
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

USING XML AND BOMS TO RAPIDLY COMPOSE
SIMULATIONS AND SIMULATION ENVIRONMENTS

Paul Gustavson
Tram Chase

SimVentions, Inc.

11903 Bowman Drive, Suite 102
Fredericksburg, VA 22408, U.S.A

ABSTRACT

This paper explores the application of Base Object Models
(BOMs), an emerging XML standard, for rapidly compos-
ing simulations and simulation environments. We examine
how pattern components, supported by the Interface (IF)
BOM and how behavior components, supported by the En-
capsulated (ECAP) BOM, can be used to enable simulation
composability at design time and dynamically at run-time.
We also explore the potential capabilities BOMs and other
XML standards provide for the future of web-based simu-
lation and training.

1 INTRODUCTION

The ability to compose simulations and simulation environ-
ments rapidly and efficiently is a key need within the Model-
ing and Simulation (M&S) arena. What is required are
meaningful components that can be coupled together to rep-
resent and model simulations and interoperable simulations
environments useful for testing, analysis, training, mission
rehearsal, and the prototyping and acquisition of new sys-
tems. The need for such a component standard is recognized
in the following statement.

 “To allow maximum utility and flexibility, …
modeling and simulation environments [need to]
be constructed from affordable, reusable compo-
nents interoperating through an open systems ar-
chitecture.” (Zimmerman 2002)

One such proposed standard, which leverages the eX-

tensible Modeling Language (XML), is the Base Object
Model (BOM) concept. A BOM can be thought of as a re-
usable package of information representing a pattern of
simulation interplay. This pattern reflects a set of activi-
ties among conceptual entities used to accomplish a com-
mon objective, capability, or purpose. By capturing pat-
terns and defining components that model the needed

capabilities to support these patterns, it is possible to pro-
vide an essential building block capability needed within
the M&S community as illustrated in Figure 1.

Figure 1: BOM Tool Palette to Compositions

Through the auspices of the Simulation Interoperabil-

ity Standards Organization (SISO) and the support of the
Defense Modeling and Simulation Office (DMSO), speci-
fications for BOMs are being openly developed and refined
with the goal to submit as a potential standard and a com-
posability enabler for the M&S community. The results
for this effort are beginning to yield the necessary formal
definitions, standards and formalisms for facilitating com-
posability. The first specification for BOMs titled, the
“BOM Template Specification Volume I – Interface
BOM” (SISO-STD-003.1-Trial-Use-V0.9) is now available
as a trial-use specification. Additionally a draft release ti-
tled the “Guide for BOM Use and Implementation” is also
available. Currently under development is the “BOM
Template Specification Volume II – Encapsulated BOM”.

The BOM component architecture based on these
specifications and documents provide the needed formal-

Gustavson and Chase

isms to influence the following capabilities within the
M&S community:

1. Interoperability – The application of the XML and

XML Schemas prescribed for BOMs provides a
mechanism for defining and validating context,
and facilitates understanding of the data being ex-
changed. Furthermore, the flexibility offered by
BOMs allows for greater application of simulation
interoperability within other domains.

2. Reusability – The meta-data cataloged within a
BOM such as intent-of-use, historical use, behav-
ioral information, Verification and Validation
(V&V) history, and potential visual information
will facilitate greater reuse of components.

3. Composability – BOMs will facilitate the ability
to rapidly compose simulations and simulation
environments both statically (design time) and
dynamically (run-time).

4. Adaptability – Mega-BOMs, which are produced
by BOM compositions, can be used to represent
the standard data exchange interface for systems
and simulations. Unlike the current High Level
Architecture (HLA) approach in which all feder-
ates must comply with a common Federation Ob-
ject Model (FOM), federates can continue to use
their specific Mega-BOM interface to play within
environments comprised of other simulations and
systems represented by their own unique Mega-
BOM interface. Adaptability is accomplished by
the receiving federate deploying and applying the
appropriate XML-based transformations, which
represent mappings between common BOMs
within a Mega-BOM. This minimizes the effort
typically spent in re-tooling federates associated
to complying with a specific FOM.

