
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

SRML CASE STUDY: SIMPLE SELF-DESCRIBING PROCESS MODELING AND SIMULATION

Steven W. Reichenthal

Boeing

3370 Miraloma Ave.
Anaheim, CA 92803, U.S.A.

ABSTRACT

This paper provides an introduction to the Simulation Ref-
erence Markup Language (SRML) (SRML 2002) through a
case study in which a simple self-describing process mod-
eling and simulation representation is developed. In this
context, “self-describing” refers to a simulation representa-
tion that includes not only a model’s data, but also includes
the behavioral semantics of the simulation objects, thereby
enabling the execution of those models within a general-
purpose simulation engine.

1 INTRODUCTION

SRML is an XML technology for infusing or otherwise de-
scribing the behavior of arbitrary XML data, using web-
based techniques similar to those found in HTML. The
language specification has been published as a note on the
W3 Consortium web site with the goal of encouraging the
development of common simulation interchange standards.
Executing SRML requires an SRML simulation engine,
which is software that combines a discrete-event simula-
tion runtime environment with the XML Document Object
Model (DOM), a scripting host, and a plug-in management
system. A free run-time engine may be downloaded from
Boeing.com (BOEING 2003) for evaluation and study.

Process modeling is an ideal medium for demonstrat-
ing SRML, because process flows can be represented de-
claratively with natural ease using XML. Likewise, the
functionality underlying commercial process modeling and
simulation software is often hidden; thus it is instructive to
see how such functionality might be implemented. Many
of the commercial tools employ a similar “factory” para-
digm consisting of entities and blocks. For this case study,
a simplified set of simulation objects are developed as a
basis for study and extension.

2 BASIC CONCEPTS OF SRML

SRML should not be considered a programming language,
but rather a composition language for integrating XML
data models with behavior. The concept of SRML with its
corresponding simulation engine is similar in concept to
HTML with its corresponding web browser. Both envi-
ronments are built upon the foundation of SGML and sup-
port scripting with plug-in extensibility. HTML’s scripting
capability has made it possible for web-pages to include
“open source” functionality using arbitrary scripting lan-
guages like JavaScript/ECMAScript, or Python. Concor-
dantly its “plug-in” capability provides for the execution of
compiled, black-box functionality. Likewise, SRML was
designed to include both of those features, but with the
added capability for specifying classes of items and events
using XML. Composition in SRML is provided by the
ability for either a single xml file to contain all the data or
for fragments of data to be assembled from files located at
various locations.

3 PROBLEM STATEMENT

This case study is driven by a typical process-related prob-
lem that can be found in everyday America. Suppose our
goal is to use simulation to model line queuing and the
management of people at a public service facility such as a
DMV. One responsibility for our simulation is that it must
determine the average number of people that would be
waiting in line at the information booth of our local DMV.
We observe that people arrive at some rate per hour, and
require on average several minutes of the clerk’s time to
determine where to send them next. A certain percentage
of the time people are directed to one line or another.
Though a problem this simple could be solved mathemati-
cally, the use of discrete-event simulation becomes more
practical as complexity increases. The flow could be gen-
eralized and represented graphically as shown in Figure 1.
Create1 represents the arrival of people, Process1 repre-
sents the activity involving a person and the information
clerk, and Decide1 represents the one of two paths that the
person will following the exchange.

A common approach to developing a simulation for a
process flow problem is to employ the “factory” paradigm,
which is based on the concept of the entities and blocks

henthal
Reic

Decide1

[no]

[yes]
Create1 Process1 Dispose1

Dispose2

Figure 1: Sample Process

depicted in Figure 2. Entities are things that enter and exit
blocks during the execution of a simulation. Blocks repre-
sent operations that process entities, and may be connected
together to form a process flow. Four types of blocks are
developed in this case study: Create, Dispose, Process, and
Decide. The Create and Dispose blocks are the fundamen-
tal blocks that generate and terminate the existence of enti-
ties within a flow. A Process block receives an arriving en-
tity and places it on a queue to wait for an available
resource. Once a resource is available, the Process block
simulates work using a random delay distribution for its
duration. After the delay, the resource is released and the
entity exits the Process block to be received by the next
block or blocks in the flow. With the Decide block, an ar-
riving entity takes either one path or the other in proportion
to a specified probability. Each type of block has a set of
properties that govern its operation, and the values of those
properties may be varied in order to run experiments.

