
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

XML-BASED SUPPLY CHAIN SIMULATION MODELING

Dean C. Chatfield

Business Information Technology Dept. (0235)
Pamplin College of Business Administration

Virginia Tech
Blacksburg, VA 24061, U.S.A.

 Terry P. Harrison
Jack C. Hayya

Supply Chain and Information Systems Dept.

Smeal College of Business Administration
Penn State University

University Park, PA 16802, U.S.A.

ABSTRACT

We describe a different approach to using XML to support
the simulation modeling of supply chains. Instead of using
XML to specify the simulation constructs, as most previ-
ous approaches do, we utilize XML to describe the supply
chain itself. The Supply Chain Modeling Language
(SCML) is a general, reusable, platform and methodology
independent standard for describing a supply chain’s struc-
ture and logic. SCML is usable by analysts using many
methodologies, including simulation. We describe a sam-
ple simulation system (SISCO) that uses SCML files as in-
put. This system uses an algorithm to “map” the SCML file
contents to simulation classes contained in a supply chain
simulation class library, resulting in an object-oriented
simulation model of the supply chain.

1 INTRODUCTION

Markup languages, especially XML, have received signifi-
cant attention in recent years. Though much focus has
been placed on the use of markup languages for authoring
purposes, they are also applicable as methods of informa-
tion structuring, delivery, and transfer. XML has been
successfully used in a number of fields (chemistry, e-
commerce, etc.) for defining powerful, flexible data stan-
dards. We believe the benefits of an open, standard data
format for supply chain modeling can make supply chain
analysis, especially via simulation modeling, more robust,
yet more accessible.

2 MARKUP LANGUAGES

A markup language describes the structure and/or appear-
ance of information contained in a document by the addi-
tion of descriptive symbols (markup characters, or “tags”)
within the document itself and by imposing a certain struc-
ture which the document must follow. (Tittel et al., 1998).

A markup language can be one of two basic types, a
meta-language or a task-specific markup language. A

meta-language is a markup language that is used for creat-
ing task-specific languages. Meta-languages provide a
means for defining the markup symbols, such as elements
and attributes, as well as the overall structure of a docu-
ment. Essentially, a meta-language allow one to create a
task-specific markup language by defining all the “pieces”
that may exist in a document as well as the “rules” for put-
ting those pieces together to form a valid document. Ex-
amples of meta-languages are the Standard Generalized
Markup Language (SGML) and XML.

A task-specific markup language is one that is used for
describing a certain type of document (for example, a hy-
pertext document) or information about a certain subject
(for example a supply chain). Examples are the HyperText
Markup Language (HTML), which is a markup language
that describes how a hypertext document should be dis-
played by a web browser, the Chemical Markup Language
(CML), which provides a standard means for describing
the components, structure, and characteristics of a chemi-
cal compound, and the Mathematical Markup Language
(MathML) used for equation representation. HTML is con-
sidered an application of SGML while CML and MathML
are XML-based.

For example, HTML is a task-specific language de-
signed to describe how a hypertext document should be ap-
pear. The HTML specification is composed of a specific set
of elements (sometimes referred to as “tags”), attributes, and
other constructs that define whether part of a document
should appear bold, centered, displayed as a hyperlink, etc.
The HTML specification also defines a basic structure that
must be employed when creating an HTML document.
Therefore, the HTML specification defines the pieces than
may be used and the rules governing how these pieces may
be used when constructing an HTML document. The
HTML specification was defined by the World Wide Web
Consortium using the SGML meta-language to create the
HTML Document Type Definition (DTD), which describes
the pieces and the rules in a standardized format.

Chatfield, Harrison, and Hayya

2.1 SGML and XML

SGML is the precursor to XML and is derived from GML,
which was developed in the 1960s as part of a legal infor-
mation processing project by IBM (VanHerwijnen, 1994).
SGML was standardized in 1986 by the International Stan-
dards Organization as a universal means for describing a
document’s structure and appearance in separate, logical
statements. This desire to separate the content (data),
structure, and appearance of a document into separate units
was championed initially by the publishing industry; thus,
markup languages are still closely associated with publish-
ing (VanHerwijnen, 1994).

XML can be likened to SGML “light” because XML
takes much of the important functionality of SGML, such
as document type definitions (DTDs), and implements it in
a streamlined package (Tittel et al., 1998). As a result,
XML parsers, processors, and programming tools are being
developed and more widely implemented. Examples of
this include Microsoft Internet Explorer and Netscape
Navigator being XML capable, and the recent flow of Java
and ActiveX XML parsers made available from Microsoft
and other vendors. An active XML coordination group ex-
ists as part of the World Wide Web Consortium (W3C) to
ensure XML continuity and to foster further development
of XML and complementary technologies.

