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ABSTRACT

This paper presents preliminary work done on simulation-
based optimization of a stochastic material-dispatching sys-
tem in a retailer network. The problem we consider is one
of determining the optimal number of trucks and quantities
to be dispatched in such a system. Theoretical solution
models for versions of this problem can be found in the
literature. Unlike most theoretical models, we can ac-
commodate many real-life considerations, such as arbitrary
distributions of the governing random variables, and all
important cost elements, such as inventory-holding costs,
stock-out costs, and transportation costs. We have used two
techniques, namely, neuro-response surfaces and simulated
annealing, for optimizing our system. We have also used
a problem-specific heuristic, known as the mean demand
heuristic, to provide us with a good starting point for sim-
ulated annealing and a benchmark for our other methods.
Some computational results are also provided.

1 INTRODUCTION

Typically, a supply chain of consumer goods, such as gaso-
line, food products, and clothing items, consists of distri-
bution centers, warehouses, and retailers. The distribution
industry focuses on transporting goods from the manufac-
turer to the customers. A goal of this industry is to make the
distribution process “lean", and thereby achieve cost bene-
fits. The problem we have considered here is geared towards
reducing the inventory in the distribution network and en-
suring a satisfactory service level. Generally, a warehouse
serves multiple retailers where customers arrive randomly
to buy products. An optimization problem commonly-faced
by managers is to determine (1) the number of trucks to be
dispatched, and (2) the amount of goods to be dispatched.
Associated with this problem are the costs of holding excess
inventory (inventory-holding costs), not being able to meet
customer demand (stock-out costs), and transporting goods
from the manufacturer to the retailers (transportation costs).
The cost function that we have developed in this paper
accounts for all of these elements. When there are multiple
retailers and each retailer has unique random characteristics,
such as arrival rate of customers and size of the demand,
one has a large-scale and complex stochastic optimization
problem on which it is not easy to construct an exact theo-
retical model. In this paper, we study a complex problem
with multiple retailers and a large number of governing
random variables, and use a simulation-based approach for
solving it.

Seminal work on this problem is from
Clark and Scarf (1960). In their paper, they have
assumed a holding and shortage cost but ignored the
setup cost or the reorder cost. Jönsson and Silver (1987)
have suggested the use of a “redistribution" strategy in
which the inventories at the retailers are pooled and
redistributed to standardize the inventory at each retailer.
Their model is for systems in which demand variation
is low and in which it can be shown that the stockouts
can occur only in the last periods of an order cycle.
McGavin, Schwarz, and Ward (1993) have suggested a
so-called “between-replenishment," “risk-pooling" policy
for this problem. They have a two-interval alloca-
tion policy in which the stock is withdrawn from the
warehouse at two (unequal) intervals in the same order
cycle. Their model ignores the inventory holding costs.
Nahmias and Smith (1994) have developed a model for
demands that have the negative-binomial distribution.
Federgruen and Zipkin (1984) have modeled an extension
of the previous work by Eppen and Schrage (1981)
overcoming some of the limitations like normal distribution
of the demand and identical holding and penalty costs
across all the retailers. But they develop a myopic model,
i.e., a model in which the system is optimized in the period
during which the actual allocation occurs, ignoring the
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costs in all subsequent periods. Our model, on the other
hand, minimizes the long-run average cost of operating
the system. Kumar, Schwarz, and Ward (1995) have given
static and dynamic models for a similar system but with a
myopic allocation policy. Furthermore, their policies are
valid only for low-variance demand at identical retailers.
Our model is not restricted to this assumption.

We have modeled the problem of dispatching material
between a single warehouse and N retailers using simulation-
based optimization (see Andradottir 2002, Fu 2002, Gosavi
2003). The advantage of using simulation is that we have
been able to consider all the costs involved in the real-world
system. Our model, unlike some in the literature, does not
approximate any feature of the cost function. We also have
no restrictions on the distributions that can be used for the
random variables governing the system.

The last few years have seen an explosion in the number
of papers written on meta-heuristics and simulation-based
optimization (Barton and Ivey 1996; Chen, Chen, and Yuce-
san 2000; Fu and Hu 1997; Glassserman 1991; Glynn 2002;
Ho and Cao 1991; Ho, Sreenivas and Vakili 1992; Pflug
1996; Shi and Ólafsson 1998; Spall 1992; Yan and Mukai
1992). We have used two optimization techniques here,
namely, simulated annealing and neuro-response surfaces.
We have also used an industrial heuristic, called the mean
demand heuristic, which provides us with a benchmark for
our methods and a starting point for simulated annealing.

