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ABSTRACT 

The reuse of existing simulations in multiple federations is 
an important goal of distributed simulation frameworks. 
However, in order to reuse a federate, its simulation code 
often has to be modified so as to comply with the object 
and interaction representations defined in a corresponding 
Federation Object Model (FOM). Such modifications im-
ply added time and effort, which diminishes the efficacy of 
reuse in federation development. In this paper, we present 
an ontology-based framework for modeling federates and 
supporting their reuse in multiple federations. Ontologies 
are used to specify the semantics of objects and interac-
tions in federate domains in a formal, computer-sensible 
fashion. Using these formal semantics the relationships be-
tween federate simulation concepts are described in a reus-
able fashion. In doing so, a suitable federation representa-
tion for a set of related federate concepts and the required 
set of transformations between federate and federation rep-
resentations are automatically derived. 

1 INTRODUCTION 

The use of federate simulations in multiple federations is 
an important goal of distributed simulation frameworks 
such as the High Level Architecture (HLA). The HLA 
Federation Development and Execution Process (FEDEP) 
model (Defense Modeling and Simulation Office 1999) 
prescribes the reuse of existing FOM components in fed-
eration development.  This helps to reduce the overall time 
and effort invested to achieve interoperability between fed-
erate simulations. However, changing the composition of a 
federation requires some changes to the corresponding 
FOM. In turn, this almost always implies changes in the 
participating federates. All federates have to conform to 
the common representation for the full set of exchangeable 
information defined in a FOM. To ensure such consistency 
throughout the federation, each federate simulation’s code 
may have to be modified and extended. Therefore, the effi-
cacy of implementing reuse in HLA is marred by the fact 

 

that cost and time to achieve reuse are strongly affected by 
the uniformity of the federate representations (Nance 
1999). The ability to reuse federates in federations with 
disparate FOMs without having to modify their individual 
representation will significantly simplify the federation de-
velopment process.  

In this paper, we present an ontology-based framework 
for modeling federates and supporting their reuse in multi-
ple federations. Our approach improves federate reusability 
by formalizing the semantics of concepts (objects and in-
teractions) defined in federate simulations. Using these 
formal semantics, the relationships between federate simu-
lation concepts are described in a reusable fashion. In order 
to allow a federate to participate in several federations 
without modification, procedures to transform Simulation 
Object Model (SOM) information representations into 
those of the target FOM are requisite . Our framework ap-
plies the knowledge of the relationships between federate 
simulation concepts (captured in an ontology) to generate a 
suitable FOM and the required set of transformation proce-
dures for a given federation. In this manner, we facilitate 
reuse in federation development by way of semantically 
rich information models. 

2 RELATED WORK 

Significant research and development is already underway 
to enable the participation of federates in multiple federa-
tions in a seamless fashion. The current practice is to stan-
dardize FOM representations through the use of reference 
FOMs and an Object Model Data Dictionary (Bouwens, 
Miller, Scrudder and Lutz 1998). This approach only partly 
solves the problem because it imposes restrictions on the 
ability of federate developers to specify their own informa-
tion representations. 

An Agile FOM Framework (AFF) has been developed 
to allow federates with disparate SOM representations to 
participate in multiple federations (Macannuco 1998). The 
AFF provides a federated simulation with a set of classes 
that automatically map the internal SOM representations to 
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the external FOM representation. This framework uses 
converter objects to manipulate data between FOM and 
SOM representations. Converters are application level 
code, defined by extending a base converter class. A set of 
basic converters is included to perform unit and enumer-
ated type conversions.  

The AFF is conceptually similar to the framework pre-
sented in this paper. Both frameworks are based on the no-
tion of federate reuse through the definition of transforma-
tions between SOM and target FOM representations. Our 
approach using ontologies offers the key advantage of cap-
turing the relationship between representations in a formal, 
declarative fashion that enables automation to a greater de-
gree. The AFF assumes that federation developers specify 
a FOM representation for a given federation; whereas our 
framework supports automated FOM generation based on a 
given set of SOM representations and relationships be-
tween them. Further, in the AFF the specification of cus-
tom converters is not automated. In the approach presented 
in this paper, the required transformation routines are in-
ferred based on existing knowledge of relationships in the 
federation domain, prompting federation developers for 
additional knowledge as required.  

