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ABSTRACT

This paper derives Monte Carlo simulation estimators to
compute option price derivatives, i.e., the ‘Greeks,’ under
Heston’s stochastic volatility model and some variants of it
which include jumps in the price and variance processes. We
use pathwise and likelihood ratio approaches together with
the exact simulation method of Broadie and Kaya (2004)
to generate unbiased estimates of option price derivatives
in these models. By appropriately conditioning on the
path generated by the variance and jump processes, the
evolution of the stock price can be represented as a series
of lognormal random variables. This makes it possible to
extend previously known results from the Black-Scholes
setting to the computation of Greeks for more complex
models. We give simulation estimators and numerical results
for some path-dependent and path-independent options.

1 INTRODUCTION

Monte Carlo simulation is a widely used tool in finance for
computing the prices of options and their price sensitivities,
commonly referred to as Greeks. It is not always possible
to derive analytical formulas for option prices and their
Greeks, either because the payoff or the underlying model,
or both, are too complicated to be tractable. This occurs
for many of options under stochastic volatility and jump
diffusion models. In these cases, Monte Carlo simulation
offers a potential computational approach.

In general, the computation of option Greeks using
Monte Carlo simulation is not as straightforward as option
prices. Difficulties may be caused by discontinuities in
the option payoff function, as in the cases of barrier and
digital options, for example. Monte Carlo methods for
estimating price sensitivities can be categorized into three
groups. Finite-difference approximations resimulate the
price process after a small perturbation in the parameter of
interest. Simulation estimates generated by finite-difference
approximations are biased and computationally expensive
because of the resimulation step, and therefore we do not
consider them here. The other two methods are the pathwise
method (PW) and the likelihood ratio method (LR) first
introduced in Broadie and Glasserman (1996). In the PW
method, a simulation estimator is derived by differentiating
the payoff function inside the expectation operator. Since
the PW method requires the interchange of differentiation
and expectation, it is not applicable in certain circumstances,
e.g., in the computation of the delta of a digital option. In
the LR method, the parameter of the price function to be
differentiated is viewed as a parameter of the density function
rather than the payoff and this density is differentiated
inside the expectation. Because the density functions in
most financial models are smooth, the LR estimator is more
widely applicable than the PW method. However, when
applicable, the PW method usually gives better estimates
than LR method, since the PW estimator takes advantage
of the specific form of the payoff function. See Glasserman
(2003) for a more detailed treatment of these methods.

The PW and LR methods can be used to generate un-
biased estimators of Greeks in the Black-Scholes setting
where the transition density of the underlying price pro-
cess is known and sampling from the exact distribution is
possible. However, for more complex models, e.g., ones
involving stochastic volatility, exact simulation of the price
and variance processes is not straightforward and discretiza-
tion (i.e., time-stepping) schemes are often used to generate
approximate samples. Discretization approaches have some
significant drawbacks. First, discretization introduces bias
into simulation estimates and this makes the construction
of valid confidence intervals difficult or impossible. Also,
methods for estimating Greeks may become harder to im-
plement and computationally inefficient when discretization
schemes are used. For example, for the LR method the
variance of the simulation estimator typically increases as
the time interval is decreased to lower the discretization
bias.

An exact simulation algorithm for the stochastic volatil-
ity (SV) model of Heston (1993) and other models with
jumps in asset prices and jumps in volatility is introduced
in Broadie and Kaya (2004). In this paper, we extend that
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approach to the exact simulation of Greeks under these
models. In particular, we use the pathwise and likelihood
ratio methods to generate unbiased estimates of option price
derivatives, including the delta, gamma and rho. The key
idea is that by appropriately conditioning on the path gen-
erated by the variance and jump processes, the evolution
of the stock price can be represented as a series of lognor-
mal random variables, making it possible to apply previous
results for the Black-Scholes setting.

Some authors have proposed a Malliavin calculus to
derive simulation estimators for Greeks. This approach can
be viewed as an extension of the LR method. Fournié et
al. (1999) show that any Greek could be expressed as an
expectation of the payoff function times a weight. They
show that this weight can be expressed in terms of the
Malliavin derivative without knowing the transition density.
Fournié et al. (2001) prove that the weight that gives the
minimum total estimator variance is the one given by the
LR method. This result implies that the estimators derived
using Malliavin calculus are not superior to the ones given
by LR and PW methods. In particular, Malliavin estimators
of the Greeks under the SV model contain various integrals
of the variance process making the use of discretization
methods necessary (see Benhamou 2002 for the explicit
form of the weights for Heston model).