5. Tools, Repositories and Web Services – It is envi-
sioned that the next generation of tools and web
services (such as collaborative development envi-
ronments and repositories) could come about sup-
porting the creation, deployment and use of
BOMs for simulation development, maintenance,
and run-time support.

2 BOM ARCHITECTURE OVERVIEW

Before we explore how XML is being used to represent the
various BOMs and enable composability, let us examine
the overall BOM architecture.

2.1 Conceptual View

By leveraging the conceptual model of what’s intended to be
modeled, exercised or analyzed among a set of conceptual
entities, we can determine the activity relationship among
conceptual entities, and the anticipated model behavior for
any one specific conceptual entity. The examination of the
activity relationship among conceptual entities results in the
identification of the patterns of interplay, whereas examining
the anticipated conceptual entity behavior resulting from the
events associated to a pattern of interplay results in the ability
to identify the necessary model behavior. As illustrated in
Figure 2, there are two essential BOM building blocks that
can be produced from this conceptual analysis: pattern com-
ponents, which are codified as Interface BOMs, and behavior
components, which are codified as Encapsulated BOMs.

Figure 2: BOM Conceptual View

IF BOMs represent the relationship of activities

among conceptual entities (FOM level), whereas ECAP
BOMs represent the needed behavior required of a concep-
tual entity to support one or more patterns of interplay
(Federate level).

2.2 Architecture Layers

Figure 3 illustrates the four basic areas of the simulation
problem space as it relates to the HLA with BOMs provid-
ing an enabler in two ways:

1. supporting the creation of an agreed upon Federa-

tion Object Model, which serves as the interface
contract among all participating federates (see IF
BOMs), and

2. providing the necessary behavior model for a fed-
erate to fulfill the “interface contract” (see ECAP
BOMs).

From the bottom up, we have the Communication

Layer which includes the runtime infrastructure (RTI) or
any other communication mechanism used for the distribu
tion of data messages among federates at play.

Next, we have the Interface Layer, which is typically
represented by an HLA FOM for identifying what type of

Gustavson and Chase

Figure 3: HLA-Based BOM Architecture View

data will be conveyed through the Communication Layer.
From a composability standpoint, the Interface Layer for a
federate can be supported by Interface (IF) BOMs and a
Mega-BOM, which represents the collection of coupled IF
BOMs. An IF BOM is a reusable representation of a pat-
tern of interplay characterized by one or more events.

At the top, we have the Federation Layer, which in-
cludes the collection of federates supporting the Interface
Layer (the FOM). Within the Federation Layer, we have
the Encapsulation Layer, which reflects the behavioral
code necessary for a federate to carry out and model the
conceptual entities of the federation that were identified in
the FOM using Object Model Template (OMT) constructs.
At this layer, Encapsulated (ECAP) BOMs can be used to
describe the necessary behavior for one or more federates.

At the right of Figure 3, a repository is represented to
show that it can be used to identify and select appropriate
object models, including IF BOMs and ECAP BOMs, for
fulfilling the goals and objectives of a federation.

The Interface Layer and the Encapsulation Layer are the
two architectural layers related to BOMs that can be applied
to support composability. The BOM types used to support
these two layers are further examined in Sections 4 and 5.

3 APPLICATION OF XML-BASED
TECHNOLOGIES

Rather than re-inventing technologies and standards, the
application and integration of commercial technologies and
standards based on the Extensible Markup Language
(XML) is widely regarded as an appropriate direction for
enabling composabilty. Significant cost benefit and accep-
tance of XML technologies and standards can be applied
and used to support composability. The critical technolo-
gies needed for BOM standardization (and the proliferation
of BOM components) are predominately centered upon
XML based standards and approaches.

The BOM architecture utilizes the XML for the fol-
lowing means:

• To support the codification of pattern and behav-
ior components into Interface BOMs and Encap-
sulated BOMs respectfully.
• For supporting the essential meta-data to be cap-
tured, cataloged, and carried forward within a
BOM (examples include purpose, integration his-
tory, relevant references, etc…).

• For representing platform independent models,
called PIMs.

• For promoting adaptability via the Extensible
Language Transformation (XSLT) between simi-
lar but different BOMs.

• For addressing breadth of community interests.