2.2 Document Type Definitions

Much of XML’s power comes from the ability to define a
Document Type Definition (DTD), which is the foundation
of a task-specific language. A DTD defines the “pieces”
and “rules” that make up a class of documents, essentially
creating a custom type of document for a particular use.
The DTD, written with a special DTD-specific syntax, is
the “hub” of the XML system. The basic parts of a DTD
are the definition of elements (classes such as “node” or
“paragraph” or “atom”), definition of attributes (descrip-
tive data, generally about elements, such as a node’s
name), and definition of entities (nonstandard or external
symbols, files, and images). This definition of elements,
attributes, entities, etc. is basically a specification of the
“pieces” that may be used. The DTD defines which of the
above can occur, with what names, in what order, how of-
ten, and so on (i.e. the “rules”).

2.3 Parsing XML-Based Documents

To utilize XML-based documents, one must have software
that understands and utilizes the format, much like a word
processing program must understand and utilize the RTF
(Rich Text Format) file format if one is to create, read, or
edit a document stored in that format (VanHerwijnen,
1994). A parser is the “engine” that performs reading,
writing, processing, and validation (DTD agreement check-
ing) tasks for XML documents and enables developers to
incorporate XML capabilities into their software.

There are two basic types of parsers, categorized by
how they process a document. The first type are called SAX
(Simple API for XML) parsers. These are event-based pars-
ers, meaning that a document is read serially and when cer-
tain markup characters are found (such as a “start document”
tag, a “start element” tag, or an “end element” tag) an event
is fired. The application developer writes the code that will
be executed when the various events are fired to customize
the parser. The parser reads the document a single time
from start to finish, with the resulting execution of event
procedures providing the desired results (such as document
display, processing, or other related tasks).

The second type of parser is called a DOM (Document
Object Model) parser. A DOM parser reads the XML
document and creates a temporary in-memory model of the
document’s element hierarchy. The in-memory model con-
tains a DOM “node” to represent each element in the XML
document. One can then navigate through the tree structure
of the in-memory model to locate, extract, or edit informa-
tion. The structure of the in-memory model itself can be al-
tered (addition or removal branches, for example) as well.
The model resides in memory indefinitely (until removed)
and changes to the in-memory model can be saved, resulting
in changes to the XML document used to create it.

2.4 Previous Uses of XML in Simulation Modeling

XML has a number of uses in simulation modeling and
simulation software. The most basic use is to create stan-
dardized data formats for basic simulation input and out-
put files. Open, standardized representations for data
such as user-defined and/or empirical distributions, time-
series output, basic statistical measures of performance,
etc. are valuable for cross-platform computing, analysis,
and results sharing.

A more proprietary use of XML would be as a basis
for a simulation tool’s model storage file format. This
would be similar to the way Microsoft has migrated to
XML-based files for storing Microsoft Office documents
(as of Office 2003). The user is not aware of the difference
from previous file formats and does not change the way
they enter information. The use of an XML-based file
format “internally” within a simulation software package
would provide the benefit of standardized data access,
making it easier to add features and plug-ins, enable cross-
product integration, and allow 3rd party add-ons (provided
the DTD is available to developers).

XML has been utilized for communication between a
simulation model and other software or simulation models.
Qiao, Riddick, and McLean (2003) and Lu, Qiao, and
McLean (2003) describe the use of an NIST (National In-
stitute for Standards and Technology) developed XML-
based markup language for standardized exchange of

Chatfield, Harrison, and Hayya

manufacturing information between applications, including
simulation applications. Additionally, Fishwick (2003) de-
scribes two XML-derived languages (MXL and DXL) de-
signed to support simulation multi-modeling of all types.

A grander vision of the use of XML in simulation is
take by those attempting to create a universal simulation
language and syntax via an XML-defined markup lan-
guage. Kilgore (2001) and Kilgore (2002) discuss the open
source SML (Simulation Modeling Language) initiative to
create a platform-independent, open source simulation lan-
guage. Wiedemann (2002) extends this idea by proposing
an XML-based, language-independent standard for repre-
senting SML statements. Code converters are used to gen-
erate language specific (ex. Java, C++) statements from the
generic XML-based version when the model is to be exe-
cuted. An alternate XML-based simulation project is de-
scribed by Reichenthal (2002). This project involved the
creation of the Simulation Reference Markup Language
(SRML) to allow standardized descriptions of simulation
models, and the Simulation Reference Simulator (SR
Simulator) to process and execute SRML models.

We are not aware of any applications of XML, other
than ours, to specifically support supply chain simulation
modeling.