In Section 2 we review the models that we will consider
and briefly discuss the exact simulation algorithm of Broadie
and Kaya (2004). In Section 3 we present the key idea and
show how each of the models can be set-up in a way suitable
for application of LR and PW methods. Section 4 gives
the simulation estimators for several options and presents
numerical results. Section 5 concludes the paper.

2 MODELS AND THE EXACT
SIMULATION ALGORITHM

We will consider three different models with increasing
complexity. The first model is the stochastic volatility (SV)
model of Heston (1993). The next model is an extension
of SV to include jumps in the stock price. We will refer
to this as the SVJ model. Finally, we will consider a
model proposed in Duffie, Singleton and Pan (2000) that
includes concurrent jumps in the stock price and the variance
processes, which will be referred to as SVCJ.

We give the specification for the SVCJ model since
the other two can be expressed as the special cases of this
model. The SVCJ model is based on the following
stochastic differential equations which are specified under
the risk neutral measure:

dSt = (r − λµ̄)Stdt + √
VtSt

[
ρdW

(1)
t

+
√

1 − ρ2dW
(2)
t

]
+ St (J

s − 1)dNt , (1)

dVt = κ(θ − Vt )dt + σv

√
VtdW

(1)
t + J vdNt . (2)

The first equation gives the dynamics of the stock price: St

denotes the stock price at time t , r is the interest rate and
√

Vt

is the volatility. The second equation gives the evolution
of the variance which follows the square-root process: θ

is the long-run mean variance, κ represents the speed of
mean reversion, and σv is a parameter which determines the
volatility of the variance process. W

(1)
t and W

(2)
t are two

independent Brownian motion processes, and ρ represents
the instantaneous correlation between the return process and
the volatility process. Nt is a Poisson process independent
of the Brownian motions and with constant intensity λ, J s

is the relative jump size in the stock price, and J v is the
jump size of the variance. In particular, when a jump occurs
at time t , then St+ = St−J s and Vt+ = Vt− + J v . The
jumps in stock price and the variance occur concurrently,
and their magnitudes have a correlation determined by the
parameter ρJ . The distribution of J v is exponential with
mean µv . Given J v , J s is lognormally distributed with
mean (µs + ρJ J v) and variance σ 2

s . The parameters µs

and µ̄ are related to each other by the equation

µs = log [(1 + µ̄)(1 − ρJ µv)] − 1

2
σ 2

s ,

and only one of them needs to be specified.
In the SVJ model, there are no jumps in the variance

process, so setting J v = 0, µv = 0, and ρJ = 0 gives
the specification for that model. In the SV model there
are no jumps in the stock price nor the variance process,
so deleting the dNt terms in (1) and (2) above gives the
specification for SV model.

The stock price at time t , given the values of Su and
Vu for u < t , can be written as

St = Su exp
[
(r − λµ̄)(t − u) − 1

2

∫ t

u

Vsds

+ ρ

∫ t

u

√
VsdW(1)

s +
√

1 − ρ2

∫ t

u

√
VsdW(2)

s

]

×
Nt∏

i=Nu+1

J s
i (3)
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and the variance at time t is given by the equation

Vt = Vu + κθ(t − u) − κ

∫ t

u

Vsds

+ σv

∫ t

u

√
VsdW(1)

s +
Nt∑

i=Nu+1

J v
i . (4)

Although there is no simple analytical representation
for the distribution of (St , Vt ), Broadie and Kaya (2004)
derive a numerical method to exactly sample from the joint
distribution under each of these models. In the case of the
SV model, the steps of the algorithm are as follows:

1. Generate a sample from the distribution of Vt given
Vu: This is easily done since the distribution of
Vt given Vu is, up to a scale factor, a noncentral
chi-squared distribution.

2. Generate a sample from the distribution of
∫ t

u
Vsds

given Vt and Vu: This is done by writing the
conditional characteristic function of the integral
and then using Fourier transform inversion to obtain
the distribution function.

3. Recover
∫ t

u

√
VsdW

(1)
s from (4) given Vt , Vu and∫ t

u
Vsds.

4. Generate a sample from the distribution of St given∫ t

u

√
VsdW

(1)
s and

∫ t

u
Vsds: The conditional distri-

bution of St is lognormal, so this is straightforward.

