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ABSTRACT 

Real-time planning and scheduling in a shop floor are not 
easy to accomplish due to the concurrent flow of various 
parts as well as sharing of different types of resources. 
Multi-pass scheduling is a well known method for solving 
the aforementioned problem. Its success depends largely on 
selecting the best decision-making rule fast and effectively. 
Although many efforts have been made in the past, a way to 
minimize the computational load of rule evaluation and se-
lection has yet to appear. The objective of the paper is to ap-
ply a nested partitioning (NP) method and an optimal com-
puting budget allocation (OCBA) method to reduce the 
computational load without the loss of the performance of 
multi-pass scheduling. The experimental design and analysis 
was performed to validate that NP and OCBA can be suc-
cessfully applied to multi-pass scheduling in order to en-
hance the performance of multi-pass scheduling. 

1 INTRODUCTION 

Traditionally, scheduling problems have been formulated 
using analytical methods like mathematical programming 
or network theory to provide optimal solutions under the 
simplified assumptions that do not reflect actual shop floor 
status (Chuda and Mize 1994). However, these approaches 
are not appropriate for real-time scheduling, due to the 
characteristics of dynamic shop floor, in other words, non-
deterministic disturbances (e.g., machine breakdown, tool 
breakage, rush order) and the concurrent flows of various 
parts as well as sharing of different types of resources 
(Davis and Jones 1988). 

The aforementioned difficulties led to research into 
rule-based approaches. These are usually dispatching rules 
used to prioritize the different jobs competing for the use 
of a given machine. In addition to the dispatching problem, 
real-time shop floor scheduling includes other types of de-
cision-making problems, such as job releasing problem, 
job sequencing problem, etc. These problems can be re-

 

solved by event-driven job scheduling mechanism, in 
which each event requiring decision-making is resolved by 
a specific decision-making strategy. However, since the 
past researches indicate that the strategies’ performance 
depends on the shop’s conditions (Jeong and Kim 1998, 
Kutanoglu and Sabuncuoglu 2002), it would be better to 
change the strategies dynamically as well as at the right 
moment according to the conditions, instead of using a 
fixed scheduling strategy for every scheduling period. This 
adaptability gave birth to multi-pass scheduling. 

Multi-pass scheduling has become a promising ap-
proach which ranks and selects the best one among the 
strategies by looking ahead simulation-based multiple 
courses of action before actual execution (Wu and Wysk 
1988, Cho and Wysk 1993). Multi-pass scheduling for real 
time shop floor control requires a speedy response in 
evaluating the rule combination. The response time would 
depend on the number of simulation trials necessary to 
evaluate the rule combinations before ranking them.  

The objective of the paper is to propose the methodol-
ogy to speed up multi-pass scheduling used for real-time 
shop floor control. The efficiency depends on how fast the 
best rule combination is obtained. The recommended rules 
are then evaluated using a nested partitioning (NP) method, 
in which the number of simulation replications is reduced 
by using an optimal computing budget allocation (OCBA) 
method. Experimental design and analysis are performed to 
demonstrate the efficiency and effectiveness of the pro-
posed methodology. 

2 LITERATURE SURVEY 

A multi-pass scheduling framework consists of the five 
components: recommendation of rules for each problem 
type, generation of all the rule combinations, simulation, 
evaluation and rank of rule combinations, and scheduling. 
Whenever the decision-making rules need changing, a set 
of promising rules for resolving each problem type are rec-
ommended. Since a few different types of scheduling prob-
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lems may occur during the next scheduling period, all the 
rule combinations must be generated, each of which will be 
then evaluated by using simulation. The best rule combina-
tion is chosen and conveyed to the scheduling component. 
It is noted that the scheduling period during which simula-
tion looks ahead is called a ‘simulation window.’ 

The most computation load in a multi-pass scheduling 
framework occurs inevitably in simulation due to several 
types of scheduling problems, many rules, and replications 
of each simulation. To reduce the number of decision-
making rules for each problem type, several methods have 
been utilized to quickly recommend a small number of 
candidate rules.  