Another approach to support reuse in federation de-
velopment has been implemented in Base Object Models 
(BOMs) (Gustavson 1998). BOMs are meant to serve as 
building-blocks that enable engineers to design compo-
nent-based federations. A BOM is a component of a simu-
lation that can encapsulate objects, their attributes, interac-
tions involving those objects and an associated set of 
parameters. BOMs include meta-data that define their fo-
cus, intent and origin. BOMs may be developed for indi-
vidual domains and reused to simplify and speed-up SOM 
and FOM construction.  

While the BOM framework facilitates reuse in the de-
velopment of a FOM, the issue of reusing federates without 
modification is not addressed. However, the BOM frame-
work can potentially be used to implement rapid integra-
tion of federate simulations through the definition of 
BOM-level mappings between SOMs and FOMs.  Such 
mappings could be specified by identifying similar “pat-
terns” in the structure of the SOM and FOM (Base Object 
Model Study Group 2001). To achieve this mapping func-
tionality in an automated fashion, a richer set of BOM 
meta-data (semantics) would be required. The ontology 
based framework presented below enables the capture of 
such semantics, thereby supporting the automated mapping 
of SOM and FOM concepts.  

3 ONTOLOGY-BASED FOM DEVELOPMENT 
FRAMEWORK 

An ontology is an explicit specification of a conceptualiza-
tion i.e. the objects, concepts, and other entities that are as-
sumed to exist in a domain and the relationships that hold 
among them (Gruber 1993). The key ingredients that make 
up an ontology are a vocabulary of basic terms, a precise 
specification of what those terms mean and how they relate 
to each other. By organizing knowledge in a discrete layer 
for use by information systems, ontologies enable commu-
nication between computer systems in a way that is inde-
pendent of the individual system technologies, information 
architectures and applications  (Berners-Lee, Hendler and 
Lassila 2001; TopQuadrant 2003). This is why we turn to 
ontologies to alleviate the difficulties faced in federate re-
use. We use ontologies to model federate and federation 
domains (analogous to current HLA SOM and FOM) based 
on a common set of concepts and relationships between 
them. This enables the inference of relationships between 
individual federate representations of shared objects, at-
tributes, interactions and parameters.  

A high-level illustration of the framework for ontology 
based federation development is provided in Figure 1. The 
major components involved are the simulation (federate) 
ontologies (SONT), a target federation ontology (FONT) 
and a meta-model that corresponds to the OMT, called the 
World Ontology. The SONT specifies the object-attribute 
architecture corresponding to a given federate simulation. 
The FONT specifies a common representation for all ob-
jects and interactions that are shared among different fed-
erates, and captures the relationships between the federate 
and common representations. The World Ontology con-
tains meta-data and specifies the structure of objects, at-
tributes, interactions, parameters and data types. It also in-
cludes data structures to capture the relationship between 
these. Finally, this ontology includes a set of primitive data 
types and defines the relationships between them. 
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Figure 1: Ontology-Based FOM Development Frame-
work 

 
Based on the structure provided in the World Ontology, 

SONTs are specified by domain experts who play a major 
role in the development of a given simulation model. This 
process is analogous to documenting a SOM in current HLA 
practice. However, a SONT captures concepts and relation-
ships between them in a formal, computer-sensible fashion 
that is much richer than the unstructured text that comprises 
a SOM. Unlike a SOM, a SONT contains knowledge that a 
computer can use to make inferences. Once a SONT has 
been specified, it does not have to be changed when it par-
ticipates in different federations. 
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According to the FEDEP model, the federation devel-
opment is centered on the specification of a FOM. Once 
the FOM has been specified, the individual federates are 
modified to be consistent with the FOM representation. 
Contrary to this approach, we propose the extraction of the 
FONT based on the representation of the objects in the par-
ticipating SONTs and the relationship between them. 
When the federation developers reach the point in the 
FEDEP process where they have decided on a set of feder-
ates, they may access the corresponding SONTs and spec-
ify which objects and interactions relate to each other (in 
terms of attribute and parameter relations). Once this in-
formation has been specified, a suitable common represen-
tation for the related entities is derived automatically based 
on their individual federate representations. 