The details of the algorithms and numerical examples are
given in Broadie and Kaya (2004). The most important
steps for the simulation of Greeks are the first three steps
above, where the variance and its integrals are generated.
We will use these as conditioning variables, so it is crucial
to be able to simulate these exactly.

3 BASIC IDEA, AND LIKELIHOOD RATIO AND
PATHWISE METHODS

We first review how the PW and LR estimators are derived
in a usual simulation setting. Suppose the option price is
given by α(θ) = E[f (θ)] where f is the discounted payoff
function and we are interested in finding the derivative α′(θ)

with respect to θ . The PW method writes this as

α′(θ) = d

dθ
E [f (θ)] = E

[
d

dθ
f (θ)

]
, (5)

assuming the interchange of differentiation and expectation
is justified. On the other hand, in the LR method, the
payoff is viewed as a function of a random vector X that
determines the payoff, and θ is viewed as a parameter of
the probability density of X. If this density is denoted by
gθ (x), then the derivative with respect to θ is written as:

α′(θ) = d

dθ
E [f (X)] =

∫
Rn

f (x)
d

dθ
gθ (x)dx. (6)

Now, the integrand can be multiplied and divided by gθ to
give:

α′(θ) =
∫

Rn

f (x)
g′

θ (x)

gθ (x)
gθ (x)dx = E

[
f (X)

g′
θ (x)

gθ (x)

]
, (7)

where we have written g′
θ (x) for dgθ/dθ.Thus the expression

f (X)g′
θ (x)/gθ (x) is an unbiased estimator of α′(θ). The

quantity g′
θ (x)/gθ (x) in (7) is called the score function. It is

clear from the above that the score function for a particular
sensitivity is independent of the form of the payoff function.

As seen from the above equations, both PW and LR
methods use an interchange of integral and differentiation
which is only justified if certain regularity conditions are
satisfied (see Broadie and Glasserman 1996 for details).
In general, it is easier to justify (6) than (5) since density
functions are usually smooth functions of their parameters
but payoff functions are not.

To be able to use the LR method in the stochastic
volatility and jump setting, we will first need to use some
conditioning arguments that will allow us to do exact sim-
ulation. If the discounted payoff is a function of a vector
valued process X, using the law of iterated expectations we
write:

E [f (X)] = E [E [f (X)|Y ]] , (8)

where Y is another vector valued process. In the following
applications, X will usually be the values of stock price at
discrete time intervals along a path, and Y will be a set of
state variables recording information about the variance path.
To derive the LR and PW estimators, we will differentiate
inside the expectation operators similar to the approach
given in (5) and (6). If the interchange of integral and
differentiation is justified for the left hand side of (8), it
will be justified for the right hand side as well. Note that
the PW method can be applied directly to the left hand side
of (8), however in the numerical results below we use the
conditional representation given on the right hand side so
that the computation times for the two methods are roughly
comparable.

Our aim is to write the values of the stock price as a
series of lognormal random variables by conditioning on
appropriate state variables. This way, we will be able to
use the LR and PW estimators that are derived for the
standard Black-Scholes setting. To this end, we show how
the conditioning variables are chosen and which form the
stock price takes for each of the models we consider.
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In the following, let [0 = t0 < t1 < . . . < tM =
T ] be a partition of time interval into possibly unequal
segments of length �ti , for each i = 0, 1, . . . , M . We are
assuming that we eventually want to price a path-dependent
option whose payoff is a function of the stock price vector
(St0 , St1 , . . . , StM ) (note that we can take M=1 for a path-
independent option).

SV MODEL: In this case, we will condition on the
path generated by the variance process. Willard (1997)
introduced a similar conditional Monte Carlo approach for
the pricing of path-independent options under multifactor
models, but his estimates for price and Greeks are biased
since a discretization scheme is used for the simulation of
the variance process.

Assume that we have simulated a path of the variance
process by using the first three steps of the exact simulation
algorithm given in Section 2. Consider two consecutive
time steps ti and tj on the time grid. The simulation
algorithm gives us the values of the quantities

∫ tj
ti

Vsds

and
∫ tj
ti

√
VsdWs(1) in equation (3). We define the average

variance between ti and tj as:

σ̄ 2
j = (1 − ρ2)

∫ tj
ti

Vsds

tj − ti
.