3 XML-BASED SUPPLY CHAIN SIMULATION

We approach the XML-aided simulation of supply chains
in a different manner than those projects and initiatives de-
scribed in the above section. We use an XML-based
markup language, the Supply Chain Modeling Language
(SCML) that is specific to supply chain modeling, but not
to the simulation methodology. SCML is a general markup
language for storing the basic structural and logical infor-
mation needed to quantitatively model a supply chain.
This format is designed to be a universal supply chain de-
scription language that analysts can use for supply chain
decision support tools utilizing various methodologies.

We take the description in an SCML file and generate
an equivalent object-oriented simulation model by map-
ping the contents of the SCML file to a class library of
fundamental supply chain constructs. The appropriate
simulation objects (class instantiations) are created and the
simulation is executed. Thus, our approach requires:

• A way to create an SCML document
• A library of fundamental supply chain simulation

constructs (classes) that can operate in an object-
oriented simulation environment.

• A mapping routine to generate a set of objects
from the library that correspond to the SCML file
contents.

By using this approach the user is primarily concerned

with creating an accurate description of the supply chain, not
simulation modeling issues. The model generating software
that converts the SCML supply chain description to the ob-
ject-oriented simulation model handles the modeling issues.
Also, by creating a domain-specific simulator, this approach
can offer modeling depth and robustness, while still allow-
ing extensibility, depending on the platform used to create
the supply chain class library and associated conversion
(“mapping”) software. The fact that the basic supply chain
description is platform and methodology independent means
that modeling tools, such as a simulation tool, can be built in
a modular fashion, essentially as a set of supply chain deci-
sion support methodology plug-ins that center around the
SCML format as a “hub.”

4 SCML - A GENERALIZED SUPPLY CHAIN
MODEL DESCRIPTION LANGUAGE

The Supply Chain Modeling Language (SCML) consists of
an XML Document Type Definition that provides a flexi-
ble, object-oriented model description language for storage
and use of supply-chain information. The language is
composed of a set of basic elements corresponding to
broad groups of supply-chain components. The SCML
concept has undergone several refinements and extensions
in the five years since its initial presentation (Chatfield,
Harrison, and Hayya, 1999).

4.1 Rationale for Using XML

The XML language provides a flexible tool for develop-
ment of special purpose description languages. XML’s in-
herent hierarchy provides for straightforward implementa-
tion of the elements and attributes that form the basis of
SCML. XML implements those object-oriented capabili-
ties most important to the design of a language like SCML,
namely the object and attribute paradigm for data represen-
tation. Although XML is not completely object-oriented,
its DTD syntax does not include inheritance as a core ca-
pability, the limitations will not interfere with development
of SCML and can be circumvented with judicious DTD
design if necessary (by the creative use of entities). Due
to its object-oriented characteristics, increasing acceptance,
inherent support for custom data formatting (through
DTDs), and the successful implementations in other fields,
XML is the logical choice as the meta-language “building
block” upon which SCML is formed.

4.2 Basic Structure

The first step in designing the SCML DTD involved de-
termining the overall strategy for representing a supply-
chain in a hierarchical, object-oriented manner. This set of
the most primitive supply-chain information classes must
be complex enough so as to not place undue restrictions on
what supply-chain features can be described, but must also

Chatfield, Harrison, and Hayya

be simple enough to provide an elegant and scalable repre-
sentation of supply-chains. In addition, since an object-
oriented style of representation is desired, the basic catego-
ries should also be determined so that each can be repre-
sented as a relatively self-contained unit that interacts with
other self-contained units of the same or other types. The
elements in an SCML file should be easy to map to a set of
equivalent objects, attributes, and methods in an object-
oriented modeling environment. As a result, five basic
elements were chosen:

• Node
• Arc
• Component
• Action
• Policy.

This set provides a simple, logical framework for describing
a supply-chain that is easily scalable and allows a very de-
tailed supply-chain description to be generated. Each of
these elements can be roughly interpreted as a “class” in the
object-oriented parlance, and individual occurrences of these
elements can be interpreted as objects (instances of a class).

The SCML basic elements each utilize a set of attrib-
utes and sub-elements to describe a specific instance of the
basic element. For example, by setting the attributes and
sub-elements appropriately, we can designate a particular
instance of the node class as a production facility and an-
other instance as a different type of production facility or
even as a warehouse. Thus, given proper element and at-
tribute assignments, any supply-chain can be described.

4.3 The SCML Specification

As necessitated by XML syntax restrictions, any supply-
chain described must have the information formatted into a
tree-like structure, with a single root node. The root ele-
ment of any SCML file is designated by the name supply-
Chain. The supplyChain element contains five container
elements, each holding zero or more elements of that cate-
gory (except “nodes”, which contains one or more node
elements). The following is the DTD section (content
model) describing the root and container elements.

