  Additional problems like outliers or data related 
problems might also be induced.  The setting could be al-
tered as well, such as using varied sample sizes, or different 
objectives, like prediction versus estimation 

Simulation based research also provides the ability to 
change other characteristics of the technique under study.  In 
the regression case, it allows separation and measurement of 
Type I and II errors; this approach is not possible using a 
real data set.  It also allows variation of the numbers of inde-
pendent variables, their distributions, and the type of vari-
able (categorical versus continuous).  It allows for manipula-
tion of the number and proportion of variables that influence 
the response.  Another aspect of using simulation specifi-
cally to analyze regression performance deals with the ef-
fects of selecting a specific alpha level for variable selection.  
Skipper, Guenther, and Nass (1967) suggest that selection of 
a significance level is a matter of convention and is some-
what arbitrary, although the nature of the problem under 
study should dictate the decision.  Simulation based model-
ing enables a scrutiny of these issues. 

In short, the ability to control characteristics of the 
data and to have knowledge about the model and the data 
characteristics make simulation based research a powerful 
tool.  In fact, this approach will likely lead to broader and 
more defendable solutions than other approaches.  No 
known technique always outperforms all others regardless 
of data characteristics.  Simulation allows for discovery of 
issues and detailed comparisons of strengths and weak-
nesses between competing approaches.  This leads to an 
opportunity for an analyst to bound problems and discover 
regions where violation of particular assumptions may 
have a greater impact than others. 

2 BUILDING THE SIMULATION MODEL 

The process of building a good simulated data set is the most 
critical step in conducting research in this manner.  Hill and 
Malone (2003) show that data which are too clean or well 
behaved will provide misleading results.  On the other hand, 
simulated data that has unrealistically large errors, levels of 
multicollinearity, numbers and magnitude of outliers, etc. 
will also provide misleading results.  Benchmarking the data 
set can resolve these issues by ensuring the data is realistic.  
The benchmarking effort should involve comparing the 
simulated data set against problems that are widely accepted 
and understood; this will improve the simulated data’s 
credibility.  This process can take the form of considering 
historic studies in the field, application area, or industry un-
der consideration.  It can also include benchmarking charac-
teristics against examples from significant or foundational 
literature.  The characteristics of these benchmark studies 
can be blended with the characteristics of the real data under 
eventual consideration to create a realistic simulated data set.  
This is accomplished by finding examples, or precedent, in 
benchmark cases that are characteristic of the problem under 
study.  This paper will provide both general comments about 
and specific examples of the construction of simulated data 
for linear and logistic regression.  

2.1  Data Construction 

The first step is the construction of the group of independ-
ent variables and the response.  In simulating the group of 
independent variables one must consider factors like the 
number of variables to be in the model, the individual 
characteristics of the variables, like distribution, range, and 
variability, the proportion of independent variables that 
contribute to the response, degree of association or de-
pendence between the variables, and the level of contribu-
tion of the variable to the response.  These types of deci-
sions should be made by analyzing historic studies, 
benchmark cases, and example real data sets.  The objec-
tive is not to create exact replicas of the example cases, but 
rather to create data that is feasible in real world applica-
tions.  Analysis of real data as an example requires great 
caution.  Although the data provides much meaningful in-
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formation, caution is warranted to avoid over-modeling or 
repeated tuning problems of the data.  The analyst must 
also guard against obtaining pre-conceived notions about 
relationships in the data.  It is not important to have the 
correct specific details in the data set, like exactly which 
variables will really be significant; however, it is important 
that the simulated data set exhibits the same overall charac-
teristics as in the application field in general.   

Once the set of independent variables is formed, the 
next step is forming the response variable.  In the regres-
sion example this means determining how many variables 
to include in the true model, which variables will influence 
the response, and assigning a coefficient value.  It is impor-
tant to get an adequate proportion and mix of different 
types of variables.  The next component to add into the 
equation is the error term.  As noted earlier, there are sev-
eral classic assumptions of regression that must be consid-
ered in the construction of the error term, with particular 
focus on the magnitude of the error term.  During this por-
tion of the simulated data construction process, it is impor-
tant to benchmark the data against foundational data.  Ex-
amples from linear regression and logistic regression will 
clarify this step. 