We also define an auxiliary variable as:

ξj = exp

(
−ρ2

2

∫ tj

ti

Vsds + ρ

∫ tj

ti

√
VsdW(1)

s

)
.

Given the variance path and the stock price Si , the value
of Sj can be written as

Sj = Siξj exp

[
(r − σ̄ 2

j

2
)(tj − ti ) + σ̄j

√
tj − ti Z

]
, (9)

where Z is a standard normal random variable.
Thus, taking Y in equation (8) to be the variance path,

we have reduced the distribution of stock prices in the inner
expectation to a series of lognormal random variables. This
is crucial for the LR method since we need to know the
probability density for derivation of the score function.

SVJ MODEL: In this case, we will condition on the
variance path and the number of jumps in each time interval.
As before, the exact simulation algorithm can be used to
simulate the variance path and the number of jumps is
generated independently for each interval.

Consider two consecutive time steps ti and tj on the
time grid. The simulation algorithm gives us the values of
the quantities

∫ tj
ti

Vsds and
∫ tj
ti

√
VsdWs(1) in equation (3).

We simulate nj , the number of stock price jumps between
ti and tj , by generating a Poisson random variable with
mean λ(tj − ti ). We define the average variance between
ti and tj as:

σ̄ 2
j = njσ

2
s + (1 − ρ2)

∫ tj
ti

Vsds

tj − ti
,

where σs is as defined in Section 2. We also define an
auxiliary variable as:

ξj = exp

(
nj (µs + σ 2

s

2
) − λµ̄(tj − ti )

−ρ2

2

∫ tj

ti

Vsds + ρ

∫ tj

ti

√
VsdW(1)

s

)
.

With these definitions of σ̄ 2
j and ξj , the value of Sj given

the stock price Si can be written as in (9). We are able
to write the distribution of Sj in this way by using the
independence of the jump size from the Brownian motion
processes which drive the diffusion component of the price
process. For simulating Sj , the number of jumps occurring
in the time interval is important but the actual jump times
are not. We collect the variance from the diffusion and jump
components in the value σ̄ 2

j and simulate Sj as a single
lognormal random variable conditional on this information.

SVCJ MODEL: The simulation of SVCJ model is a
bit more involved than SV and SVJ models because of the
existence of jumps in the variance process. We will again
condition on the variance path, but this time we will need the
jump times and the jump sizes of the variance. Therefore,
we need to stop the simulation at jump times and generate
the jumps in the variance and continue simulation of the
diffusion part from the updated variance value. Details of
this can be found in Broadie and Kaya (2004).

Consider two consecutive time steps ti and tj on the time
grid. The simulation algorithm will give us the values of
the quantities

∫ tj
ti

Vsds and
∫ tj
ti

√
VsdWs(1) in equation (3),

where the integrals are split into subintegrals at the simulated
jump times between ti and tj . If there are nj jumps in this
interval and the kth jump size of the variance is denoted as
J v

k , we define the average variance between ti and tj as:

σ̄ 2
j = njσ

2
s + (1 − ρ2)

∫ tj
ti

Vsds

tj − ti
,

where σs is defined as in Section 2 and we also define an
auxiliary variable as:

ξj = exp

( nj∑
k=1

(µs + J v
k ρJ + σ 2

s

2
) − λµ̄(tj − ti )

−ρ2

2

∫ tj

ti

Vsds + ρ

∫ tj

ti

√
VsdW(1)

s

)
.
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With these definitions of σ̄ 2
j and ξj , the value of Sj given

the stock price Si can be written as in (9).

4 NUMERICAL EXAMPLES

In this section we illustrate the simulation of Greeks using
different options. We first use a European option, since
there are analytical formulas for the price and the Greeks
in this case, we may compare our simulation estimates
with the true values. For the formulas for Greeks, see
for example Bakshi, Cao and Chen (1997), and Reiss and
Wystup (2001). We then consider several path dependent
examples: an Asian option, a discrete knock-out barrier
option and a forward start option. The derivations of the
estimators given in the following sections are similar to
the ones given in Broadie and Glasserman (1996) in the
Black-Scholes setting. Therefore, we will just give the
estimators and omit the derivations. Since we are using
conditional Monte Carlo as given in (8), we can choose
different numbers of paths for the two expectations we
are evaluating. In the numerical results in this paper, we
simulate 10,000 variance paths and we simulate 100 price
paths conditional on each variance path. We use the model
parameters estimated in Duffie, Singleton and Pan (2000).
These were found by minimizing the mean squared errors
for market option prices for S&P 500 on November 2, 1993.
We also assume a risk-free rate of 3.19%. Table 1 gives
these parameters.