<!ELEMENT supplyChain (nodes, arcs, compo-
nents, actions, policies)>
<!ELEMENT nodes (node+)>
<!ELEMENT arcs (arc*)>
<!ELEMENT components (component*)>
<!ELEMENT actions (action*)>
<!ELEMENT policies (policy*)>

Each of the basic elements has a content model that

specifies the sub-elements and attributes that further define
the element. As an example, the DTD markup below is used
to define an “arc” element’s sub-elements and attributes.
<!ELEMENT arc (arcContainer, arcCosts, arc-
TravelTime, arcPolicies, initialLevels)>

<!ATTLIST arc
name ID #REQUIRED
sourceNode IDREF #REQUIRED
destinationNode IDREF #REQUIRED
mode (land | rail | sea | air | telecomm |
other) "land"
distance CDATA #IMPLIED
unitOfDistance CDATA "miles"
capacity CDATA #REQUIRED
unitOfCapacity CDATA "unit"
containersOnHand CDATA #IMPLIED>

The sub-elements will have content models of their

own, possibly specifying further sub-elements and attrib-
utes to hold the information. The SCML specification
stores much of the supply chain information in XML at-
tributes because content restriction and information extrac-
tion are much simpler when using attributes.

4.4 SCML Document Creation

For creating and editing SCML files, a custom editor that
enforces the DTD restrictions is the best choice since it is
easiest for the end user. Such an editor, the Visual Supply
Chain Editor (VSCE) was created just for this purpose.
The VSCE is a Windows application that allows a user to
graphically depict the supply-chain structure (nodes and
arcs) and then access specialized forms that step the user
through the process of further describing the various parts
of a supply-chain. The result is a graphic application that
allows the user with little or no knowledge of the SCML
DTD to create an SCML file describing a supply-chain.

4.5 SCML Document Processing

Creating software that can utilize and understand the SCML
file format necessitates the inclusion of SCML file process-
ing (e.g.. extraction of information) capabilities. This re-
quires the SCML DTD, which provides the specifications
necessary to understand the SCML file structure, and an
XML parser to extract the information from the file, since
SCML is based on XML. In addition to the DTD and the
parser, a software developer will generally create a set of
data structures to hold the information, for example a set of
C++ or Java classes that mimic SCML’s hierarchy of ele-
ments and attributes. To simplify the use of SCML files we
have created a set of parsing routines and data structures in
several languages. We have created a set of Java classes, a
set of .NET classes, and a set of Visual Basic 6.0 user-
defined data types that correspond the SCML DTD’s hierar-
chy. SCML parsing routines have been created for the Java,
Visual Basic 6.0, and Visual Basic .NET languages. These
routines are designed to transfer the SCML file contents to a
corresponding set of data structures to enable easy access to
and manipulation of the information by software.

Chatfield, Harrison, and Hayya

5 GENERATING A SIMULATION

MODEL FROM AN SCML FILE

Section 4 discussed the SCML format, including document
creation and the basics of document processing. This
leaves two remaining pieces necessary for our supply chain
simulator to operate.

First, a library of fundamental supply chain simulation
constructs (classes) that can operate in an object-oriented
simulation environment is needed. Since SCML is hierar-
chical in nature and represents a supply chain in a roughly
object-oriented manner, utilizing an object-oriented
simulation environment is a logical choice. The simulation
environment may be a commercial product, open-source,
academic, or custom designed if so desired. The environ-
ment should allow interaction with external data sources
and/or code routines to allow the mapping routine to gen-
erate the appropriate model. The library should include
simulation classes for nodes, arcs, orders, and other pieces
of the supply chain although the actual set of classes will
depend on the modeling approach chosen.

Second, a mapping routine to generate a set of simula-
tion objects, from the class library, that corresponds to the
SCML file contents is needed. This mapping routine will
have an SCML parsing routine at its core. However, the
mapping routine must go further than just reading the SCML
file contents and placing the information in a data structure
that mimics the file. The mapping routine must instantiate
the correct simulation classes and then, depending on the
simulation environment being utilized, coordinate the ini-
tialization process and other pre-execution activities.

6 SISCO - A SAMPLE IMPLEMENTATION

We have developed an implementation of the components
discussed above, which we have named the Simulator for
Integrated Supply Chain Operations (SISCO). In the fol-
lowing sections we discuss the details of this sample im-
plementation (Chatfield, Harrison, and Hayya, 2001).

The centerpiece of the SISCO system is the SISCO
Engine. This module translates the supply chain informa-
tion provided by the user into an equivalent Silk™-based
supply chain simulation model. The SISCO Engine is
comprised of

• The SISCO Library,
• The SISCO Automated Model Mapper (SAMM),
• Simulation Management Routines.