2.2  Linear Regression 

For the linear regression examples, we will provide cases 
from the Myers (1990) regression text, the Myers and Mont-
gomery (1995) response surface text, and the Studenmund 
(2001) econometrics text as benchmark examples.  These 
examples provide cases with designed experiments, ob-
served data, engineering applications, econometric exam-
ples, mixed variable types, and varied levels of behavior in 
the data.  Several tables and Appendix A provide different 
aspects of the examples as a general guide for construction 
of simulated data.  These examples contain characteristics of 
different responses, characteristics of the model, and values 
for statistics measuring multicollinearity.  The reference for 
each example is provided in Appendix A.  It is important to 
realize the benchmarking step is as much an art as science.  
The analyst must consider a range of descriptive statistics 
before settling in on the specifics of simulated data.  For ex-
ample, analysis of the range of a response is not sufficient.  
The range must be considered simultaneously with the re-
sponse average, the maximum value, and the minimum 
value.  Likewise, the Mean Squared Error (MSE) in isolation 
is not as meaningful a benchmark as it is in combination 
with ratios of the MSE to descriptors of the range.  When 
comparing examples with widely different ranges of re-
sponse and MSE, it is also useful to use transformations of 
these statistics, like the natural log.  Finally, benchmarks of 
the statistics describing relationships in the data also warrant 
care.  Measures of multicollinearity and variability must be 
considered together.  This general benchmarking approach 
will be illustrated with an example. 
2.3  Linear Regression Example 

Consider an example where the research objective is under-
standing the effects of large numbers of observations on lin-
ear regression analysis. One application of this research will 
be the United States Army Recruiting Command (USAREC). 
The first step in the process of constructing simulated data is 
consideration of reasonable characteristics for the data. In this 
case, our analysis will center on personnel who have signed 
an Army contract and are awaiting shipment to training.  The 
first step is to develop a group of variables similar to those 
used in typical USAREC Delayed Entry Program (DEP) 
analysis.  After consideration of historic studies and real data 
sets, 37 independent variables, 11 of which were continuous 
and 26 of which were categorical, were constructed. For the 
categorical variables, the numbers of categories range from 
12 to 2. Some of these are generated via Empirical distribu-
tions and some via Bernoulli. The continuous variables were 
generated from a wide range of distributions including Nor-
mal, Beta, Weibull, Empirical, and others. Decisions con-
cerning the specific distributions came from input modeling 
the distribution of the independent variables in the real data 
set. The real data was the basis for choices of distributions 
and parameters. Consideration of a real variable’s mean, 
variance, and distribution led to choices for characteristics of 
the simulated data. It is important to note that in this example 
the research was not focused on other data problems, like 
multicollinearity or outliers, so we could proceed to the next 
step. However, if these factors were an issue of concern, they 
should be built into the data set at this point. The data should 
be created with the objective of reasonableness in a real 
world problem, not of having the exact and specific charac-
teristics of a data set under consideration.   

Once the set of variables was generated, the next step 
is generation of the response.  Eleven arbitrary variables 
were randomly selected to generate the true model; in addi-
tion, each of these variables was given an arbitrary coeffi-
cient value.  These 11 variables did include a mix of both 
categorical and continuous variables.  The true model was:  
G(x) = 5C12 – 2A1 + 3A2 + 1.5J + 1.9I + .98L - 1.9D2 + 
1.1D3 + 1.3M - 2.01N + 2.9P.   

The next step in forming the response is the modeling 
of the error term.  In this case, the base of the response was 
formed with the equation above, and it resulted in a range 
of the response of approximately 32,000 and a mean re-
sponse of 1141.  The characteristics of the base response 
were compared to the benchmark cases of Table 1 below. 