Table 1: Model Parameters Used
in Simulations

MODEL
SV SVJ SVCJ

ρ -0.70 -0.79 -0.82
θ 0.019 0.014 0.008
κ 6.21 3.99 3.46
σv 0.61 0.27 0.14
λ n/a 0.11 0.47
µ̄ n/a -0.12 -0.10
µs n/a 0.15 0.0001
µ̄v n/a n/a 0.05
ρJ n/a n/a -0.38√
V0 10.1% 9.4% 8.7%
r 3.19% 3.19% 3.19%

4.1 European Options

The discounted payoff of a European call option with strike
K and maturity T is given by e−rT (ST − K)+, where ST

is the stock price at time T . In the equations below 1[A] is
used to denote the indicator function of the event A. PW
derivative estimators for a European call option are given
in (10) and (11) below.
PW estimators:

Delta: e−rT 1[ST ≥ K]ST

S0
(10)

Rho: e−rT 1[ST ≥ K]KT (11)

To derive the LR estimators using the conditional ex-
pectation in (8), we need the conditional density of ST .
Using (9), this density can be written as:

g(x) = 1

xσ̄
√

T
φ(d(x)),

where φ(·) is the standard normal density function and

d(x) = ln(x/(S0ξ)) − (r − 1
2 σ̄ 2)T

σ̄
√

T
.

To find the delta estimator, we first take the derivative with
respect to S0. After some simplification, we get:

∂g(x)

∂S0
= d(x)φ(d(x))

xS0σ̄ 2T
.

Dividing this by g(x) and evaluating the expression at
x = ST gives the score function for LR delta estimator:

∂g(ST )/∂S0

g(ST )
= d(ST )

S0σ̄
√

T
.

Other estimators can be derived in a similar fashion. For
details, see Broadie and Glasserman (1996), and Glasserman
(2003).
LR estimators:

Delta: e−rT (ST − K)+
(

d

S0σ̄
√

T

)
(12)

Gamma: e−rT (ST − K)+
(

d2 − dσ̄
√

T − 1

S2
0 σ̄ 2T

)
(13)

Rho: e−rT (ST − K)+
(

−T + d
√

T

σ

)
(14)

where d = (ln(ST /(S0ξ)) − (r − 1
2 σ̄ 2)T )/(σ̄

√
T ) in (12)–

(14). If ST is generated from S0 using a normal random
variable Z via equation (9), then d = Z, and these estimators
are easily computed in a simulation.

The delta estimator in (10) includes an indicator func-
tion, so the PW method cannot be used to take the derivative
of this expression to obtain a gamma estimator. For finding
estimators for second order derivatives like gamma, we can
use a mixed estimator where we use the PW method for
one order of differentiation and LR method for the other.
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This gives the estimators in (15) and (16) for the gamma
of a European call option.
Mixed estimators:

LR-PW Gamma: e−rT 1[ST ≥ K]K

×
(

d

S2
0 σ̄

√
T

)
(15)

PW-LR Gamma: e−rT 1[ST ≥ K]ST

S2
0

×
(

d

σ̄
√

T
− 1

)
(16)

where d is as given above.
We give the simulation results along with the true values

in Table 2. As expected, the PW estimators have smaller
standard deviations than the LR estimators. Also, the mixed
estimators for gamma have smaller standard deviations than
the LR estimators.

Table 2: Simulation Estimates of Price and
Greeks for a European Call Option

MODEL
SV SVJ SVCJ

Exact Price 6.8061 6.7578 6.8619
Simulation Price 6.8030 6.7017 6.8787
(sdt. err.) 0.0402 0.0487 0.0593
Exact Delta 0.6958 0.6976 0.6989
PW Delta 0.6952 0.6954 0.7006
(std. err.) 0.0032 0.0036 0.0041
LR Delta 0.6973 0.6925 0.7016
(std. err.) 0.0036 0.0041 0.0048
Exact Gamma 0.0265 0.0264 0.0259
LR Gamma 0.0269 0.0263 0.0260
(std. err.) 0.0005 0.0007 0.0009
LR-PW Gamma 0.0267 0.0266 0.0257
(std. err.) 0.0002 0.0002 0.0003
PW-LR Gamma 0.0267 0.0265 0.0257
(std. err.) 0.0002 0.0002 0.0003
Exact Rho 62.7752 63.0034 63.0329
PW Rho 62.7148 62.8420 63.1775
(std. err.) 0.2774 0.3114 0.3554
LR Rho 62.9256 62.5472 63.2840
(std. err.) 0.3274 0.3663 0.4318