6.1 Simulation Environment

For the development of SISCO we chose to utilize the
Silk™ simulation environment. Silk™ is a Java-based,
multi-threaded, discrete-event simulation framework created
by ThreadTec Inc. Silk™ consists of a set of Java classes
that provide low-level, core simulation constructs from
which users create simulation models. Examples of these
constructs include entities, resources, queues, statistical
tracking variables, the system clock, random number genera-
tors, and other fundamental pieces of discrete event simula-
tion. Users build a Silk™ simulation model by developing a
Java program that utilizes the Silk™ simulation classes,
which offers flexibility because the users have access to all
the capabilities of Java, a general-purpose programming lan-
guage, while creating a simulation model. Users can extend
the Silk™ classes, as well as include any custom logic de-
sired by creating additional Java routines. We felt the flexi-
bility of Silk™ constructs coupled with power of having ac-
cess to the entire Java programming language made Silk™
the best choice for development of SISCO.

6.2 Modeling Approach

Our modeling approach creates autonomous units, or enti-
ties, representing each node or arc within the supply chain.
These entities interact with each other, performing the ba-
sic actions an order undergoes during its life, in processing
orders from inception to disposal.

6.2.1 Life Cycle of an Order

We approach the modeling of a supply chain from the per-
spective of an order’s life cycle, from inception through
delivery. The basic life-cycle of an order, including where
the actions occur, is as follows:

• Order Creation (Origin Node)
• Order Placement (Origin Node)
• Order Transport (Information Arc)
• Order Processing (Target Node)
• Order Shipping (Target Node)
• Order Transport (Shipment Arc)
• Order Receiving (Origin Node).

6.2.2 Modeling Nodes

The most basic pieces of a supply chain are the nodes and
arcs that define the topology of the supply chain. Nodes
can be of six types: suppliers, production points, ware-
houses, distributors, retailers, or customers. A node in a
supply chain performs all of the basic actions in the life
cycle except order transport.

Order creation involves the creation and initialization
of an order. Order placement is the process that makes the
order known to the supply chain, and is the process of pre-
paring an order for transport to its target, the node that will
fulfill it. Order processing is the action that attempts to
meet the needs or demands of the order. Orders arrive at a
node and attempts to fill those orders are made. Order
shipping is the process of preparing the fulfilled order for

Chatfield, Harrison, and Hayya

transport to its origination node. Order receiving is the
process of accepting an order that has been filled. Orders
received are orders that were placed at some point in the
past and have traversed their life cycle, being transported,
filled, and transported again to return to their origin.

6.2.3 Modeling Arcs

Arcs can be of two fundamental types: information (order)
arcs, or delivery (product) arcs. The arcs in a supply chain
perform one action in the life cycle of an order, order
transport, though it may be performed multiple times dur-
ing the life of a single order. An arc represents the move-
ment of an order (information or goods), in a single direc-
tion, between two nodes.

6.2.4 Modeling Other Supply Chain Processes

We also include other operations besides those, described
above, that define the life cycle of an order. For example, in-
ventory management, including both materials and finished
goods, is one such action. We include such actions by mak-
ing them processes owned by any node that stocks items.

6.2.5 Owner-Manager-Actor Structure

The operational classes follow a fundamental structure that
we refer to as “owner-manager-actor.” This approach com-
putationally separates the management, monitoring, and
task-oriented operations of the supply chain by creating
separate objects to perform each. For example, a node has
a number of tasks that occur at that location in parallel,
such as order placement, order processing, and inventory
management. If each of these processes were implemented
as procedures within the node object, they would preempt
each other -- inventory management tasks would be per-
formed, while order processing tasks that should be per-
formed at the same time wait. The “owner-manager-actor”
structure addresses this problem by creating an object for
each task. Each object runs in a separate thread of execu-
tion, which allows each to perform its procedures simulta-
neously, without preempting each other.

The “owner” is the object representing the place in the
supply chain where tasks are occurring, such as a node.
“Manager” objects generally implement tasks, usually pol-
icy-related, that the owner must continuously perform. An
example of a manager would be an object that handles or-
der processing by constantly checking a queue for orders,
or one that handles inventory management by checking the
inventory level of an item and comparing it to the policy
parameters. When a manager determines that an action
needs to be performed, such as production to fulfill an or-
der or placement of an inventory replenishment order, an
“actor” object is created to perform the action. In most
cases, actors are temporary objects that are disposed off
once the action has been completed. The “owner-manager-
actor” structure, coupled with the multi-threading capabili-
ties of Silk™, allows us to create simulation models that
operate as in reality, with processing occurring independ-
ently and simultaneously.