BOMs should be viewed as a flexible component-based

standard for simulation interoperability that embraces out-
side XML standards and initiatives such as UML (XMI),
SRML, and X3D. Additionally, as we further explore, the
BOM component architecture is very much in synch with
the concepts and principles centered upon the Object Model
Group’s (OMG) Model Driven Architecture (MDA).

The sections that follow explore the various applica-
tions of XML and XML technologies for enabling BOMs.

4 COMPOSABILITY THROUGH IF BOMS

As illustrated in Figure 4, the coupling of IF BOMs can
be used to form a Mega-BOM, which serves as a higher
order pattern used to represent a logical collection or as-
sembly of IF BOMs.

Figure 4: IF BOM Coupling

A Mega-BOM is essentially an interface assembly

much like an HLA Simulation Object Model (SOM) or a
FOM. It can be used to represent a federate, or federation
or even an aggregation of entities within the simulation
space, typically identified as an entity group.

As illustrated in Figure 5 the template components that
define an IF BOM provide the following capabilities:

• Offers a common meta-data level summary identi-
fied as the Model Identification,

• Describes the activities (steps) of a pattern within
the Pattern Description, and

Gustavson and Chase

• Defines events and key HLA OMT 1516 elements
within the Model Definition.

Model Identification

Type

Name

Version

Mod Date

Description

Use Limit

Use History

Keywords

Sec Class POCs

Rel Rstctn References

Purpose Others

App Dom Glyph

Pattern Description

Steps (Activities)

Action

Variations
Exceptions

Event
BOM

Activity

Message

n
Model Definition*

Events

Messages
Triggers Object Models (1516.2)

Objects
Interactions
Data Types

Notes

Required Optional

IF BOM / Mega-BOM Elements

*Not needed for a Mega-BOM

Model Identification

Type

Name

Version

Mod Date

Description

Use Limit

Use History

Keywords

Sec Class POCs

Rel Rstctn References

Purpose Others

App Dom Glyph

Model Identification

Type

Name

Version

Mod Date

Description

Use Limit

Use History

Keywords

Sec Class POCs

Rel Rstctn References

Purpose Others

App Dom Glyph

Pattern Description

Steps (Activities)

Action

Variations
Exceptions

Event
BOM

Activity

Message

n
Model Definition*

Events

Messages
Triggers Object Models (1516.2)

Objects
Interactions
Data Types

Notes

Activity

Message

n
Model Definition*

Events

Messages
Triggers Object Models (1516.2)

Objects
Interactions
Data Types

Notes

Required Optional

IF BOM / Mega-BOM Elements

*Not needed for a Mega-BOM
Figure 5: IF BOM / Mega-BOM Template Elements

The Model Identification provides what’s needed for

discovering likely candidate models, whereas the Pattern
Description provides critical metadata necessary for ensur-
ing proper integration and reapplication of an IF BOM.
Figure 6 illustrates the Pattern Description relationship.
Each step, identified as an activity, has on either an Event,
which is defined in the Model Definition, or with another
IF BOM defined independently.

Pattern

ActivityEvent

Trigger Message

n

1 IF BOM1

Pattern DescriptionAn action for a step
can be associated
to an event

An action for a step
can potentially be
supported completely
by another BOM

Pattern

ActivityEvent

Trigger Message

n

1 IF BOM1

Pattern DescriptionAn action for a step
can be associated
to an event

An action for a step
can potentially be
supported completely
by another BOM

Figure 6: Pattern Description

The identification and creation of XML schemas was
necessary to support the IF BOM ontology depicted previ-
ously in Figure 5. The SISO lead BOM Product Develop-
ment Group (PDG), under the efforts of an internal Draft-
ing Group (DG), generated an IEEE 1516.2-based OMT
schema to support the OMT elements used for the IF BOM
Model Definition table, and defined and refined a suitable
schema for the IF BOM Model Identification, Pattern De-
scription and the Events aspect found in the Model Defini-
tion, which was not supported by the OMT.

These schemas provide a key element in describing
how the composition of individual BOMs for defining a
simulation or simulation environment can be used to form
IF BOMs and Mega-BOMs and, in support of HLA, pro-
vide the basis for generating FOMs and SOMs from these
BOM compositions. Both these schemas are available at
<http://www.boms.info/Schemas>.