Along with automated FONT generation, the required 
transformation mechanisms to convert data to and from 
federate to common representations are created. This task 
amounts to representing the relationship between two rep-
resentations of a shared entity in a procedural format.  Ar-
riving at this relationship is where knowledge reuse comes 
into play. The World Ontology provides a common con-
ceptualization of terms as well as a set of data types and 
relationships between them. SONTs and FONTs are de-
fined using the vocabulary defined in this common concep-
tualization. Therefore the relationship between shared enti-
ties can be derived based on the relationships defined at a 
higher level of abstraction (in the World Ontology). That 
is, the transformation routine between two representations 
of a given entity is inferred from knowledge about the rela-
tionships between their data types. 

The ontology-based federation development process 
can be summarized in the following steps: 

 
• Define World Ontology (one-time task) 
• Define SONTs based on World Ontology 
• Generate FONT 

• Determine common representation 
• Generate transformation routines. 

 
The following sub-sections detail the above-mentioned 

steps in the context of our implementation of this frame-
work in the Protégé ontology development software tool.  
A simple example federation development is also pre-
sented in support of the discussion. 

3.1 Defining the World Ontology 

The world ontology is analogous to the HLA Object Model 
Template (OMT) (IEEE 2000): it defines the information 
schema for specifying objects, attributes, parameters and in-
teractions. This meta-model is defined in terms of the frame-
based representation supported by Protégé (Noy, Fergerson 
and Musen 2000), which is similar to the table architecture 
defined in the current OMT specification. Concepts in Pro-
tégé are specified as frames (classes), defined in terms of 
their slots (attributes). Individual entities are represented as 
instances of these classes. Finally meta-classes and meta-
slots can be defined as templates for specifying specialized 
classes and attributes. Figure 2 is a graphical illustration of 
the world ontology implemented in Protégé. 
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Figure 2: Information Schema in the World Ontology 

 
Templates for HLA objects and interactions are speci-

fied using meta-classes. Therefore, individual objects and 
interactions are defined as classes (instances of the Object/ 
Interaction meta-classes).  This allows SONT developers to 
specify a hierarchy of objects and interactions, thus captur-
ing the equivalent information specified in HLA object and 
interaction class structure tables in an ontology.  The meta-
class for objects includes slots that correspond to all fields 
specified in the HLA Object Model Identification Table. 

Along the same lines, templates for HLA attributes 
and parameters are specified using meta-slots. This enables 
the instantiation of attributes as slots of individual Objects. 
These meta-slots are composed of their own set of slots 
corresponding to the HLA attribute/ parameter table fields.  

The world ontology also includes a relationship class 
to hold the required information about the relationship be-
tween attributes or parameters in a FONT. The relationship 
between a particular attribute and its common representa-
tion is represented as an instance of this class. Every at-
tribute has the slot has_relationship whose value is an in-
stance of the relationship class.  This class consists of the 
following slots: 

 
• to: whose value is the target attribute or parameter,  
• from: whose value is the subject attribute or pa-

rameter, 
• function_to: whose value is an instance of the 

function class and holds information about the 
transformation routine from the subject attribute 
or parameter to the specified target,  

• function_from: which is analogous to function_to, 
except going from the target attribute or parameter 
to the subject. 

 
The function class consists of two slots: routine and 

is_lossy. The routine slot contains the procedure to convert 
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instances of one attribute or parameter to the other. 
Is_lossy has a Boolean value that indicates whether the 
transformation from one representation to the other leads to 
a loss of information. In Section 3.3, we discuss the use of 
is_lossy to determine the FONT representation for a set of 
related SONT attributes or parameters. 

 The data type of a given HLA attribute indicates the 
class of which that attribute is an instance. Since data types 
are classes, a template for data types is provided as a meta-
class. This meta-class includes the has_relationship slot to 
capture the relationship between custom data types.  

Finally, we instantiate a set of data types that are ex-
pected to be used consistently across all SONTs and FONTs. 
As an example, we have defined a set of units data types to 
enable individual SONTs to specify their own unit of meas-
ure for different quantities. The relationship between two 
units of a certain measurable quantity is of multiplication or 
division by a constant conversion factor. A certain system of 
measurement is chosen as a reference to which all conver-
sion factors are determined. Novak (1995) has shown that 
with the knowledge of the conversion factors relating a set 
of simple units (Meter, Second, Kelvin etc.), the conversion 
factor for any composite unit (a product or quotient of sim-
ple units, such as meter per second) can be derived. Hence, 
we include a slot conversion_factor in the definition of sim-
ple unit data types and capture the representation of compos-
ite units as a product of simple units. The algorithm for de-
riving a procedural conversion between different units is 
implemented as part of the system that generates transforma-
tion routines. Note that since units are predefined data types, 
we do not have to specify a value for their has_relationship 
slots; that is reserved for specifying relationships between 
custom data types in a FONT. 