Entity
ReferenceCount

Attach
Detach

Block
Name

Create
EntityType
Expression
Units

Process
Units
Expression
Capacity
Busy
Waiting
Average

Decide
PercentTrue

Dispose

Arrive
Depart
Arrivals
Departures

NextBlocks

0..*

0..*

Figure 2: Factory Paradigm

4 XML REPRESENTATION OF
THE SAMPLE PROCESS

Listing 1 is the XML that represents the process flow rep-
resented in Figure 1. Its schema was derived from a simple
mapping of blocks to elements, properties to attributes, and
relations to attributes. Creating the sample model first,
without a schema affords the opportunity to experiment
with different mappings. Other mappings are possible,
each with benefits and consequences. However, the impor-
tant point with respect to defining simulation behavior is
that the schema may be arbitrary because SRML has con-
structs that allow the interchanging elements and attributes.
An actual XML Schema (SCHEMA 2001) document could
be developed to validate the model, however in this case
one is not necessary.

Listing 1 - ProcessModel1.xml:

<ProcessModel ID="Factory1">
 <Create Name="Create1"

 NextBlocks="Process1"/>
 <Process Name="Process1"
 NextBlocks="Decide1"/>
 <Decide Name="Decide1"
 NextBlocks="Dispose1 Dispose2"/>
 <Dispose Name="Dispose1"/>
 <Dispose Name="Dispose2"/>
</ProcessModel>

This XML file could be loaded into an SRML simula-

tion engine as is. The engine would merely create a hierar-
chically interconnected set of objects (items), because no
behavioral descriptions have been provided. In this case,
adding behavior means specifying what the Create, Process,
Decide, Dispose tags do in the simulation—their operational
semantics. Behavior may be added intrusively by modifying
the file to either embed the behavioral markup within the file
or to reference external behavior defined in another file. The
advantage of the former is that the single file would be self-
describing in terms of simulation; whereas the advantage of
the latter permits different behaviors to be interchanged
without having to modify the model’s file.

Conversely, behavior may be added non-intrusively,
yet still be self-describing by creating a separate simulation
file that references both the model and the behavior,
thereby permitting the model to remain independent from
the simulation and behavioral definitions. This is the ap-
proach taken in the sample, and is shown in the Listing 2.
To reference an external definition, SRML provides the
Source attribute, which can be added to any element in an
XML document. When the simulator encounters a Source
attribute, it attempts to load and map the external definition
to the item described by the element. The simulator recog-
nizes the Source attribute and loads ProcessLibrary.xml,
which defines the behavior.

Listing 2 - ProcessSimulation1.xml:

<srml:Simulation
 xmlns:srml="urn:x-schema:srml.xdr"
 xmlns="">
 <ProcessLibrary
 srml:Source="ProcessLibrary.xml"/>
 <ProcessModel
 srml:Source="ProcessModel1.xml"/>
</srml:Simulation>

5 PROCESS LIBRARY

Rather than embedding all the behavior into a single XML
file, the process library file shown in Listing 3 is a compo-
sition of behavior from several separate files. Separating
the files makes it convenient to modularize the components
of the library for development and extension.

Reichenthal

Listing 3 - ProcessLibrary.xml:

<ProcessLibrary xmlns=""
 xmlns:srml="urn:x-schema:SRML.xdr">
 <srml:ItemClass Name="Entity"
 Source="Entity.xml"/>
 <srml:ItemClass Name="Block"
 Source="Block.xml"/>
 <srml:ItemClass Name="Create"
 Source="CreateDispose.xml"/>
 <srml:ItemClass Name="Dispose"
 Source="CreateDispose.xml"/>
 <srml:ItemClass Name="Process"
 Source="Process.xml"/>
 <srml:ItemClass Name="Decide"
 Source="Decide.xml"/>
</ProcessLibrary>

6 ENTITY CLASS

Entities, which are implemented as objects that are created
and destroyed during the execution of the simulation, are
defined using the SRML ItemClass construct, see Listing
4. Generally speaking, an item class defines a class of
items with common properties, structure, and behavior—
much like the ordinary class construct provided by an ob-
ject-oriented programming language. Each property has a
name, an optional type, and an optional default value. The
type and default value are optional because an XML
Schema may already have provided those definitions. A
single property is defined on the Entity item class, refer-
ence count, which keeps track of the number of blocks that
are operating on the entity. Specific behaviors developed
for entities include the Attach and Detach method. The At-
tach method simply increments a reference count on the
entity, whereas the Detach method decrements the refer-
ence count and destroys the item when the count reaches
zero. Notice that the default value for the reference count is
1, which means that an initial attach is not necessary.
Therefore, for this to work properly every next block must
attach to the entity before the previous block detaches.