The result of defining and applying XML schemas iden-
tifies the essential meta-data, ontology, and model definition
to be captured, cataloged and carried forward within a BOM
in order to provide for shared understanding and community
reuse. These schemas are being incorporated within pro-
posed Simulation Interoperability Standards Organization
(SISO) standards and are intended to be registered within the
DoD XML Repository upon SISO consensus.
5 COMPOSABILITY THROUGH ECAP BOMS

The ECAP BOM can be used to prescribe the necessary
model behavior required of a conceptual entity to support
one or more patterns of interplay as illustrated in Figure 7.
It should be noted that federates and simulation spaces de-
rived from IF BOMs are not required to use ECAP BOMs.
If the capability to be modeled is already an intrinsic ele-
ment of the federate’s behavior, then the usage of an ECAP
BOM may not make sense. However, if a federate lacks a
specific behavior and that behavior model can be found
within an ECAP BOM implementation (EBI), then this be-
comes an enabler for a more complete simulation.

BOMs

Interface
BOM 1

Interface
BOM 2

Interface
BOM n

Federate Simulation
Engine
Plug-in

Run-time
Support

Sim /
System a Tool

Modeling

ECAP1 ECAP2

ECAP3

ECAP2 ECAP4

ECAP5

ECAP9 ECAP4

ECAPX

BOMs

Interface
BOM 1

Interface
BOM 2

Interface
BOM n

Federate Simulation
Engine
Plug-in

Run-time
Support

Sim /
System a Tool

Modeling

ECAP1 ECAP2

ECAP3

ECAP1 ECAP2

ECAP3

ECAP2 ECAP4

ECAP5

ECAP2 ECAP4

ECAP5

ECAP9 ECAP4

ECAPX

Figure 7: Application of Component Models by a
Federate

As illustrated in Figure 8 the template components that

define an ECAP BOM provide the following capabilities:

• Offers a common meta-data level summary identi-
fied as the Model Identification,

• Describes the states (actions) of a conceptual en-
tity to fulfill one or more patterns of interplay
within the Behavior Description, and

• Leverages other markups including VV&A, Digi-
tal Rights for protecting intellectual property, and,
the rendering markup for visual representation.

ECAP BOM Elements

Visual Model

V&V Markup
other

Model Identification (Key BOM Meta-data)

Type
Name

Version
Mod Date

Description
Use Limitation

Use History
Keywords

Security Class POCs
Rel Restriction References

Purpose Others
App Domain Glyph

Digital Rights

Required Optional

TBD

TBD

TBD

Behavior Description

States
(Action)

Transition

TBD
IF BOMs Supported

Event
BOM

ECAP BOM Elements

Visual Model

V&V Markup
other

Model Identification (Key BOM Meta-data)

Type
Name

Version
Mod Date

Description
Use Limitation

Use History
Keywords

Security Class POCs
Rel Restriction References

Purpose Others
App Domain Glyph

Digital Rights

Required Optional

TBD

TBD

TBD

Behavior Description

States
(Action)

Transition

TBD
IF BOMs Supported

Event
BOM

States
(Action)

Transition

TBD
IF BOMs Supported

Event
BOM

Figure 8: ECAP BOM Template Elements

The Model Identification used to provide what’s

needed for discovering likely candidate IF BOMs is also
used to identify ECAP BOMs. The Behavior Description
providescritical metadata necessary for ensuring proper in-
tegration and reapplication of ECAP BOM. Specifically,
the Behavior Description details the behavior for a concep-
tual entity described as a set of states associated to the events
of a pattern or another ECAP BOM.

Gustavson and Chase

5.1 Platform Specific (PS) ECAP BOM

Implementations (EBIs)

The current draft standard for ECAP BOMs is centered
upon Platform Independent Models (PIMs) providing a
language and platform independent mechanism for codify-
ing the behavior capability needed of a conceptual entity.
However, for ECAP BOMs to be effective, the draft stan-
dard supports and encourages the generation and usage of
ECAP BOM Implementations or EBIs.