The relationship between data types is the primary 
knowledge that is reused to determine the required trans-
formation routines. From the relationship between the data 
types of two attributes that are otherwise equivalent, the 
procedure for transferring values between these two attrib-
utes can be inferred with no further input from the federa-
tion developer.  

Like the OMT, the world ontology is defined once and 
for all, and every SONT and FONT definition must con-
form to it. The following section discusses SONT devel-
opment based on the world ontology. 

3.2 Defining a Simulation Ontology (SONT) 

The ontologies for individual simulations are defined using 
the information constructs defined in the world ontology. 
That is, we represent objects as classes—instances of the ob-
ject meta-class defined in the world ontology. Similarly, at-
tributes are represented as slots of object classes. To enable 
this instantiation, the world ontology must be included as 
part of each SONT domain, so that a consistent definition of 
the terms object, interaction, attribute, parameter and data 
type exist. Objects and interactions in a SONT are arranged 
in a hierarchy, such that subordinate objects and interactions 
inherit the attributes/parameters of their parents.  

As an example SONT specification, consider the 
specification of a SONT for a simple traffic simulation 
(Figure 3). The object vehicle is created with the attribute 
position, whose data type is 2-D coordinate. Each of these 
entities is specified as an instance of its respective meta-
class. The data type 2-D coordinate consists of two mem-
bers: x and y of the unit data type meter. The ontology 
automatically captures the relationships between the three: 
attribute position is a member of class vehicle and its value 
is an instance of class 2-D coordinate. At this stage, the 
has_relationship slot of position and 2-D coordinate have 
not been assigned values, i.e. the relationship class has no 
instances. Obviously, this information will not be specified 
for a stand alone federate; it is provided in a FONT when 
different federate objects (and data types) are related to 
their common counterparts. 
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Figure 3: Traffic Simulation SONT Specification 

3.3 Generating a Federation Ontology (FONT) 

A federation ontology (FONT) serves as a common repre-
sentation to and from which federates can convert shared 
information. Therefore the FONT consists of (its own rep-
resentation of) all shared objects, interactions, attributes 
and parameters in a federation. Further, this ontology must 
include the definition of the relationships between the 
SONT and common representations of shared concepts. In 
order to specify a relationship between two entities, both 
entities must be defined in the same ontology. Therefore, 
the FONT includes all SONTs plus a common schema that 
is a liaison between individual SONT representations of 
shared concepts (Figure 1). The overall FONT generation 
process model, illustrated in Figure 4, is discussed below.  

The first step in FONT generation is creating a new 
ontology that includes all the SONTs that are part of the 
federation. Following this, the federation developers must 
specify the knowledge as to which SONT objects relate to 
(publish or subscribe to) each other. When a relationship 
between two or more SONT objects is specified, a common 
or shared representation for those objects is created. Ulti-
mately, all relationships are defined between federate and 
common representations of shared concepts. However, the 
federation developer specifies relationships directly be-
tween objects in any two SONTs. 
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Figure 4: FONT Generation Process Flow 

 
Given the relationships specified by the user, new rela-

tionships can be inferred automatically by composing ex-
isting relationships together. The complete set of relation-
ships are used to determine the appropriate common 
representation (Section 3.3.1). Following this the proce-
dural transformations associated with these inferred rela-
tionships are also composed automatically (Section 3.3.2). 
During these steps, the user is prompted to provide addi-
tional knowledge about transformations as required. Hav-
ing completed these steps, the user is presented with the set 
of inferred relationships and transformations, so as to ei-
ther approve them or revise them if an available direct rela-
tionship is preferable. If revisions are made, the common 
representation, and the associated transformations are re-
computed. In this manner, the process of defining relation-
ships in a FONT is an iterative process that employs feed-
back from the user to refine automatically generated 
common representation and transformation routines.  

Having presented the overall FONT generation proc-
ess flow, the specifics of automatically arriving at a com-
mon representation and associated transformations is dis-
cussed in greater detail in the following sub-sections. 