A top-down three level approach for rule selection has 
been developed in a prototype expert scheduling system. 
Another approach is to combine a rule-based expert system 
in order to select several scheduling rules in a real-time en-
vironment, and a multi-pass simulator in order to test 
which scheduling rule is the best (Wu and Wysk 1988). 
Neural networks have also been used to recommend candi-
date rules for multi-pass scheduling (Cho and Wysk 1993). 
Inductive learning and genetic algorithms were also used to 
build the relationship between shop conditions and rules 
(Jones et al. 1995). Some modified techniques of using 
neural networks (Kim and Kim 1994) and production rules  
have been used for identifying the relationships. 

3 MULTI-PASS SCHEDULING 
USING NP AND OCBA 

3.1 Introduction of NP 

The nested partitioning (NP) method used for solving de-
terministic optimization problems with large but finite fea-
sible region employs a global sampling strategy that is con-
tinuously adapted via a partitioning of the feasible region 
(Shi and Ólafsson 2000). The method can be also applied 
when no expression exists for the objective function, but its 
value is estimated through simulation. The NP method can 
be briefly described as follows.  
 

• Step 0: The entire feasible region is considered 
the most promising region.  

• Step 1: The most promising region is partitioned 
into disjoint subregions, unless it contains a single 
point.  

• Step 2: Independent points are selected from each 
of these subregions by using a systematic random 
sampling procedure 

• Step 3: The promising index for each subregion is 
estimated from the samples. 

• Step 4: The most promising subregion is deter-
mined by using the estimated index. If more than 
one subregion is equally promising, these subre-
gions are merged into a single subregion. 
• Step 5: The selected subregion now becomes a 
feasible region in the next iteration and go to 
Step1. 

 
This generates a sequence of region partitions, with 

each partition nested within the last. The final region con-
tains only one point. When the NP method is applied to 
multi-pass scheduling, a rule combination is considered a 
point in the feasible region; while a particular subset of 
rule combinations are considered a disjoint subregion. 

3.2 Introduction of OCBA 

Suppose that the promising index for each subregion in the 
Step 3 of the NP method is estimated via simulations of all 
the samples. In other words, suppose that each rule combina-
tion in a subregion is evaluated with regard to its perform-
ance via simulation. The OCBA method can be applied to 
reduce the number of replications (Chen et al. 1997, Chen et 
al. 2003). Instead of allocating the equal number of replica-
tions to every simulation, the OCBA method employs a two 
stage approach. During the first stage, a small number of 
replications are applied to calculate the mean and variance, 
which are then used to determine the additional number of 
replications. During the second stage, the potentially promis-
ing rule combinations are simulated with more replications. 
This procedure can be briefly described as follows: 

 
• Step 0: The initial number of replication is previ-

ously assigned. 
• Step 1: The performance of each rule combination 

is calculated after initially assigned simulation 
replications. 

• Step 2: It is checked whether or not additional 
replications are needed. If no additional replica-
tion is needed, stop. 

• Step 3: The additional replication of each rule 
combination is calculated and go to step 1. 

3.3  Proposed Multi-Pass Scheduling Mechanism 

A new multi-pass scheduling framework is shown in 
Figure 1. The NP method reduces the number of rule com-
binations to be evaluated and ranked, and the OCBA 
method reduces the number of simulation replications of 
each rule combination. 

The scheduling rules being used need changing, a 
number of promising rules are recommended for each 
problem type. All the rule combinations used to solve the 
problem types encountered during the next scheduling 
window are then generated. The NP method is applied for 
selecting the best rule combination. To do this, all the rule 
combinations are partitioned into several disjoint sets. Sec-
ond, a few representative rule combinations are sampled 
from each set. The methods are detailed in Section 4.  
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Figure 1: Detailed Flow Diagram of Proposed Multi-
Pass Scheduling 

 
All the sampled rule combinations are evaluated by 

using simulation respectively. Each rule combination is 
simulated by a small number of replications and then its 
performance is evaluated. If the probability of correct se-
lection of the best sampled rule combination is less than a 
pre-specified threshold, the more replications must be allo-
cated to each sampled rule combination. Once all the sam-
pled rule combinations are evaluated, the performance cri-
terion of each set is calculated. Unless the most promising 
set is a singleton, the further partitioning is performed and 
the above procedure is repeated. 