Manifestations of EBIs might include a source code
module – such as a C++ class or Java class - or it might in-
clude a binary or byte-code assembly - such as a Windows
DLL, ActiveX, Unix DSO, .NET assembly, or a Java
Bean. There are benefits for building and using either type
of EBI. For instance, it’s possible for an EBI that is mani-
fested as a binary or byte-code assembly EBI to be fetched
and loaded dynamically during an exercise by a federate –
during execution run. No matter which type, an EBI ulti-
mately provides the necessary processing code to perform
the operation described by the ECAP BOM.

So far, all of these examples of EBIs are recognized as
platform specific implementations because of their lan-
guage or platform dependence. However, there is also the
potential to define an EBI that is platform dependent
through the application and use of the Simulation Refer-
ence Markup Language (SRML).

5.2 SRML-Based EBIs

Figure 6 previously illustrated the relationship of a pattern
with the usage of matching behavior components at run-
time. What is also being shown is that the execution of
Encapsulated BOM Implementations (EBI) can be sup-
ported by a simulation engine plug-in used by the federate.

For a moment consider how a Web Browser has pro-
vided a common interface mechanism for presenting
HTML to a user. Well, in a similar way a simulation en-
gine plug-In can provide a common execution interface
mechanism for processing behavior to a simulation. As
HTML is to a browser, the Simulation Reference Markup
language (SRML) can be to a simulation engine. SRML is
like HTML in that it provides for executable content using
the same kinds of mechanisms such as object models,
scripting, plug-ins, and the ability to dynamically
download and assemble content. The two languages differ
in that while HTML operates on electronic documents for
the purpose of display, SRML operates on electronic mod-
els for the purpose of modeling and simulation. SRML
provides a general-purpose schema for embedding simula-
tion behavior into arbitrary XML content so that the result-
ing content may be executed directly by an engine.

What’s important to note here is that SRML can be
used to provide a PIM construct for an ECAP BOM Im-
plementation. Specifically, the behavior associated to a
design pattern represented in XML can be loaded and exe-
cuted with an SRML engine, given that the implicit and
explicit behaviors of the pattern are also included. BOMs
include an XML schema component for describing design
patterns, as described earlier. That schema component de-
fines elements that allow the representation of explicit se-
quences of activities among objects at various levels of
generalization. With SRML, a particular ECAP BOM Im-
plementation can be loaded directly into the simulator
matching with a pattern behavior element (i.e. class/actor)
defined by the Interface BOM.

5.3 Generating Platform Specific EBIs

As a potential capability, the creation of a platform specific
ECAP BOM could be achieved by taking a platform inde-
pendent BOM, such as one defined using SRML, and passing
it through an XML Transformation layer (via XSLT), which
takes the specified XML meta-data into the specific language
of choice (or MDA through their meta object facility). The
resulting code could then be compiled into a platform spe-
cific ECAP BOM that is platform / language specific.

Such PSMs could be contained in the form of a Dy-
namic Link Library (DLL), Dynamic Shared Object
(DSO), Library (LIB) file, ActiveX component, Java Bean
or Java byte code, or .NET assemblies. An engineer needs
only to implement these Platform Specific EBI within their
software; the functionality contained in the original Plat-
form Independent EBI is optimized for a specific platform
and may very well contain binary data allowing for more
responsive, non-interpreted components and libraries. This
capability provides a key mechanism necessary for sup-
porting Dynamic Composability, which is described later.

6 IMPLEMENTATION PATTERN PROCESS

From a developer’s standpoint, the steps associated to cre-
ating IF BOMs and supporting ECAP BOMs include:

1. Identifying Patterns based on understanding and

analysis of the requirements.
2. Representing the Patterns as IF BOMs
3. Identifying the necessary classes to support an

IF BOM, which is captured in the Model Defini-
tion element

4. If candidate federates or ECAP BOMs do not ex-
ist that support the identified classes, codification
of the classes as behavior component models (or
ECAP BOMs) os [referred

5. Create necessary ECAP BOM Implementations as
needed for specific federate platform/language.

In addition to these steps, it’s encouraged that BOM

Developers and Users adhere to the Federation Develop-
ment and Execution Process (FEDEP), which is an IEEE
Standard providing a seven step process for creating, main-
taining a federation.