A detailed description of the problem is given in Section
2. This is followed by the solution methodology in Section
3. Section 4 provides the computational results. Section 5
discusses the conclusions of this work and future work to
be done.

2 PROBLEM DESCRIPTION

The distribution network, generally, has a hierarchical struc-
ture in which a warehouse serves a set of retailers. All
warehouses are coordinated and replenished by a central
distribution center. We assume that distribution network has
already been designed. The network can be divided into
three echelons (see Figure 1). Echelon 1 is the first level
from the manufacturer to the regional distribution centers,
Echelon 2 is the level from the regional distribution centers
to the local distribution centers, and Echelon 3 is the level
from the local distribution centers to the retailers. Our focus
in this paper is on a problem in Echelon 3.

A “transshipment" point is a point in a supply chain
where goods are transferred from one echelon to another.
Goods are stored temporarily at the transshipment point.
The warehouse acts as a transshipment point for the items
to be distributed, and goods received by it are distributed
among the retailers. The problem is to determine the optimal
quantities to be delivered from the transshipment point to
each of the retailers so as to minimize the average cost of
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Figure 1: Distribution Network

operating the system. Our model takes the following costs
into consideration. (1) Inventory-holding costs. (2) Stock-
out costs, which include the cost of lost sales and the loss
of goodwill. (3) Transportation costs, which include the
operating cost of the truck and the cost of transporting the
goods, which in turn depends on the quantities transported.

The system considered here is a complex real-world
system. The random variables governing our system are: the
inter-arrival time of each customer, the quantity demanded
by each customer, the service time for each truck, and
the travel time between the warehouse and retailers and the
same between the retailers. It is difficult to develop an exact
mathematical model that will account for all the random
variables and costs that we have considered. This motivates
a simulation-based model for performance evaluation and
optimization. We have assumed that each retailer is distinct
and has unique values for the system parameters. The rate
of arrival of customers, the inventory-holding costs, and
the stock-out costs are all different for each retailer. Our
objective is to minimize the average cost per unit time of
running the entire system. We next present a mathematical
description of the problem.

Consider a probability space (�, F, P ), where P de-
notes the distribution of the profits generated by the sys-
tem under consideration. From the simulator of the prof-
its generated by the system, one can generate k samples:
(ω1, ω2, . . . , ωk). Let �q = (q1, q2, . . . , qn) denote the vec-
tor of delivery quantities, i.e., the delivery vector, where
qi denotes the quantity to be delivered to the ith retailer
and n is the number of retailers. Let fi(�q, ωj ) denote the
average cost per unit time of running the system estimated
from the j th sample (generated by the simulator) when the
delivery vector is �q. Let Ct denote the truck operating cost
per unit quantity per unit time. Let Li(�q, ωj ) denote the
total number of lost sales at the ith retailer in the j th sample
when the delivery vector is �q, and Cl

i denote the lost-sales
or stock-out cost per unit quantity at the ith retailer. Let
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Ii(�q, t, ωj ) denote the positive inventory at time t at the ith
retailer in the j th sample, Ce

i denote the inventory-holding
cost per unit quantity at the ith retailer, and T (ωj ) denote the
length of the trip in the j th sample. Then mathematically,
the problem is to:

Minimize Ct

n∑

i=1

qi +
n∑

i=1

E[fi(�q, ωj )],

where fi(�q, ωj ) = ClLi(�q, ωj )+Ce

∫ T (ωj )

0 Ii(�q, t, ωj ) dt

T (ωj )
,

and E[fi(�q, ωj )] = lim
k→∞

k∑

j=1

fi(�q, ωj )

such that qi ≥ 0 for i = 1, 2, . . . , N.

3 SOLUTION METHODOLOGY

The two optimization techniques, namely, simulated anneal-
ing and the neuro-response surface method (NRSM), which
we have used, are explained next.

3.1 Neuro-Response Surfaces

The response surface method (RSM) has been a popular
method of optimization in simulation-based optimization
due to its robustness and strong mathematical (statistical)
backing. Traditional RSM uses regression for fitting the
objective function. This requires the assumption of a meta-
model. Unlike traditional RSM, NRSM does not assume a
metamodel. In NRSM, function fitting is done using neural
networks. Its power lies in its ability to fit any surface. The
NRSM uses the well-known backpropogation algorithm.
The steps involved in this algorithm are explained below.