6.3 SISCO Supply Chain Library

The implementation of the modeling approach described in
the above section is based around a specialized set of Java
classes. By utilizing the Silk™ primitive classes as a basis,
we develop a library of specialized, Silk™-compatible
Java classes, the SISCO Library, that represent the various
pieces of a supply chain. The SISCO Automated Model
Mapper then uses the various pieces of this library to create
a simulation model from an SCML file that has the same
structure and characteristics as the supply chain described
(Chatfield 2001). The SISCO Library consists of two
parts, the x-classes and the operational classes.

6.3.1 “X-Classes”

The first part of the supply chain library is a set of ap-
proximately 50 Java classes, known collectively as the “x-
classes” (“x” for XML). The x-classes are data-only
classes that provide a means of representing the supply
chain data contained in an SCML file as a set of Java
classes with the same hierarchical structure. This is needed
because the information must be in a Java-accessible for-
mat before we can make use of it for model development.
This set of classes mimics the structure of the SCML file
format with each of the elements defined in the SCML
specification having an equivalent x-class, except the root
element (supplyChain). It allows a straightforward trans-
fer of information from SCML (XML) files to Java com-
patible data structures. The top-level x-classes are xNode,
xArc, xComponent, xAction, and xPolicy.

6.3.2 Operational Classes

Whereas the x-classes are data storage classes, the opera-
tional classes represent object types that will perform op-
erations and interact with each other in a manner that simu-
lates the operation of a supply chain. For any object to
function properly within the Silk™ simulation framework,
the object must be of a type (class) that is derived from the
Silk™ Entity class. The Entity class also provides a proc-
ess() procedure that contains code for the tasks an object
will perform during its life. We “start” the process() pro-
cedure when we wish the life of the object to begin. The
operational classes of the SISCO Library are a set of
classes that extend the Silk™ Entity class and represent the
nodes, arcs, and orders of the supply chain, as well as the
managers and actors that control and perform tasks within
these elements of the supply chain.

Chatfield, Harrison, and Hayya

The operational classes of the SISCO Library include
the Order, Node, Arc, and multiple Manager and Actor
classes. Our modeling paradigm focuses on the life-cycle
of an order, so a well-designed representation of an order is
important. The most important part of the Order class is its
guidance of the order through the life cycle. With the ori-
gin and target nodes determined, the order controls its own
sequence of actions, but the nodes determine the details of
where and how those actions will occur. The Order class
provides a representation of both demand (customer) and
replenishment orders, and includes a basic structure for
storing individual order information, plus the logic (code)
needed for guiding the order through its lifecycle and re-
cording statistics along the way.

Besides accurately representing an order, the most basic
modeling need is to represent the nodes and arcs that define
the basic structure of the supply chain. The Node and Arc
classes are templates for the creation of objects, based on
Silk™ Entities, that represent the nodes and arcs. These
classes contain all the data structures of the x-classes they
extend (xNode and xArc), but also include methods (coded
routines) to enable the creation and control of the Managers,
variables, arrays, queues, resources, statistical tracking vari-
ables, and other structures necessary to simulate the opera-
tion of the node or arc. The most important part of the Node
class involves the coordination of the basic actions that oc-
cur at a node: order creation, order placement, order process-
ing, shipping, and receiving. The Arc class is similar to the
Node class except it is much simpler because arcs only per-
form one basic action, order transport.

The Manager classes include the OrderPlacement-
Manager, OrderProcessingManager, ReceivingManager,
ShippingManager, TransportationManager, InventoryMan-
ager, and DemandGenerator classes that form the basis for
objects which control the basic actions that occur at the
nodes and arcs of the supply chain. The Manager classes
contain the queue monitoring, logic, and actor creation rou-
tines necessary for a Manager object to independently
monitor and control one of the basic actions and to create
an appropriate actor object when that action needs to occur.

For example, the Managers created by a Node make
use of the Resources and Queues to control the basic ac-
tions. An Order Placement Manager utilizes the Order
Placement Queue (where orders wait for placement to oc-
cur) and the Order Placement Resource to control the proc-
ess of Order Placement. Likewise, an Order Processing
Manager, a Shipping Manager, and a Receiving Manager
are created to control those operations. Order creation is
handled by DemandGenerator Manager objects if the de-
mand is from a customer, or by InventoryManager objects
that generate replenishment orders based on an inventory
policy if the demand is internal to the supply chain.

The Actor classes define templates for finite life-span
objects that are created to allow multiple independent, si-
multaneous actions to occur in the model. The actor ob-
jects are created to perform a specific action one time after
which they are destroyed. The Actor classes include the
OrderPlacementActor, OrderProcessingActor, Receivin-
gActor, ShippingActor, and TransportationActor. The re-
lationships between the Nodes and Arcs (“owners”), the
Managers, and the Actors is fundamental to the way
SISCO operates.