3.3.1 Determining the Common Representation 

As mentioned above, the relationship between SONT ob-
jects is captured in the FONT as a relationship between 
each object and a corresponding common object. To de-
termine the attributes of this common object, the federation 
developer must specify which attributes of the individual 
SONT objects relate to each other. For every set of relating 
SONT attributes, a common attribute is automatically in-
stantiated. While it makes sense for this common attribute 
to correspond directly to one of the SONT attribute repre-
sentations (this ensures that at least one of the transforma-
tion routines will be trivial), it is important to choose a rep-
resentation that avoids any unnecessary loss of information 
when exchanging data in a federation. The importance of 
this choice may not be evident when there are only two re-
lated attributes; in fact it is irrelevant in this case. How-
ever, this choice becomes significant when three or more 
SONT attributes in a federation relate to each other. For 
example, if the SONT attribute position of data type 2-D 
coordinate relates to attribute location (in another SONT 
domain) of type 3-D coordinate, and attribute point also of 
type 3-D coordinate, the corresponding common attribute 
must be of type 3-D coordinate. If it is selected to be of 
type 2-D coordinate, then there is an avoidable loss of in-
formation. Both attributes location and point have three 
coordinates, yet when location subscribes to point (or vice-
versa), the value is converted from 3-D to 2-D (common 
representation) and back to 3-D, resulting in a loss of the 
third coordinate’s value. To avoid this scenario, the com-
mon representation of a set of related attributes should 
have a representation that does not lead to any avoidable 
loss of information.  

In order to determine which SONT representation of a 
shared attribute is the appropriate common representation, 
we introduce the notion of lossiness. A transformation 
from one representation to another is lossy if any informa-
tion is lost in that transformation. In the example above, 
the transformation from attribute location to position is 
lossy (while the inverse is not). The information about 
lossiness is captured in the is_lossy slot of a given func-
tion. In a relationship where from = position and to= loca-
tion, the value of function_to (an instance of the function 
class) has is_lossy = true, while that of function_from has 
is_lossy = false. The common representation for a set of 
related attributes is determined as the representation that 
leads to the fewest number of lossy transformations. In the 
event that there are several SONT representations that lead 
to the same number of minimal lossy transformations, any 
of them may be picked as the common representation. 

The lossiness in a transformation between two attrib-
utes is determined in terms of the lossiness in the transfor-
mation between their respective data types. Therefore, in 
order to determine if information is lost in a transformation 
between two SONT entities, the transformation procedures 
between their data types have to be derived first. The com-
plexity of determining data type transformations depends 
on whether those data types are primitive or custom, lead-
ing to the following two cases: 

Case 1: Both data types are primitive. The knowledge 
of the relationship between primitive data types is already 
encoded into the software system that extracts transforma-
tion routines. Therefore, the required transformation rou-
tines are easily created in such cases. For example the 
transformation from data type meter relates to data type 
foot is: 

 
foot meter_to_foot (meter input) { 
foot output; 
output=(input/foot.conversion_factor 
*meter.conversion_factor); 
return output;}  

 
The knowledge of lossiness between primitive classes 

is already encoded in the software system. Hence, no input 
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is required from the user to determine that a valid trans-
formation between unit data types is never lossy. 

Case 2: One or both data types are not primitive. If the 
relationship involves transformation between custom data 
types, then the knowledge about the relationship between 
these data types does not preexist. This knowledge cannot 
be created automatically; it must be defined by the user. If 
all the individual fields of the related custom data types are 
primitive data types, then with knowledge as to which 
fields relate, the required relationship can be derived auto-
matically. For example, consider that the data type 3-D co-
ordinate has fields (x, y and z of unit data type foot). The 
relationship between 3-D coordinate and 2-D coordinate (x 
and y in meters) can be derived automatically if the user 
specifies that the respective x and y fields equate to each 
other. Since these fields have primitive unit data types, the 
transformations between the custom data types can be de-
rived automatically, such as: 

 
3D 2D_to_3D (2D input) { 
3D output; 
output.x = meter_to_foot(input.x); 
output.y = meter_to_foot(input.y); 
output.z= 0;     // user specified default 
return output; }   

 
In general, if one or more fields are not primitive or 

the relationship between them is not that of equivalence, 
the user must explicitly define the relationship between the 
custom data types. At the same time, the lossiness in the 
data type transformation routines must also be specified.  