Consider a neural network shown in Figure 2. The
so-called “input" layer consists of a finite number of nodes;
usually one node is associated with each decision variable.
The number of nodes in the hidden layer is a function of
the non-linearity of the function to be fitted. (Greater the
non-linearity of the function larger is the required number
of nodes in the hidden layer.) The neural network computes
the so-called “weights" which represent its metamodel. Let
w(i, h) denote the weight from the ith input node to the
hth hidden node and x(h) the weight from the hth hidden
node to the output node. The bias node is comparable to
the constant term in regression-based function fitting. Let
p denote the number of pieces of data used for training the
neural net. The available data for the pth piece is (�up, yp)

where �up denotes a vector with I components.
Bias Node

Input Nodes
Hidden Nodes

Output Nodes

W(i,h)

x(h)

Figure 2: Neural Network

Step 1: The first step is to set all the weights to small
random numbers. Set the value of the SSE (sum
of squared errors) to a large number.

Step 2: Calculate the output value at the hidden node
as follows

Vp
∗(h) =

I∑

i=1

w(i, h)up(i)

where, Vp
∗(h) denotes the output value at the

hidden node h and up(i) the input value to the ith
input node.

Step 3: Compute Vp(h) as follows, using the sigmoid
function.

Vp(h) = 1

1 + e−Vp
∗(h)

Step 4: Compute each of the output terms Op, for p =
1, 2, . . . , n, where n is the number of data pieces,
using

Op = b +
H∑

h=1

x(h)Vp(h).

Step 5: Update b, w(i, h), x(h) as follows

b ← b + µ

n∑

p=1

(yp−Op).
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w(i, h) ← w(i, h) +
µ

n∑

p=1

(yp−Op)xhvp(h)(1−vp(h))up(i).

x(h) ← x(h) + µ

n∑

p=1

(yp−Op)vp(h).

Step 6: Calculate SSEnew using

SSEnew =
n∑

p=1

(yp−Op)2

Reduce the value of µ. If |SSEnew − SSEold | <

tolerance, Stop. Otherwise, set SSEold =
SSEnew and return to Step 2.

3.2 Simulated Annealing

Simulated annealing is a heuristic stochastic search technique
that starts at an arbitrary solution and uses a so-called
“neighborhood search strategy". It has an “exploratory"
property which allows the algorithm to worsen the objective
function value at times. It is claimed that this can help in
finding the global optimum in a problem with multiple
local optima. The algorithm accepts a worse solution with
a probability, given in Step 4b, which is decayed with
the number of iterations. This algorithm is written for
minimizing the objective function value.

Step 1: Let the current solution vector (selected ran-
domly) be denoted by �xcurrent . Set �xbest ←
�xcurrent . Set phase number P to 0.

Step 2: Select a solution vector (at random) adjacent to
the current solution vector and denote it �xnew

Step 3: If

f (�xnew) < f (�xbest )

Set �xbest ← �xnew

Step 4: Calculate

δ = f (�xnew) − f (�xcurrent )

If δ ≤ 0, go to Step 4a otherwise go to Step 4b.

Step 4a: Set

�xcurrent ← �xnew.

Go to Step 5.
Step 4b: Generate a uniform random number,
U , between 0 and 1. If

U ≤ exp(− δ

T
, )

then set

�xcurrent ← �xnew.

Otherwise do not change �xcurrent and go to
Step 5.

Step 5: One execution of Steps 2, 3 and 4 is an iteration
of a “phase". Repeat the steps till the number of
iterations associated with the current phase are
completed.

Step 6: Increment the phase number P by 1. If P <

Pmax, then reduce T and return to Step 2. Otherwise
terminate the algorithm and declare �xbest to be the
best solution obtained.

The temperature (T ) of the process represents the ex-
ploratory property (Step 4 of the algorithm) and is reduced
gradually. Hence determining this temperature properly is
an important factor in the success of the algorithm. It has
been established that the algorithm does provide the opti-
mal solution in an asymptotic sense if the temperature is
decreased properly (Lundy and Mees 1986). In our experi-
ments, the starting point for the algorithm was provided by
a problem-specific heuristic, which we discuss next.