4 STRATEGIES OF NESTED PARTITIONING 

4.1 Partitioning Strategy 

The basic concept of partitioning is to partition the most 
promising set selected at previous iteration into disjoint sub-
set to be evaluated at the next iteration. At each iteration, the 
most promising set is obtained through one time perform-
ance of the procedure presented in Section 3. The partition-
ing strategy is crucial for the speedy convergence to the best 
rule combination. In multi-pass simulation, the number of 
rule combinations at each subset is identical. It implies that 
the number of partitioning iterations is equal to the number 
of problem types. The partitioning is repeated until only a 
single rule combination is selected. For the partitioning effi-
ciency, the sequence of partitioning depends on the number 
of rules recommended for each problem type. The smaller 
the number of rules is, the earlier the rules are partitioned. 
This results in less computational load. 

Suppose that there exist n different types of scheduling 
problems and mi (i = 1,…, n) different rules recommended 
for each type of scheduling problem. If m1< m2< … < mn, 
then the number of iterations is n and the number of parti-
tions in iteration i is mi. A particular subset at the kth itera-
tion which is related to a node has all the rule combinations 
starting with pre-determined k preceding rules.  

4.2 Sampling Strategy 

Another issue is how to obtain the samples of rule combi-
nations used to evaluate each subset at every iteration. The 
sampling size and method in each subset must be deter-
mined in such a way that the accuracy of finding the most 
promising rule combination is maximized. In multi-pass 
scheduling, because the all sample must be picked when 
the last partitioning is performed, the 50% sampling size is 
adopted. The method of systematic random sampling se-
lects rule combinations at each subset throughout the sam-
pling frame after a random start in the first subset.  

An identical number of samples from each subset are 
sampled. When the kth iteration is performed, the most prom-
ising set is partitioned into mk subsets. If the size of each set 
is eight, the four samples are picked in each subset by the 
sampling strategy. The mean of the performance measures 
obtained by simulating the sampled rule combinations is 
used for the evaluation and ranking of each subset. 

5 STRATEGIES OF OPTIMAL COMPUTING 
BUDGET ALLOCATION 

5.1 Performance Measure of Rule Combination  

Although the number of rule combinations to be evaluated 
is reduced at the partitioning and sampling stage in each 
iteration, the computation load can be still very high be-
cause each sampled rule combination must be simulated 
with a certain number of replications. However, the num-
ber of replications necessary to obtain the mean of the per-
formance measure must be large due to the slow conver-
gence rate of Monte Carlo simulation. If both the number 
of replications and the number of rule combinations are 
large, the total number of simulation replications required 
to estimate the mean of a particular subset can be ex-
tremely high. Therefore the number of replications needs 
to be minimized. 

In order to calculate the mean of the performance 
measure of a particular set in a certain iteration, first, the 
OCBA method assigns the identical number of replications 
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to the simulation of each sampled rule combination. Each 
rule combination is then pre-evaluated and pre-ranked ac-
cording to the initial results. The OCBA allocates the more 
replications to the potentially critical rule combinations 
and the simulations are performed with additional replica-
tions until the probability of correct selection satisfies 
some degree of confidence interval. In conclusion, all the 
sampled rule combinations have their own unbiased point 
estimator through the enough simulation. 

5.2 Stopping Criterion in Each Iteration 

The OCBA method helps determine the optimal number of 
replications necessary to simulate the sampled rule combi-
nations. Given a pre-specified number of replications, ‘the 
probability of correct selection’ of a rule combination is 
used as a criterion about whether or not more replications 
are needed. ‘Correct selection’ can be defined as the event 
that the selected best rule combination is actually the best. 
Therefore, ‘the probability of correct selection’ can be de-
fined as in Equation (1), assuming that the performance 
measure needs to be minimized. 