Note that the user is not compelled to specify relation-
ships between all data types involved in a relationship. The 
relationship between two data types can be inferred transi-
tively as a chain of relationships. That is, if a transforma-
tion from data types A to B and B to C exist , the transfor-
mation from A to C can be derived from these. In such a 
case, it is possible that the derived transformation is lossy 
when in theory it can be defined in a non-lossy form. The 
user is made aware of such lossiness in derived transforma-
tions and given the option of explicitly specifying a less 
lossy transformation (Figure 5).  
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Figure 5: Transitively Derived Transformations 
With the knowledge of lossiness in data type trans-
formations for a set of related SONT attributes or parame-
ters, the common representation for those attributes or pa-
rameters can be determined. Consider the example 
relationship between the attributes position, location and 
point. Based on lossiness in transformations between 2D 
and 3D coordinates, it is automatically determined that the 
transformation from location or point to position is lossy 
(while the reverse is not) and that from location to point 
and back is not. The smallest number of lossy transforma-
tions occurs when the common attribute corresponds di-
rectly to either location or point (Figure 6). Note that when 
reusing FONTs, the representation that is deemed fitting 
for a given common attribute is subject to change if one or 
more federates are added to or leave the federation. At all 
times, the common attribute’s representation should lead to 
the smallest number of lossy transformations. 
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Figure 6: Selecting a Common Representation that 
Leads to the Fewest Number of Lossy Transforma-
tions 
 
Once the common representation for all shared objects, 

interactions (and their respective attributes and parameters, 
respectively) have been instantiated, they must be arranged 
in a hierarchy. This step is vital to facilitate inheritance in 
publication and subscription of federate objects or interac-
tions. That is, if a certain object subscribes to another 
SONT’s parent object, it should be notified of all updates to 
the children of that parent object. The set of common objects 
and interactions are arranged into a hierarchy based on Clas-
sification—the process of constructing a concept hierarchy 
in which more general concepts are located above more spe-
cific ones according to the subsumption order . The sub-
sumption relationship between two objects in a schema is 
defined such that an object B subsumes an object A if the set 
of attributes that comprise B includes the set of attributes 
that comprise A. In this case, object B is a refinement of ob-
ject A, or A is the parent of B. Algorithms to perform sub-
sumption tests have been developed by Schmolze and Lipkis 
(1983) and can be leveraged to arrange common representa-
tions of shared objects and interactions in a hierarchy. Note 
that object-by-object comparison and subsumption testing 
can become time-consuming when the number of shared en-
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tities in a federation is large. To avoid this problem, a more
complex, but efficient parallel classification algorithm (Kim
93) can be employed to arrange the automatically generated
objects and interactions. 

3.3.2 Generating Transformation Routines 

At this point, a common representation between all shared
SONT objects, interactions, attributes and parameters in a
federation is generated and ordered. The last piece of the
puzzle is creating the procedural knowledge of the rela-
tionships between the federate and common attributes or
parameters. These routines are represented as a chained 2-
step procedure: one to convert between data types and the
other to convert between the related concepts. As an exam-
ple, consider that a federation developer specifies a rela-
tionship between the attribute radius of type meter in one
SONT and diameter of type foot in another. Clearly, these
two concepts are related, but they are not the same. The
user must specify the knowledge as to how these two con-
cepts relate. Ideally, we would like the user to specify this
relationship in a declarative fashion, from which the trans-
formations in either direction can be derived (e.g. radius
– (diameter/2) = 0). However, a declarative relationship
between two entities can be converted into two procedures
(to perform transformations in either direction) only if that
relationship is analytically invertible. Hence we assume
that whenever the user explicitly specifies a relationship,
he or she does so in a procedural form (e.g. radius = di-
ameter/2; and  diameter = radius*2;). The transfor-
mation from radius to diameter is derived as: 

 
Function_to.routine: 

 foot radius_to_diameter (meter radius) { 
foot diameter; 
diameter= (meter_to_foot(radius))*2; 
return diameter;} 

 
Note that the user is not constrained to always specify

a relationship between a SONT representation and what
ends up being the common representation in a set of related
attributes. He or she may specify the relationship between
any two SONT relationships. Just as with data types, rela-
tionships to and from the common representation can be
derived transitively from existing relationships, if a suffi-
cient set of relationships exists. 