 Listing 4 - Entity.xml:

<srml:ItemClass Name="Entity"
 xmlns:srml="urn:x-schema:SRML.xdr">
 <srml:Property Name="ReferenceCount"
 Type="i4" Default="1"/>
 <srml:Script Type="text/javascript"
 Placement="Isolated">
 <![CDATA[
 function Attach ()
 {
 this.ReferenceCount++
 }
 function Detach ()
 {
 if (this.ReferenceCount &&
 --this.ReferenceCount == 0)
 this.DeleteItem (this)
 }
]]>
 </srml:Script>
</srml:ItemClass>
Item classes are not intended to replace the use of tradi-
tional class definitions. Actually, a simpler alternative design
for the process library would not even need to create an en-
tity class or have any instances by simply managing entity
counts, however, such as design would not scale well. Using
an item class allows the simulation engine to manage the ob-
ject’s lifetime and persistence. Script placement for the At-
tach and Detach methods is specified as Isolated, which
means a single script is created to service all instances, but
that script is isolated from the runtime environment and
must use “this” to access the particular instance.

7 BLOCK CLASS

The Block item class shown in Listing 5 serves as the gen-
eral base class for specific types of blocks. Using this class,
all blocks inherit a Name property which keeps track of the
number of entity arrivals and departures, and manages the
links among blocks. The Name property uniquely identifies
each block within a local scope, and is defined with a data
type of srml.LocalID, thereby allowing each block instance
to have a unique name according to some local scope. In
this case, the local scope is the entire model, but in a larger
model the same block name could potentially be used more
than once within different scopes. The NextBlocks property
is of type srml.Links, which instructs the simulator to man-
age the contents as a list of related objects. Default meth-
ods exist to handle the arrival, departure, attachment and
detachment of entities in a standard way. These methods
may be overridden in the sub-classes. The Arrive method is
the most likely method that a block will override, and, by
default, this method simply causes the entity to immedi-
ately depart. The Depart method by default causes the en-
tity to arrive at all of the next blocks. To attach an entity,
the simulator’s SendEvent method is called, to make a syn-
chronous invocation of the entity’s Attach method. PostE-
vent, would have worked just as well, although it makes an
asynchronous invocation through the simulator’s event list.
The Placement attribute on the script is set to “Instance”,
specifying that each instance will have its own script.

 Listing 5 - Block.xml:

<srml:ItemClass Name="Block"
 xmlns:srml="urn:x-schema:SRML.xdr">
 <srml:Property Name="Name"
 Type="srml.LocalID"/>
 <srml:Property Name="NextBlocks"
 Type="srml.Links"/>
 <srml:Property Name="Arrivals" Type="i4"/>
 <srml:Property Name="Departures" Type="i4"/>
 <srml:Script Type="text/javascript"
 Placement="Instance">
 <![CDATA[
 function Entity_Attach (objEntity)
 {
 Arrivals++
 SendEvent (objEntity, "Attach")
 }

Reichenthal

 function Entity_Detach (objEntity)
 {
 PostEvent (objEntity, "Detach")
 Departures++
 }

 function Arrive (objEntity)
 {
 Entity_Attach (objEntity)
 Depart (objEntity)
 }

 function Depart (objEntity)
 {
 for (var i = 0, n = NextBlocks.Count;
 i < n; i++)
 PostEvent (NextBlocks (i), "Arrive",
 objEntity)
 Entity_Detach (objEntity)
 }
]]>
 </srml:Script>
</srml:ItemClass>

8 CREATE AND DISPOSE BLOCKS

Both the Create and Dispose blocks are defined in the
same file as belonging to a collection of item classes speci-
fied with an ItemClasses element, as shown in Listing 6.
Entities are manufactured with a Create block according to
a recurring pattern and are sent through the linked next
blocks. Behavior corresponding to the Create tag is de-
fined in an item class named Create, and this class has the
Block class as its only super-class—SRML permits an item
class to have multiple super-classes. The EntityType prop-
erty controls which type of entity to create and by default
has the value “Entity”. Having the EntityType property
makes it convenient to create and use sub-classes of the
Entity class with unique properties or behavior. The Gen-
erate method is used for scheduling the generation of a new
entity. In turn, it uses the simulator’s ScheduleEvent
method to schedule the invocation of the Generated
method at a random time. A random distribution may be
specified using the Expression property, which holds a
string that names a random distribution and its correspond-
ing parameters. This property defaults to a random expo-
nential distribution with a parameter of 1. The string is
supplied to the simulator’s Random function when sched-
uling the next item to be generated. The first call to Gener-
ate is placed outside of any function is called when the
script for the process block is first created—like code in a
constructor. Within the Generated method, a call to Cre-
ateItem is made which will create a new entity according to
the specified EntityType. Each new entity is placed at the
root of all items indicated by Simulation.Object in the sec-
ond parameter to CreateItem.