Although there is not an example that provides a range 
of response as large as the base for this particular simulated 
data set, the Mean Y was between the Hospital Data and the 
SAT Test Model.  Our arbitrary selection of true significant 
independent variables and coefficients resulted in a wide re-
sponse range.  The analyst can reduce the range of response 
by transformation of the response or changing some of the 
coefficients used to build the models, or the analyst can pro-
ceed to find a reasonable error for the wide range.   
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Table 1: Linear Response Comparison 
Example   Min Y Max Y Range Mean Y
Transistor  
Gain 

852 1636 784 1250 

Plating   
Process 

50 790 740 376 

Hospital  
Data 

567 18854 18287 4979 

Teacher  
Effectiveness 

235 584 349 445 

Cleansing  
Experiment 

167 410 243 302 

SAT Test  
Model 

590 1430 840 1076 

 
The next step will be to compare the error terms of 

similar examples to find a level appropriate for the simu-
lated data. Table 2 provides the benchmark metrics for se-
lection of an appropriate error level.  In this case, we are 
looking for a level of error to support the wide range of the 
response described above. An arbitrary selection of a nor-
mally distributed error term with mean zero and standard 
deviation of 177 resulted in an MSE of 31,000.  Upon in-
spection, it seems a target MSE level of 31,000 is reason-
able. This MSE is slightly more than average of the 
benchmark cases shown in Table 2, but the larger range of 
response makes this seem logical.  The MSE value of 
31,000 also falls between the Hospital Data and the SAT 
Test Model, and this also seems reasonable. 

 
Table 2: Comparison of Linear Metric Errors 

Example MSE ADJ R2 

Range

MSE
 

)ln(Rnge

MSE

Transistor  
Gain 

1220 0.973 0.045 183 

Plating   
Process 

971 0.983 0.042 147 

Hospital  
Data 

412274 .0987 0.035 42009 

Teacher     
Effectiveness 

3023 0.591 0.157 516 

Cleansing  
Experiment 

363 0.928 0.078 66 

SAT Test  
Model 

25472 0.809 0.144 2185 

 
The decision on a level of error fuels the generation of 

the response and remainder of the data set.  In this case, we 
added a normally distributed error with mean zero and stan-
dard deviation of 177 to the base equation shown above.  If 
an appropriate level of error is not clear by using the bench-
mark approach, decide on a range of possible errors. Simu-
lated data can then be generated and tested against a specific 
analytical application to determine the effects of error on the 
analysis. This additional analysis of error levels leads to a 
more accurate decision concerning the error term. An exam-
ple of this approach is detailed in Hill and Malone (2003). 

After specifying the independent variables, the re-
sponse, and the errors one can consider altering the data so 
that it violates assumptions about the error, for example 
non-normally distributed errors.  Another data adjustment 
might be systematic inclusion of some level of multicollin-
earity, which would also need to be benchmarked as shown 
in Appendix A.  At this point, the data is ready for analy-
sis.  The appropriate numbers of observations must be gen-
erated, the error must be generated, and the response calcu-
lated by adding the error term to the base regression 
equation.  Replication of the simulated data that capitalizes 
on different random number schemes is straightforward 
once the metrics have been established. 

2.4  Logistic Regression 

Logistic regression analysis is much like linear regression 
in that we are interested in the relationship of a group of 
independent variables with a response or dependent vari-
able.  Much like in linear regression, the ultimate objective 
for the study may be either estimation of the coefficient 
values, or prediction of the response value.  One significant 
difference between the logistic and linear models is that the 
linear model has a continuous response variable and the 
logistic model uses a binary or dichotomous response.  As 
a result, the method of estimation uses maximum likeli-
hood as opposed to least squares (Hosmer and Lemeshow 
2000).  This difference is substantial and brings a different 
set of issues and statistics to bear on the simulation of the 
logistic regression problem.  The example problems used 
as benchmark cases for the logistic model come from the 
Hosmer and Lemeshow (2000) logistic regression text; 
Myers (1990) regression text; Neter, Kutner, Nachtsheim, 
and Wasserman (1996) regression text; and the Studen-
mund (2001) econometrics text.  These examples provide a 
variety of cases including medical, environmental, task 
success, consumer purchase, and financial applications.  As 
in the linear example, appendices provide the characteris-
tics of problems in the benchmark cases as a guide for con-
struction of the simulated data.  Appendix B provides char-
acteristics of variables from the benchmark cases and 
references.  Appendix C gives characteristics of the mod-
els.  The characteristics and statistics provided in the ap-
pendices are meant to be a guide for creating data sets that 
are realistic in the sense that they are representative of a 
real problem, just as in the linear regression case. 