 
 )}()({}{ iibestbest NNPCSP µµ <= for all i≠ best     (1) 
 
where Ni is the number of simulation replications for rule 
combination i and µi is the mean of the performance meas-
ure of rule combination i. 
 

Since Equation (2) is not easy to compute, the ap-
proximate probability of correct selection (APCS) can be 
estimated and used for the probability of correct selection 
(Chen, 1996). Note that the computation of APCS is sim-
ply a product of pair comparison probabilities. 

 

 
∏
≠

≡<≥
M

besti
ibest APCSPCSP )(}{ µµ

 
(2)

 
 
where M is the sample size of a subset. If APCS is less than a 
pre-specified confidence level, more replications are needed. 

5.3 Determination of Additional Replications 

The number of additional replications is determined ac-
cording to the following two steps. First, the mean and 
variance of each sampled rule combination are obtained 
from simulation with initial replications. Second, Equation 
(3. 1) and (3. 2) are applied to obtain the additional number 
of replications. Equation (3.1) enables the more additional 
replications to be allocated to the rule combination with the 
best performance measure than that with the second best 
performance measure. Equation (3.2) enables the less addi-
tional replications to be allocated to the rule combination 
with the rest performance measure than that with the sec-
ond best performance measure. This procedure guarantees 
that the rule combination with better performance measure 
is allocated with more replications. 
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for all i≠ best≠ second 

 
where, σ i is the standard deviation of rule combination i, 
‘best’ is the rule combination with the best mean of per-
formance measure, and ‘second’ is the rule combination 
with the second best mean of performance measure. 

6 EXPERIMENTAL DESIGN AND ANALYSIS  

6.1 Experiment Assumptions 

If all the factors in a shop floor are considered, the number 
of simulations may be infinite. It is necessary to create a 
subset of different shop floor configurations in order to 
avoid the combinatorial explosion of simulation runs.  
Some assumptions are made as follows: 

 
1. Performance criterion is average flow time. 
2. Number of different part types is 5. 
3. Dispatching strategies: EDD, FIFO, STT. 
4. Part releasing strategies: SPT, EDD, FIFO, STT. 
5. Each part’s process time is constant. 
6. Each part’s transportation time is constant. 
7. Setup time of each machine is constant. 
8. Machine-breakdowns are not considered. 

6.2 Experiment Design 

6.2.1 Factorial Design on the Probability  
of Correct Selection 

The objective of the first experiment is to show that the 
probability of correct selection of the multi-pass schedul-
ing using NP and OCBA is superior to that of the multi-
pass scheduling not using NP and OCBA. Therefore, the 
methods of multi-pass scheduling and the assigned budget 
are controllable factors. A full factorial design for the con-
trollable factors is used, which results in 14 (= 2×7) differ-
ent experimental base design.  

 
1. Methods of multi-pass scheduling: Use of NP and 

OCBA, Conventional 
2. Budget: 1000, 2000, 3000, 4000, 5000, 6000, 7000 

 
It is necessary to construct uncontrollable factors over 

which experiments are performed. Three different factors 
are considered: number of machines, variance of process-
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ing time, and variance of transportation time. A full facto-
rial design for uncontrollable factors is used, which results 
in 18 (= 2×3×3) different shop floor conditions. Then, in-
cluding controllable factors, the number of total experi-
ment treatments amounts to 252 (= 18×14). 

 
1. Number of machines: 3 and 5. 
2. Variance of processing time: 0.05, 0.1, and 0.15 × 

processing time 
3. Variance of transportation time: 0.05, 0.1, and 0.2 

× transportation time 

6.2.2 Experiment on the Total  
Number of Replications 

The objective of the second experiment is to show that the 
number of replication simulated of the multi-pass schedul-
ing using NP and OCBA is smaller than that of the sched-
uling not using NP and OCBA to reach given probability 
of correct selection above 0.95. Therefore, the methods of 
multi-pass scheduling is controllable factor.  