The simplest of the blocks the Dispose block. Like
the Create block, its super-class is the Block class, how-
ever, it overrides the Arrive method with an empty proce-
dure definition. Thus, when an entity arrives at a Dispose
block, its reference count will not be incremented and
nothing will happen, which allows the entity to delete it-
self when the previous block detaches and no other
blocks are holding references.

Listing 6 - CreateDispose.xml:

<srml:ItemClasses
 xmlns:srml="urn:x-schema:SRML.xdr">
 <srml:ItemClass Name="Block"
 Source="Block.xml"/>
 <srml:ItemClass Name="Create"
 SuperClasses="Block">
 <srml:Property Name="EntityType"
 Type="string" Default="Entity"/>
 <srml:Property Name="Expression"
 Default="Exponential 1"/>
 <srml:Property Name="Units" Default="h"/>
 <srml:Script Type="text/javascript"
 Placement="Instance">
 <![CDATA[
 Generate ()

 function Generate ()
 {
 var t = DateAdd (Units,
 Max (0, Random (Expression)),
 CurrentTime)
 ScheduleEvent (this, "Generated", t)
 }

 function Generated ()
 {
 var objEntity = CreateItem (EntityType,
 Simulation.Object)
 Depart (objEntity)
 Generate ()
 }
]]>
 </srml:Script>
 </srml:ItemClass>

 <srml:ItemClass Name="Dispose"
 SuperClasses="Block">
 <srml:Script Type="text/javascript"
 Placement="Instance">
 <![CDATA[

 function Arrive (objEntity)
 {
 }

]]>
 </srml:Script>
 </srml:ItemClass>
</srml:ItemClasses>

9 PROCESS BLOCK

The Process block is used to model an activity performed
on an entity in which resources are required to be allocated
before the activity can begin. Once begun, the activity con-
sumes some amount of time until completion, at which
point resources are released and the entity departs. Process
blocks, as defined in Listing 7, have a limited quantity of
resources (Capacity) which can service (as “Busy”) only a

Reichenthal

single entity at a time. Another simplification is that capac-
ity remains constant over time. When an entity arrives, a
resource may be allocated immediately if available. To
simulate the performance of the activity, the process causes
a delay to occur. The delay is calculated using a random
value from a specified distribution, as specified in the Ex-
pression property. After the delay period, the resource is
released from its busy state, and the entity departs to the
linked blocks to which the process connects. It may be
possible that no resources are available when an entity ar-
rives at a process block. In this situation, the entity is
added to a first-in-first-out Waiting queue to be serviced
when a resource becomes available, during the Release op-
eration. This example also shows how it is possible for the
script to be in a separate file (see Listing 8) by using the
Source attribute.

Listing 7 - Process.xml

<srml:ItemClasses
 xmlns:srml="urn:x-schema:SRML.xdr">
 <srml:ItemClass Name="Block"
 Source="Block.xml"/>
 <srml:ItemClass Name="Process"
 SuperClasses="Block">
 <srml:Property Name="Units" Default="h"/>
 <srml:Property Name="Expression"
 Default="Triangular 0.5 1 1.5"/>
 <srml:Property Name="Capacity" Type="i4"
 Default="1"/>
 <srml:Property Name="Busy" Type="i4"
 Default="0"/>
 <srml:Property Name="Waiting"
 Type="SR_Collections.SRList"/>
 <srml:Property Name="Average"
 Type="SR_MLTools.TimeAverage"/>
 <srml:Script Type="text/javascript"
 Placement="Instance"
 Source="Process.js"/>
 </srml:ItemClass>
</srml:ItemClasses>