2.5  Logistic Regression Example 

The same USAREC application can be used for creation of 
a benchmark for the logistic model.  The initial portion of 
creating the independent variables is no different from the 
linear case—ensure the numbers, types, and distributions 
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of the independent variables are feasible.  The use of 37 
variables, 10 of which are continuous and 26 of which are 
categorical, were created the same way.  The distributions 
used to generate the X’s are the same as well.  The point of 
departure for the logistic regression example is generation 
of the response.   

Although the same procedure is used for determination 
of the “true” significant independent variables and their 
coefficient values, i.e., random selection, the rest of the 
process is significantly different.  The remaining process 
for creating the logistic regression model is accomplished 
by calculating the logit, estimating the conditional mean of 
Y given X, estimating the base response value, comparing 
the base value to a random error, and then calculating the 
simulated response value.  The values of the coefficients 
used in a simulation of a logistic regression do not have the 
same meaning as in the linear problem and as a result will 
be smaller than those typically encountered in a linear re-
gression problem.  Continuing with this example, the logit 
equation is determined by:  G(x)= -0.07A + 0.11B1 - 
0.09B2 - 0.15D + 0.08G - 0.03K + 0.19L1 - 0.06L3 + 
0.25M - 0.06N - 1.1S.  The equation is different from our 
linear regression example in that we have different inde-
pendent variables selected as truly significant, and they 
have different coefficient values.  The next step is to use 
the G(x) value to estimate the conditional mean value of Y 
given X.  This is given by :  

 

 )(

)(

1
)( xG

xG

e
ex
+

=π  (1) 

 
which will range in value between 0 and 1 and represents 
the probability of observing a 1 response given the group 
of X’s.  Although this value could be used to estimate a re-
sponse value, it should consider the realistic amount of er-
ror that will be present in real applications. 

The first step in generating the error is to randomly 
generate an error term, distributed between 0 and 1.  In our 
application, we generated this term with a normal distribu-
tion. The parameters of the distribution will affect the 
amount of error present in the final simulated data. Once 
the error term is generated, the simulated estimated condi-
tional mean value is compared to the error term value.  If it 
is greater than the error term, the response is coded as a 1; 
otherwise, the response is coded as zero.   

However, consideration of the level of error is not 
straightforward.  As mentioned earlier, the distribution and 
parameters used for generating the error term directly af-
fect the amount of error that is present in the simulated lo-
gistic regression model.  A prediction based error meas-
urement will give a feel for the impact of the amount of 
error present in a simulation model.  To do this, compare 
the calculated response value, which was used to fit the lo-
gistic regression model, to the predicted response values 
from the model, and determine the difference as a predic-
tion-based error assessment.  If all other variable values 
and parameters, except for the error variable, are kept the 
same, this measurement will provide a sense of the impact 
of the error.  This level of simulation model error is com-
pared to a similar prediction error level in the benchmark 
cases. In the case of the benchmark examples, a logistic re-
gression model was fitted to the real data.  The estimated  
values were used to predict a response value by using a 
cut-off score method (Hosmer & Lemeshow 2000).  The 
benchmark errors were obtained by building a model that 
included all terms under consideration without any subse-
quent model improvement.  Although not exact, this pro-
vided a sense of impact of the error that is realistic.  The 
predicted response was then compared to the real data in 
the benchmark cases to obtain an error rate.  The simula-
tion model error rates were then compared to the bench-
mark error rates, and the level of error in the simulation 
model was adjusted until the error level fell within the 
range of the benchmark data.  Table 3 below shows vary-
ing levels of error in simulation models against the bench-
mark cases shown in Appendices B and C.  In these appen-
dices for the cases of simulated logistic regression models 
all factors are held constant except for the level of error. 
 