6.4 SISCO Automated Model Mapper (SAMM)

The model generation process involves taking the user input,
mainly the SCML file, and generating an equivalent Silk™
simulation model by creating instances of the appropriate
SISCO Library classes. The process involves two main ac-
tions: parsing the SCML file to generate the appropriate
supply chain objects as they are encountered; and invoking
the initialize() procedure of a newly created object to create
appropriate Resources, Managers, statistical tracking vari-
ables, and related structures owned by the object.

The process of reading the SCML file and creating in-
stances of the appropriate SISCO Library classes is well-
suited for a SAX parsing procedure. The potential size and
complexity of the SCML document, compared with other
XML documents, favors the one-pass, event-based parsing
method of SAX over the tree-based parsing of DOM parsers.
DOM parsers store a representation of the hierarchy of the
entire document in memory be-fore processing can be per-
formed, which is slower and more memory-intensive than
the one-pass, immediate action approach of a SAX parser.

The elements representing supply chain “basic con-
structs” (node, arc, component, action, and policy) are the
heart of a supply chain description. When a component, ac-
tion, or policy element is found in the SCML file, an object
of the corresponding x-class is created and the descriptive
information (attributes and sub-elements) from the SCML
file is transferred to the new object. The new object is then
placed in an array with other objects of the same type.

When the parser encounters the start of a node or arc
element, the processing follows the same structure as the
other basic elements, but is a bit more complex. As with
elements for the other basic constructs, the start_element()
event for a node or arc element (indicating that the begin-
ning of a node or arc has been encountered) will create a
representative class. In this case however, the class created
is not an x-class (xNode or xArc). Instead, extensions of the
xNode and xArc classes, named Node and Arc are used.
The reason for this is that the x-classes are data-only classes
that mimic the structure of the SCML language. Represent-
ing the operation of nodes and arcs is central to the simula-
tion modeling of a supply chain and, as a result, the needed
objects must be more complicated than Java class-based im-
plementations of the SCML node and arc elements.

When the end_element() event is executed (i.e., the
end of a node or arc element has been found) the process()
procedure of the Node or Arc is invoked, essentially be-

Chatfield, Harrison, and Hayya

ginning the “life” of the Node or Arc as an entity in the
Silk™ simulation system. The first action within the proc-
ess() procedure is to call the initialize() method, which cre-
ates arrays that allow easy access to the node or arc infor-
mation. Next, this routine performs actions that create
Silk™ structures needed to represent the operation of the
node or arc properly.

For a node, the Silk™ Queues and Resources for basic
supply chain actions (order placement, order processing,
shipping, and receiving) are created. The associated Man-
ager objects (order placement, order processing, shipping
and receiving Managers) are created as well. In addition,
Silk™ State Variables are generated for each input and out-
put of the node, creating materials and finished goods inven-
tory tracking variables. In addition to the State Variables, an
Inventory Manager object is generated for each node input
and output to perform the actual inventory monitoring.

Finally, if the node is a customer node, a Demand
Generator object for each component demanded is created.
All of the Managers, plus the Demand Generators are sepa-
rate Silk™ entities running in their own thread of execu-
tion and each has its process() procedure “started” by the
Node object (entity) after it is created and initialized. The
Node entity itself does not perform any processing, it
serves as the “owner” of these other Silk™ entities that
perform processing for it. Thus, the simulated actions of a
node can all occur in parallel because they are being exe-
cuted in separate threads by separate entities. The process
is the same for creating an Arc, but simpler because its
only action is transporting orders.

The parsing procedure ensures that the various simula-
tion entities are initialized and started in the correct order,
because it follows the hierarchy as it is laid out in the
SCML file. Thus, an element is never initialized before
any of its sub-elements, and an entity is never started be-
fore all the elements it contains are initialized. Once
SAMM is through creating the appropriate objects and ini-
tialization is finished, the model is ready to execute.

7 CONCLUSIONS AND FURTHER WORK

We have shown that an XML-based, platform and method-
ology independent language for describing a supply chain’s
structure and logic (SCML) can be effectively used in a
simulation system. The SISCO system is able to convert
these general supply chain descriptions into object-oriented
simulation models. We believe that tools that support XML-
based standards are desirable in this age of cross-platform
and cross-methodology modeling and analysis endeavors.

To extend this work we would like to create supply
chain class libraries and model mappers for other plat-
forms, such as SimKit,(Java), SML (.NET), or an object-
oriented commercial simulation package.
ACKNOWLEDGMENTS

We would like to thank the Center for Supply Chain Re-
search at Penn State for partial funding of this project. We
would also like to thank Rich Kilgore for all of his help.