3.3.3 Example FONT Development 

We conclude the discussion on FONT and transformation
generation with an example FONT development scenario.
Consider that a federation of simulations is to be developed
that includes the previously defined traffic simulation (sec-
tion 3.2) and a wireless network simulation. The goal of
this federated simulation is to simulate traffic behavior
when vehicles can communicate with each other using
wireless and GPS technologies. The SONT for the wireless 
network simulation contains the object Node having the at-
tribute location, whose data type is 3-D coordinate. The 
federation developer wishes to relate the traffic simula-
tion’s vehicle object to Node, in terms of a relationship be-
tween position and location attributes. To do so, the fol-
lowing steps are undertaken: 

 
•  The set of SONTs that are part of the federation 

(traffic and wireless network SONTs) are speci-
fied. These SONTs are then automatically in-
cluded in the FONT being developed 

• The user indicates the existence of a relationship 
between vehicle and node objects in terms of their 
attributes position and location. A corresponding 
common_object is created in the FONT 

• The federation developer specifies that the rela-
tionship between attributes position and location 
is that of equivalence. Since the fields of custom 
data types 2-D coordinate and 3-D coordinate 
have primitive data types, the user is prompted to 
specify  the relationship between these fields 

• An equivalence relationship between the x and y 
fields of the data types is specified. A relationship 
instance is automatically created between 3-D and 
2-D coordinate data types. The function_to and 
function_from slots’ values are automatically de-
rived as discussed in Case 2. The is_lossy values 
for these functions are specified by the user 

• Since only two attributes are being related, the 
choice of the common representation is inconse-
quential. Assume that the attribute com-
mon_attribute is created with data type 3-D coor-
dinate 

• The function_to slot’s value for a relationship in-
stance from position to common_attribute is 
specified as: 

 
Function_to.routine: 
3D position_to_common (2D input){ 
3D output; 
output = 2D_to_3D (input);     
return output;} 

 
• The function_from slot for this relationship is also 

derived in a similar fashion, as are the functions 
for the relationship between location and com-
mon_attribute. The resultant FONT information 
structure is depicted in Figure 7. 

 
Having defined all required transformation routines, 

the FONT contains the complete set of information re-
quired to enable consistent data exchange in a federated 
simulation. The routines defined here are in pseudo-code; 
in general the federation developer will specify an object-
oriented programming (OOP) language syntax in which the 
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Figure 7: Example FONT Information Structure 

 
transformation routines are to be represented. The FONT 
can be passed to the RTI as a set of classes and functions in 
the specified OOP language.  

4 CONCLUDING REMARKS 

The ontology-based framework presented in this paper fa-
cilitates simplified reuse of federates in multiple FOMs.  
Ontologies allow us to capture knowledge about object and 
interaction representations (and the relationships between 
them) in a formal manner. Applying this knowledge, we 
have defined a process for automatically arriving at a fed-
eration object model and a set of procedures to transfer 
data between federate and federation representations. The 
end-result is a semantically rich model that spans the entire 
federation and contains all the information required to en-
able consistent data transfer. This approach to federation 
development offers considerable benefits when one or 
more federates are being reused in a new federation. In 
federations where reuse is not prominent, this approach of-
fers a simplified way of specifying complex relationships 
between a large number of entities.  

Using ontologies as simulation information models, 
the process of FOM development has been significantly 
trivialized. However, there is still room to simplify the 
FEDEP process via ontology-based modeling, given the 
constantly advancing state of art in ontology management. 
Specifically, systems to automatically specify mappings 
between various ontologies have been developed to sup-
port information processing across the widely-distributed 
semantic web. For example, GLUE  uses machine-learning 
techniques to automatically identify matches between simi-
lar concepts in two or more ontologies. By applying such 
systems to ontology-based federation development, rela-
tionships between SONTS could conceivably be deter-
mined completely autonomously, resulting in the ultimate 
simplification of the FOM development process.   

An important aspect of this framework that has not yet 
been addressed is the interface between the federation de-
veloper and the underlying software. Given the iterative 
nature of the FONT generation process, this interface (cur-
rently being developed) should provide an intuitive method 
by which users can specify knowledge and provide feed-
back to the system. Finally, there is still the issue of using 
the information in a FONT to actually manage consistent 
data transfer at run-time. In this paper, we have not focused 
on the implementation of an RTI that can avail of the rela-
tionships defined in the FONT. The development of a next-
generation architecture that uses the transformations cap-
tured in a FONT to provide real-time conversions between 
disparate representations is on going research at Georgia 
Tech (Fitzgibbons and Fujimoto 2004). 
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