Gustavson and Chase

7 AUTO BOM EXAMPLE

Now that we’ve explored the BOM architecture and the
application of XML for supporting IF BOMs and ECAP
BOMs, let us look at an example of a race car simulation
built using BOMs and SRML.

The conceptual entities for this example consist of a
race manager, a competitor, a track, and the environment.
The roles of each participant can be laid out in a UML
sequence diagram as shown in Figure 9.

Figure 9: UML Sequence Diagram of Race Pattern

After the roles and sequence of our race pattern are

defined, an IF BOM can be constructed which defines the
classes, attributes, and events for the race sequence. A
portion of the parsed XML representing the race IF BOM
is shown in Figure 10 using a tool called BOMworks™.

Figure 10: XML Syntax of Race BOM

Next we can begin to create ECAP BOMs to prescribe

the behavior needed for modeling the conceptual entities.
The various ECAP BOMs created for this example include
the following:

• A race manager,
• several types of tracks,
• various types of competitors (including cars and

horses), and
• environmental models

These conceptual entities that are intended to be

modeled for the race competition can be represented as
classes as illustrated in Figure 11.

Figure 11: UML Class Diagram of Conceptual Entities

Note: One of the benefits of separating the interface

from the encapsulated behavior (the implementation) is
that it allows a variety of behavior models to be created
and used to support a common conceptual entity within the
pattern of interplay. Incidentally, this capability allows for
multi-resolution modeling, where each federate can have
multiple models to support the appropriate behavior and
these models could be of varying resolution.

Once we’ve captured the behavior description for each
ECAP BOM, which includes the conceptual entity state
activities that are impacted by the IF BOM events, we can
begin to create the necessary ECAP BOM Implementations
(EBIs) necessary for our federate to model the conceptual
entities. For the purposes of our demonstration represented
in this paper, the ECAP BOM Implementations produced
are .NET Assemblies developed under the Microsoft
Visual Studio environment using C#.

A screen capture of a federate interoperating with
other federates that adhere to our Race IF BOM is shown
in Figure 12. This federate is capable of dynamically
loading the .NET assembly ECAP BOM Implementations
(EBI) during execution.

Figure 12: Race Federate Employing .NET EBIs

Gustavson and Chase

Another option for our ECAP BOM Implementations
(EBIs) is to use the Simulation Reference Markup
Language (SRML). Figure 13 below illustrates the
execution of SRML-based EBIs executing within a web
browser. In this example, a browser plug-in developed by
Boeing is used to execute the SRML EBIs for a race
manager, track and two competitors.

Figure 13: Race Simulation Using SRML in a
Browser

8 POTENTIAL OPPORTUNITIES

Let us now explore the potential opportunities BOMs and
XML-based standards can provide for supporting compos-
ability, web-based simulation and training.

8.1 Enriching Web Services

One of the biggest areas of influence is the reuse aspect
and cross platform accessibility that web services provide
for both the development network and the federation
network. For instance web services can be used to
establish a conduit for automation and collaboration and
possibly used, earlier on, to support conceptual modeling.
The services that are envisioned include web enabled
repositories containing and/or providing the following:

• database elements and enumeration information,
• IF BOMs as reusable patterns that can be fetched,
• ECAP BOMs as reusable component models that

can be dynamically loaded by federates during an
execution,

• 3D models that can be utilized for visually repre-
senting entities, and

• the discovery and deployment of self attaching
process agents used to support the adaptability of
systems based on “different” interfaces (repre-
sented using IF BOMs and Mega BOMs).

These agents would enable communication and interop-
erability among disparate systems and could provide feder-
ate support during a federation execution. Web services can
also be used to support pattern aggregation (model composi-
tion) and dynamic entity aggregation.