REFERENCES

Chatfield, D. 2001. SISCO and SCML- Software Tools for
Supply Chain Simulation Modeling and Information
Sharing. Unpublished Ph.D dissertation. Department
of Management Science and Information Systems,
Penn State University, University Park, PA.

Chatfield, D.C., T.P. Harrison, and J.C. Hayya. 2001.
SISCO: A Supply Chain Simulation Tool Utilizing
SILK and XML. In Proceedings of the 2001 Winter
Simulation Conference, ed. B. A. Peters, J. S. Smith,
D. J. Medeiros, and M. W. Rohrer, eds., 614-622. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.

Chatfield, D.C., T.P. Harrison, and J.C. Hayya. 1999.
SCML: A Generalized Supply Chain Modeling Lan-
guage. In Program of the 1999 INFORMS Confer-
ence. November 7-10, 1999, Philadelphia, PA. At
<http://www.informs.org/Conf/Philade
lphia99/TALKS/WB09.html> [Accessed July
10, 2004]

Fishwick, P. A. 2002. Using XML for Simulation Model-
ing. In Proceedings of the 2003 Winter Simulation
Conference, ed. S. Chick, P. J. Sanchez, D. Ferrin, and
D. J. Morrice, 616-622. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers.

Kilgore, R. A. 2001. Open Source Simulation Modeling
Language (SML). In Proceedings of the 2001 Winter
Simulation Conference, ed. B. A. Peters, J. S. Smith,
D. J. Medeiros, and M. W. Rohrer, eds., 607-613. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.

Kilgore, R. A. 2002. Simulation Web Services With
.NET Technologies. In Proceedings of the 2002 Win-
ter Simulation Conference, ed. E. Yucesan, C.-H.
Chen, J. L. Snowdon, and J. M. Charnes, 841-846.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Lu, R. F., G. Qiao, and C. McLean. 2003. NIST XML
Simulation Interface Specification at Boeing: A Case
Study. In Proceedings of the 2003 Winter Simulation
Conference, ed. S. Chick, P. J. Sanchez, D. Ferrin, and
D. J. Morrice, 1230-1237. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Qiao, S., F. Riddick, and C. McLean. 2003. Data Driven
Design and Simulation System Based on XML. In
Proceedings of the 2003 Winter Simulation Confer-
ence, ed. S. Chick, P. J. Sanchez, D. Ferrin, and D. J.

Chatfield, Harrison, and Hayya

Morrice, 1143-1148. Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers.

Reichenthal, S.W. 2002. Re-Introducing Web-Based Simu-
lation. In Proceedings of the 2002 Winter Simulation
Conference, ed. E. Yucesan, C.-H. Chen, J. L. Snow-
don, and J. M. Charnes, 847-852. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.

Tittel, E., N. Mikula, R. Chandak. 1998. XML For Dum-
mies. Foster City, CA: IDG Worldwide Inc.

VanHerwijnen, E. 1994. Practical SGML, 2nd edition.
Boston, MA: Kluwer Academic Publishers.

Weidemann, T. 2002. Next Generation Simulation Envi-
ronments Founded on Open Source Software and
XML-Based Standard Interfaces. In Proceedings of
the 2002 Winter Simulation Conference, ed. E. Yuce-
san, C.-H. Chen, J. L. Snowdon, and J. M. Charnes,
623-628. Piscataway, New Jersey: Institute of Electri-
cal and Electronics Engineers.

AUTHOR BIOGRAPHIES

DEAN C. CHATFIELD is Assistant Professor of Busi-
ness Information Technology at Virginia Polytechnic Insti-
tute. He received his Ph.D. in Management Science from
Penn State University. His research interests include
manufacturing and service supply chain analysis and de-
sign, simulation modeling of production and supply chain
systems, and the application of meta-heuristics. His email
address is <deanc@vt.edu>.

TERRY P. HARRISON is Professor of Supply Chain and
Information Systems at Penn State University. He has
teaching and research interests in the areas of supply chain
management, large scale production and distribution sys-
tems, decision support systems, applied optimization and
the management of renewable natural resources. His email
address is <tharrison@psu.edu>.

JACK C. HAYYA is Professor Emeritus of Management
Science at Penn State University. His research interests lie
in the areas of production and inventory management, ap-
plied statistics, supply chain management, military systems
analysis, and food safety. His email address is <jch@
psu.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 1485
	02: 1486
	03: 1487
	04: 1488
	05: 1489
	06: 1490
	07: 1491
	08: 1492
	09: 1493