Listing 8 - Process.js

function Arrive (objEntity)
 {
 Entity_Attach (objEntity)
 Seize (objEntity)
 }

function Seize (objEntity)
 {
 if (Busy < Capacity)
 {
 Busy++
 Delay (objEntity)
 }
 else
 Waiting.Add (objEntity)
 Average.AddValue (Waiting.Count,
 CurrentTime)
 }

function Delay (objEntity)
 {
 var t = DateAdd (Units,
 Max (0, Random (Expression)), CurrentTime)
 ScheduleEvent (this, "Release", t,
 objEntity)
 }

function Release (objEntity)
 {
 if (Waiting.Count > 0 && Busy <= Capacity)
 {
 var objEntityT = Waiting.Remove (0)
 Delay (objEntityT)
 }
 else
 Busy--
 Average.AddValue (Waiting.Count,
 Simulation.CurrentTime)
 Depart (objEntity)
 }

A Decide block receives arriving entities and sends

them to one of two next blocks according to some propor-
tion specified in the using PercentTrue property. The Ar-
rive method evaluates a uniform random value and com-
pares it with the value in the PercentTrue property. If the
random value is less than the percent true, the entity de-
parts to the next block at index zero, otherwise it departs to
the next block at index 1. The default value for Percent-
True is .5, so that half of the entities will take either path.
The code is shown in Listing 9.

Listing 9 - Decide.xml

<srml:ItemClasses
 xmlns:srml="urn:x-schema:SRML.xdr">
 <srml:ItemClass Name="Block"
 Source="Block.xml"/>
 <srml:ItemClass Name="Decide"
 SuperClasses="Block">
 <srml:Property Name="PercentTrue"
 Type="r4" Default="0.5"/>
 <srml:Script Type="text/javascript"
 Placement="Instance">
 <![CDATA[

 function Arrive (objEntity)
 {
 Entity_Attach (objEntity)
 var t = Random("Uniform")
 if (t <= PercentTrue &&
 NextBlocks.Count > 0)
 PostEvent (NextBlocks (0), "Arrive",
 objEntity)
 else if (NextBlocks.Count > 1)
 PostEvent (NextBlocks (1), "Arrive",
 objEntity)
 Entity_Detach (objEntity)
 }

]]>
 </srml:Script>
 </srml:ItemClass>
</srml:ItemClasses>

10 CONCLUSION

XML has become a popular format for representing data in
an open fashion, but the processing of that data is often
compiled into custom application programs thereby cou-

Reichenthal

pling the visible data with hidden operations. With the use
of XML Schemas, data becomes self-describing with re-
spect to structure, and with SRML data also becomes self-
describing with respect to behavior. A simple set of proc-
ess modeling objects was developed in this case study in
order to demonstrate the basic concepts of SRML with its
ability for adding simulation behavior to XML data. Addi-
tionally, those process objects may serve as a basis of ex-
tension and improvement.

Recently, the Simulation Interoperability Standards
Organization (SISO) has established a Product Develop
Group (PDG) with the objective to develop a specification
for Base Object Models (BOMs) (BOM 2003) to be used
for defining patterns of interplay among simulation com-
ponents. In the future, an industry standard catalogue of
behavioral definitions for interchangeable process simula-
tions could exist, and the development of BOMs may be a
first step in the process towards that end. Specifically,
SRML can serve to produce self-describing models sup-
porting the behavior associated to the conceptual entities
and processes of a BOM in a platform neutral manner. In
this light, SRML would help to facilitate the simulation
composability that BOMs offer.

REFERENCES

BOEING. 2003. SRML - Simulation Reference Simulator
Evaluation, available online via <http://www.
boeing.com/assocproducts/srml/> 2003

BOM. 2003. Base Object Model (BOM) Template Specifi-
cation Volume I - Interface BOM, SISO-STD-003.1-
DRAFT-V0.9

SCHEMA. 2001. Schemas express shared vocabularies and
allow machines to carry out rules made by people
<http://www.w3.org/XML/Schema/> [Accessed
May 2, 2001]

SRML. 2002. SRML - Simulation Reference Markup Lan-
guage W3C Note, <http://www.w3.org/TR/
SRML/> [Accessed December 18, 2002]

AUTHOR BIOGRAPHY

STEVE REICHENTHAL Steven W. Reichenthal is an
Associate Technical Fellow at the Boeing Company. He
develops simulations and software applications as a mem-
ber of the Logistics Engineering organization in
Anaheim, California. He has a Masters degree in Com-
puter Science and an MBA, and teaches software devel-
opment courses at the California State University in Full-
erton as an adjunct professor.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1461
	02: 1462
	03: 1463
	04: 1464
	05: 1465
	06: 1466