3.3 The Mean Demand Heuristic

The Mean Demand Heuristic (MDH) is a problem-specific
heuristic that provides us with a good starting point for
simulated annealing and also provides a lower bound on
the search region for the neuro-response surface method.
The heuristic can be explained as follows. Let T denote
the average cycle time, i.e., the time required to go around
the route once and return to the retailer. Let di denote the
average demand per customer at the ith retailer. Then, the
optimal quantity Qi for the ith retailer, according to this
heuristic, is given by Qi = T diλi , where λi denotes the
mean rate of arrival of customers at the ith retailer.

4 COMPUTATIONAL RESULTS

We compare the performance of SA and NRSM to that of
MDH. We ran the three methods on a system with two
retailers (See Fig 3). For NRSM we sampled the solution
space of the objective function at various points using a
full factorial experiment to do the sampling. To train the
neural network properly we needed to sample the solution
space at no less than 5 points for each retailer. Thus the
number of sampled points of the simulator for the 2-retailer
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network became 25. The parameters used for each system
are provided in Table 1, and the computational results are
shown in Table 2. We used a value of 1 for δ in Step 4b of the
SA algorithm because larger values of δ caused excessive
exploration. NRSM takes an exceedingly long time on a
10-retailer network. Hence we are conducting experiments
with SA and gradient-based techniques on larger problems.

Retailer 1

Warehouse

Retailer 2

Retailer 4 Retailer 5 Retailer 6 Retailer 7

Retailer 8

Retailer 9

Retailer 10

Retailer 3

Figure 3: Route Followed By Truck

Table 1: Parameters Used For Each System
Ce

i Cl
i λi

System i = 1 i = 2 i = 1 i = 2 i = 1 i = 2
1 0.01 0.09 1.5 1.4 90 110
2 0.01 0.009 3 3.1 90 110

Table 2: Comparison Of Costs From The 3 Methods
System Mean-Demand Improvement Improvement

Heuristic of NRS over of SA over
(MDH) MDH MDH

1 22311 51.42 % 62.55 %
2 17329 63.53 % 70.37 %

5 CONCLUSIONS & FUTURE WORK

We considered a material-dispatching problem found in
many real-world retailer networks. We developed a model
that accommodates almost all real-life considerations, and
also showed how it can be used for optimization. Thus far,
our tests have been on medium-sized problems but we are in
the process of conducting tests on very-large scale problems.
(We have already generated the simulator for such tests;
see Fig 4.) We have also used SA successfully on medium-
sized problems. It is expected that further research will lead
to valuable insights on solving the full blown, large-scale
version of this problem.

REFERENCES

Andradóttir, S, 2002. Simulation Optimization: Integrated
Research and Practice, Journal on Computing, Volume
14, Number 3, pp. 216-219.

Barton, R. R. and J. S. Ivey, 1996. Nelder-Mead Simplex
Modifications for Simulation-Optimization, Management
Science, Volume 42, pp. 954-973

Chen, H.C, C. H. Chen, and E. Yucesan, 2000. Computing
Efforts Allocation for Ordinal Optimization and Discrete
Event Simulation, IEEE Transactions on Automatic Con-
trol, Volume 45, Number 5, pp. 960-964.

Clark, A. J and H. Scarf, 1960. Optimal Policies for A
Multi-Echelon Inventory Problem, Management Science,
Volume 6, Number 4, pp. 475-490.

Eppen, G. and L. Schrage, 1981. Centralized Ordering Poli-
cies in A Multi-Warehouse System With Lead Times and
Random Demand, in Multi-Level Production/Inventory
Control Systems: Theory And Practice, North Holland,
Amsterdam, pp. 51-69.

Federgruen, A and P. Zipkin, 1984. Approximations Of Dy-
namic, Multi-Location Production and Inventory Prob-
lems, Management Science, Volume 30, Number 1, pp.
69-84.

Fu, M. C, 2002. Optimization for Simulation: Theory Vs
Practice, Journal on Computing, Volume 14, Number 3,
pp. 192-215.

Fu, M. C and J. Q. Hu, 1997. Conditional Monte Carlo: Gra-
dient Estimation and Optimization Applications, Kluwer
Academic, Massachusetts.

Glassserman, P, 1991. Gradient Estimation Via Perturbation
Analysis, Kluwer Academic, Massachusetts.