8.2 Enabling Adaptability

It has already been recognized that mechanisms are needed
to enable federates to participate in unique federations
without the manual effort required in re-compiling and re-
linking each and every unique Federation, which is repre-
sented by a FOM. One of the unique opportunities the
BOM architecture provides is the potential ability to facili-
tate this type of adaptability. For instance, Mega-BOMs
produced by BOM compositions can be used to represent
the standard data exchange interface for systems and simu-
lations. The opportunity is that this Mega-BOM, or player
interface, can be leveraged and used for each federation by
mapping to common elements. Adaptability can be ac-
complished by deploying and applying the appropriate
XML-based transformations (XSLT), which reflects map-
pings between common BOMs within a Mega-BOM, by
the receiving federate. This would minimize the effort
typically spent in re-tooling federates associated to com-
plying with a specific FOM. Unlike the current HLA ap-
proach in which all federates must comply with a common
FOM, federates can continue to use their specific Mega-
BOM interface to adapt and play within environments
comprised of other simulations and systems, which are rep-
resented by their own unique Mega-BOM interface.

8.3 Supporting Dynamic Composability

The distribution and dynamic loading of component pay-
loads by players during run-time execution is a potential
need. Repositories can serve as a real-time distribution ve-
hicle of ECAP BOM Implementations (EBIs), which can be
dynamically loaded by BOM-enabled systems, as illustrated
in Figure 14.

Federate
A

 (1) User Loads New
ECAP BOM
 (2) System Broadcasts
“New BOM is Active”
(and here’s where it is -
“web service”)

 (3) Other Systems
Search, Fetch and
Load ECAP BOM
(using XML/SOAP)

Web Service

333

21

Federate
B

Federate
C

Federate
D

Simulation
Environment

Repository

Federate
A

 (1) User Loads New
ECAP BOM
 (2) System Broadcasts
“New BOM is Active”
(and here’s where it is -
“web service”)

 (3) Other Systems
Search, Fetch and
Load ECAP BOM
(using XML/SOAP)

Web Service

333

21

Federate
B

Federate
C

Federate
D

Simulation
Environment

Repository

Figure 14: ECAP BOM Dynamic Composability

Gustavson and Chase

Through the use of web services, next generation fed-
erates can request and retrieve the necessary EBIs from a
repository, which could then be dynamically loaded during
execution by the federate. If execution time would allow,
one system that loads a platform specific EBI during an
execution could broadcast to other members of a simula-
tion that a new ECAP BOM is being used.

The systems associated to the other members could
then take the information, and, if the ECAP BOM capabil-
ity is not already within their local environment, fetch the
same platform specific EBI (in the platform and language)
needed from the BOM repository, via XML/SOAP, and
dynamically load it.

8.4 Automated Repository

As more and more platform independent ECAP BOMs,
commonly referred as PIMs are developed and platform
specific ECAP BOMs, which are identifies as PSMs, are
generated to support specific languages and platforms, the
need for storage increases. Repositories need to be opti-
mized for speed and scalability so that they can be accessed
at runtime to support dynamic composabilty. Consider stor-
ing only PIMs, and have the repository produce PSMs as
needed. A more efficient method of storage would be to
store platform independent ECAP BOMs within the BOM
repository. These platform-independent ECAP BOMs could
be used to create multiple platform-specific ECAP BOMs
for various languages and platforms as needed.

XML

XSLT

C++ Java Delphi Ada

Conversion
Code

Compile/Link

ECAP BOMs
Platform Independent Model (PIM)

ECAP BOM Implementations (EBIs)
Platform Specific Model (PSM)DLL DSO LIB

XML

XSLT

C++ Java Delphi Ada

Conversion
Code

Compile/Link

ECAP BOMs
Platform Independent Model (PIM)

ECAP BOM Implementations (EBIs)
Platform Specific Model (PSM)DLL DSO LIB

Figure 15: Web-Based ECAP BOM Generation

This capability can be accomplished by embedding a

PIM to PSM specific XML Transformation capability as
part of the repository. As illustrated in Figure 15, when an
on-line federate requests an ECAP BOM Implementation
(EBI) from the BOM repository, the web service associ-
ated to the repository can locate the equivalent platform
independent ECAP BOM (if the specified EBI is not avail-
able) and invoke the PIM to PSM transformation. This
adds to the Dynamic Composability capability described
earlier since the EBI is composed on the fly for a specific
need. Once provided to the federate, the EBI can be dy-
namically loaded by the system. A benefit with this ap-
proach is that all subscribers would be using the same
compiler and transformation tool provided by the server
side application cohabitated with the repository, ensuring
common builds for all users. In other words, the produc-
tion of models is all based on the same validated models.