Table 3: Comparison of Error in Simulated and 
Benchmark Logistic Regression Models 
Simulation Case Error Term Sim. Error Rate 
1 U(0, 1) 0.048 
2 N(0, 1.03) 0.439 
3 N(0, 1.5) 0.449 
4 N(0.5, 0.6) 0.278 
Benchmark Case Bench Error Rate
Infant Birth Weight 0.317 
Prostate Cancer 0.102 
Average Benchmark 0.218 

2.6  Experimentation 

Once the process of constructing the simulated data is com-
pleted the research can begin.  Simulation allows for a 
unique approach for isolating effects of the random numbers 
alone before analysis of the other factors begins.  This step is 
accomplished through a noise model and allows quantifica-
tion of the random effects in a given model that are due to 
spurious patterns in the random numbers alone.  This ap-
proach applied to regression models is shown in Freedman 
(1983), Raftery (1995), and Hill and Malone (2003).  As the 
experimentation continues to determine effects of other fac-
tors, it is important to remain aware that creating a simula-
tion model that is too clean in general or choosing an error 
rate that is too conservative can provide misleading results.  
An example of this issue is also found in Hill and Malone 
(2003).  In these cases, the models will perform better than 
the “real” conditions and may lead to overestimation of the 
performance of the technique under study. 
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As in other simulation approaches, analysis of compet-
ing alternatives, or different factors, can be accomplished 
by using common random numbers and the resulting group 
of independent variables, error, and response.  This ap-
proach allows for variance reduction in general, and isola-
tion of effects that are due to differences in alternatives.  
Once a hypothesis is formed, it is also possible in simula-
tion experimentation to use varied streams of random 
numbers, and resulting variables and error, to determine 
the effect of random numbers on the hypothesis.  Both of 
these abilities provide simulation-based analysis with in-
formation that is not available under a standard real data 
approach.  This fosters more accurate and robust results.   

3 CONCLUSIONS 

Using simulation to create data that serves as a foundation 
for research of diagnostic tools for regression analysis is 
powerful.  It provides opportunities for analyses that do not 
exist when using real data alone.  The simulated data gives 
the analyst greater control over the experimental environ-
ment and allows measurement and comparisons that are 
not achievable with real data.  In general, simulated data 
provides more robust and defendable solutions.  However, 
generation of the simulated data has tremendous affects on 
results.  Models that are either too clean and well behaved 
or are unrealistic with respect to error and other trouble-
some real world characteristics can provide misleading re-
sults.  The use of benchmark examples from historic stud-
ies, real data, and generally accepted foundational literature 
to construct the simulated data will help avoid these con-
cerns and lead to more successful and meaningful research. 

APPENDIX A: LINEAR REGRESSION 
BENCHMARK  
CHARACTERISTICS 

Example Source Eigen- 
ratio  
X’X 

Eigen-
range  
X’X 

Largest 
VIF 

Transistor  
Gain 

Myers &  
Montgom- 
ery (1995) 

1.005 0.005 1 

Plating   
Process 

Myers &  
Montgo- 
mery  (1995) 

1.25 0.2143 1 

Hospital 
Data 

Myers  
(1990) 

108385 43.35 9595 

Teacher  
Effec- 
tiveness 

Myers  
(1990) 

5.49 1.46 1.8 

Cleansing  
Experiment 

Myers  
(1990) 

3.06 1.01 1.3 

SAT  
Test Model 

Studen- 
mund 
(2001) 

30.15 2.95 5.1 
APPENDIX B: CHARACTERISTICS OF  
LOGISTIC REGRESSION 
VARIABLES 

Description Source n Proportion  
1’s in Y 

Total  
IVs 

Infant  
Birth  
Weight 

Hosmer & 
Lemeshow  
(2000) 

189 .0312 4 

Prostate 
Cancer 

Hosmer &  
Lemeshow  
(2000) 

376 0.402 9 

Air Re- 
striction 

Myers  
(1990) 

39 0.513 2 

Mosquito  
Disease 

Neter, Kut- 
ner, Nacht- 
sheim, &  
Wasserman 
 (1996) 

98 0.316 4 

Mortgage  
Rates 

Studenmund 
(2001) 

78 0.410 6 

APPENDIX C: CHARACTERISTICS OF  
LOGISTIC REGRESSION  
MODELS 

Example Log  
Likeli- 
hood 

Devi- 
ance 

Cat. 
IVs 

Error 
Rate 

Pseudo 
R2 

Infant  
Birth 
Weight 

-111.29 12.099 2 0.317 0.052 

Prostate  
Cancer 

-187.27 132 5 0.103 0.261 

Air Re- 
striction 

-14.89 24.27 0 0.103 0.449 

Mosquito  
Disease 

-50.53 21.26 3 0.286 0.174 

Mortgage  
Rates 

-39.06 27.48 0 0.218 0.260 
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