Glynn, P. W, 2002. Additional Perspectives On Simula-
tion for Optimization, INFORMS Journal of Computing,
Volume 14, Number 3, pp. 220-222.

Gosavi, A, 2003. Simulation-Based Optimization Paramet-
ric Optimization Techniques and Reinforcement Learn-
ing, KluwerAcademic Publishers, Boston, Massachusetts,
USA.

Ho, Y. C. and Cao. X. R, 1991. Perturbation Analysis
of Discrete-Event Dynamic Systems, Kluwer Academic,
Massachusetts.

Ho, Y. C, R. S. Sreenivas, and P. Vakili, 1992. Ordinal
Optimization of Discrete-Event Dynamic Systems, Jour-
nal of Discrete Event Dynamic Systems: Theory and
Applications, Volume 2, pp.61-88.

Jönsson, H and E. A. Silver, 1987. Analysis of A Two-
Echelon Inventory Control System With Complete Re-
distribution, Management Science, Volume 33, Number



Subramaniam and Gosavi
 Initialize System
Parameters

 Start

Get Next
Event
from Event
List

Extract Extract
Next Event
from Event
List

Next Event
from Event
List

Has the

NO

NO

YES

YES

Truck Event Customer Event

Departure
Departure Arrival Arrival

Update all

Statistics
Relevant

Simulation
run for the

required
time?

Has the

simulator

required
number of

Compute Average

Stop

completed the

iterations?

Cost

Figure 4: Flowchart Depicting The Working Of Simulator
2, pp. 215- 227.
Kumar, A, L. B. Schwarz, and J. E. Ward, 1995. Risk-

Pooling Along a Fixed Delivery Route Using a Dynamic
Inventory-Allocation Policy, Management Science, Vol-
ume 41, Number 2, pp. 344-362.

Lundy, M andA. Mees, 1986. Convergence of TheAnnealing
Algorithm. Mathematcial Programming, Volume 34, pp.
111-124.

McGavin, E. J, L. B. Schwarz, J. E. Ward, 1993. Two Inven-
tory Allocation Policies In A One Warehouse N-Identical
Retailer Distribution System, Management Science, Vol-
ume 39, Number 9, pp. 1092-1107.

Nahmias, S and S. A. Smith, 1994. Optimizing Inventory
Levels In A Two-Echelon Retailer System With Partial
Lost Sales, Management Science, Volume 40, Number 5,
pp.582-596.

Pflug, G. C, 1996. Optimization of Stochastic Models: The
Interface Between Simulation And Optimization, Kluwer
Academic, Massachusetts.

Shi, L. and S. Ólafsson, 1998. Nested Partitions Method for
Stochastic Optimization, Operations Research, Volume
48, pp. 390-407.

Spall, J. C, 1992. Multivariate Stochastic Approximation
Using A Simultaneous Perturbation Gradient Approxima-
tion, IEEE Transactions on Automatic Control Volume
37, pp. 332-341.

Yan, D. and H.Mukai, 1992. Stochastic Discrete Optimiza-
tion. SIAM Journal on Control and Optimization, Volume
30, pp. 594-612.

AUTHOR BIOGRAPHIES

GANESH SUBRAMANIAM is a graduate student in the
department of industrial engineering at the University at
Buffalo, State University of New York. He is working as a
research assistant in the simulation-optimization laboratory
at the State University of New York. His research interest
is in applying simulation-based optimization to variety of
production planning and supply chain management prob-
lems. He is a member of IIE and Omega Rho. His e-mail
address is <ganesh@ganeshs.net>, and his web page
is <www.ganeshs.net>.

ABHIJIT GOSAVI is an assistant professor in the de-
partment of industrial engineering at the University at
Buffalo, State University of New York. His research
interests are in simulation-based optimization, reinforce-
ment learning, and Markov decision modeling. He has
published in journals such as Management Science, IIE
Transactions, Communications in Statistics, etc. He is
a member of IIE and INFORMS. His e-mail address
is <agosavi@buffalo.edu>, and his web page is
< www.eng.buffalo.edu/ agosavi >.

mailto:ganesh@ganeshs.net
http://www.ganeshs.net
mailto:agosavi@buffalo.edu
http://www.eng.buffalo.edu/~agosavi

	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print

	01: 1412
	02: 1413
	03: 1414
	04: 1415
	05: 1416
	06: 1417