9 SUMMARY

BOMs are a key enabler for supporting composability in
the following specific ways:

• encourages the development and reuse of certified
components

• facilitates rapid development of federations and
federates in a cost-effective manner

• contributes to conceptual modeling aiding in the
identification of shortfalls, gaps and deficiencies

• provides opportunities for greater joint collabora-
tion and feedback, which can support a wide-
breadth of initiatives including an M&S enabled
Global Information Grid (GIG)

These capabilities are possible because BOMs marry

the concept of design patterns with HLA and offers the ex-
tensibility and flexibility provided by XML. While HLA is
a key technology for establishing interoperability, identify-
ing and codifying Patterns helps us to make sure we have
our conceptual models right thereby improving our aware-
ness and analysis needed for supporting the requirements of
the warfighter and the systems which we build and use in
protecting our interests here and abroad. Furthermore, an
XML-based standard allows composabilty to be achieved for
any number of platforms and for any number of purposes.

10 ADDITIONAL INFORMATION

Additional information and downloadable material on
BOMS can be found on the Base Object Model Specifica-
tion Information website at <www.boms.info>.

ACKNOWLEDGMENTS

This document was prepared based on the work produced
by the SISO BOM Product Development Group (PDG) and
the results and findings of SimVentions in support of the
Defense Modeling and Simulation Office (DMSO) in the
area of composability, and for the U.S. Army RDECOM in
the areas of aggregation and multi-resolution modeling.

REFERENCES

BOM Product Development Group. July 2004. Base Object
Model (BOM) Template Specification Volume I -
Interface BOM. SISO-STD-003.1-TRIAL-USE-V0.9.
Simulation Interoperability Standards Organization
(SISO). Available online via <http://www.
boms.info> [accessed August 30, 2004].

Gustavson and Chase

Reichenthal, S. 18 December 2002. SRML - Simulation

Reference Markup Language, W3C Note, Available
online via <http://www.w3.org/TR/SRML>
[accessed August 30, 2004].

Gustavson, P., K. Morse, R. Lutz, and S. Reichenthal.
April 2004. Applying Design Patterns for Enabling
Simulation Interoperability, In Proceedings of the
Spring 2004 Simulation Interoperability Workshop
(SIW). 04S-SIW-111.

Zimmerman, P. DMSO Perspective (Vision). September
2002. Briefed at the XMSF Workshop at George
Mason University.

FEDEP Product Development Group. April 2003. High
Level Architecture (HLA) Federation Development
and Execution Process (FEDEP). Institute of Electrical
and Electronics Engineers (IEEE). IEEE 1516.3.

AUTHOR BIOGRAPHIES

PAUL GUSTAVSON is Chief Scientist and co-founder of
SimVentions, Inc. He has over 15 years experience sup-
porting a wide variety of modeling and simulation, system
engineering, and web technology efforts within the DoD and
software development communities. Mr. Gustavson has
been a long-time advocate and pioneer of the Base Object
Model (BOM) concept for enabling simulation composabil-
ity, interoperability and reuse. He has also co-authored and
edited several software development books and articles re-
lated to C++, UML and mobile computing. His e-mail ad-
dress is <pgustavson@simventions.com>.

TRAM CHASE is a software engineer at SimVentions,
Inc. (http://www.simventions.com) and is focused on the
development and integration of technology for creating in-
novative and engaging experiences and solutions. In sup-
port of BOMs, Tram has been the lead developer of
BOMworks™, a tool used to build, edit and compose
BOMs. Tram is a graduate of Virginia Tech, with a B.S. in
Mathematics (1994), and has supported a wide variety of
modeling and simulation and system engineering efforts
within the DoD. Tram lives in Virginia with his wife. His
e-mail address is <tchase@simventions.com>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1467
	02: 1468
	03: 1469
	04: 1470
	05: 1471
	06: 1472
	07: 1473
	08: 1474
	09: 1475