 
1. Methods of multi-pass scheduling: Use of NP and 

OCBA, Conventional 
 
The uncontrollable factors used for experiments are 

equal to those of the first experiment. The number of total 
experiment treatments amounts to 36 (= 18×2).  

6.3 Experimental Results 

6.3.1 Experimental Results on the  
Probability of Correct Selection 

Table 1 shows the experimental results. A higher budget 
can obtain a higher probability of correct selection.  
 

Table 1: Results of the First Experiment 
Design Method Budget Mean 

1 Conventional 1000 0.600262 
2 NP+OCBA 1000 0.765882 
3 Conventional 2000 0.712404 
4 NP+OCBA 2000 0.900655 
5 Conventional 3000 0.745334 
6 NP+OCBA 3000 0.936086 
7 Conventional 4000 0.80584 
8 NP+OCBA 4000 0.953064 
9 Conventional 5000 0.832854 

10 NP+OCBA 5000 0.959721 
11 Conventional 6000 0.869779 
12 NP+OCBA 6000 0.974814 
13 Conventional 7000 0.865288 
14 NP+OCBA 7000 0.982897 

 
To claim that the accuracy of the proposed method is 

superior, ANOVA is performed. The paired differences be-
tween the proposed method and the conventional method 
are compared using the following hypothesis. The results 
of the ANOVA test are summarized in Table 2. The differ-
ence is significant. 

 
H0: P{CS}using NP+OCBA = P{CS}using conventional method 

 
Table 2: ANOVA Test of the Correct Selection Probability 

Design Budget F-value P-value 
1&2 1000 7.543099 0.009561 
3&4 2000 16.46098 0.000275 
5&6 3000 19.13259 0.00011 
7&8 4000 13.2968 0.00088 

9&10 5000 11.02996 0.00215 
11&12 6000 11.2133 0.001996 
13&14 7000 12.29353 0.001299 

6.3.2 Experimental Results on the  
Total Number of Replications 

As shown in Table 3, the total numbers of replications of 
the proposed method are five times smaller than those of 
the conventional method. 

 
Table 3: Results of the Second Experiment 

Design Method Mean 
1 Conventional 5,875.200 
2 NP+OCBA 1,152.889 
 
To determine if the experiment provides enough evi-

dence to claim that the time saving of the using NP and 
OCBA is superior to the conventional method, analysis of 
variance (ANOVA) is run. The paired difference between 
two methods is compared as follows:  
 
H0: Total replication number using NP+OCBA = Total replica-
tion number using conventional method 
 

The results of the ANOVA test showed that F-value is 
9.942959 and P-value is 0.003499. It implies that the pro-
posed method has a great effect on the time saving on rep-
lication to ensure the correct selection of the best design. 

7 CONCLUSION 

Multi-pass scheduling ranks and selects the best decision-
making rule by looking ahead simulation-based multiple 
courses of action before actual execution. Even though it 
has been known that multi-pass scheduling performs much 
better than single pass scheduling, its disadvantage is to 
take too much time in evaluating possible rule candidates. 
This paper proposed a new multi-pass scheduling frame-
work in which the number of rules to be evaluated is 
minimized by using a nested partitioning method and the 
number of replications for simulation is also minimized by 
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using an optimal computing budget allocation method and 
guarantees its achievement through the application of the 
multi-pass simulation. The NP method reduced the number 
of strategies by using partitioning of the strategy regions 
and sampling each group. The OCBA method determines 
the simulation replications by allocating additional replica-
tions to potentially critical decision-making rules. 

To show the efficiency of the scheduling using NP and 
OCBA, the experimental design and analysis has been per-
formed and compared with that of the conventional multi-
pass scheduling. The results showed that the proposed 
framework has a great effect on the accuracy of rule selec-
tion and the time saving for stochastic environment of a 
shop floor. Consequently, multi-pass scheduling using NP 
and OCBA is applicable for real-time shop floor schedul-
ing in an efficient and effective manner. 
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