Option Parameters: S0=100, K=100, T =1 year

4.2 Asian Options

The discounted payoff for an Asian option with strike K

and expiration T is given by e−rT (S̄ − K)+ where

S̄ = 1

m

m∑
i=1

Si,
and Si is the stock price at time ti for a time partition
[0 = t0 < t1 < . . . < tm = T ]. The estimators for an Asian
option are given in (17)–(23) below.
PW estimators:

Delta: e−rT 1[S̄ ≥ K] S̄

S0
(17)

Rho: e−rT 1[S̄ ≥ K]
(

1

m

m∑
i=1

Siti − T (S̄ − K)

)
(18)

LR estimators:

Delta: e−rT (S̄ − K)+
(

d1

S0σ̄1
√

�t1

)
(19)

Gamma: e−rT (S̄ − K)+
(

d2
1 − d1σ̄1

√
�t1 − 1

S2
0 σ̄ 2

1 �t1

)
(20)

Rho: e−rT (S̄ − K)+
(

−T +
m∑

i=1

di

√
�ti

σ̄i

)
(21)

Mixed estimators:

LR-PW Gamma: e−rT 1[S̄ ≥ K]K

×
(

d1

S2
0 σ̄1

√
�t1

)
(22)

PW-LR Gamma: e−rT 1[S̄ ≥ K] S̄

S2
0

×
(

d1

σ̄1
√

�t1
− 1

)
(23)

where in (19)–(23), �ti = ti − ti−1,

di = (ln(Si/(Si−1ξi)) − (r − 1

2
σ̄ 2

i )�ti)/(σ̄i

√
�ti),

and σ̄ 2
i is the variance between ti−1 and ti . If Si is generated

from Si−1 using a normal random variable Zi via equation
(9), then di = Zi , and these estimators are easily computed
in a simulation.

We give the simulation results in Table 3. Again, PW
estimators dominate the LR estimators in terms of standard
error. Also, the mixed estimators for gamma have standard
errors that are one-fifth of those for the LR estimator.

4.3 Discrete Barrier Options

The discounted payoff for a discrete knock-out barrier option
with strike K , expiration T and barrier H > S0 is given by

e−rT (ST − K)+1[ max
1≤i≤m

Si < H ],
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Table 3: Simulation Estimates of Price and
Greeks for an Asian Option

MODEL
SV SVJ SVCJ

Simulation Price 4.3736 4.3125 4.4415
(sdt. err.) 0.0254 0.0315 0.0380
PW Delta 0.6733 0.6709 0.6790
(std. err.) 0.0030 0.0034 0.0039
LR Delta 0.6746 0.6736 0.6782
(std. err.) 0.0038 0.0044 0.0050
LR Gamma 0.0384 0.0416 0.0421
(std. err.) 0.0015 0.0018 0.0023
LR-PW Gamma 0.0408 0.0411 0.0400
(std. err.) 0.0003 0.0004 0.0005
PW-LR Gamma 0.0409 0.0412 0.0400
(std. err.) 0.0003 0.0004 0.0005
PW Rho 38.1664 38.0714 38.4530
(std. err.) 0.1658 0.1891 0.2118
LR Rho 38.2272 38.2628 38.4797
(std. err.) 0.2074 0.2377 0.2711

Option Parameters: S0=100, K=100, T =1 year, m=4
and monitoring times are {0.25, 0.5, 0.75, 1.0}

where Si is the stock price at time ti for a time partition
[0 = t0 < t1 < . . . < tm = T ]. The knock-out feature
makes the payoff of a barrier option discontinuous in the
path of the underlying, therefore the PW method is not
applicable. But the LR estimators are available, and are
given by the product of the discounted payoff function and
the score function.
LR estimators:

Delta: e−rT (ST − K)+1[ max
1≤i≤m

Si < H ]

×
(

d1

S0σ̄1
√

�t1

)
(24)

Gamma: e−rT (ST − K)+1[ max
1≤i≤m

Si < H ]

×
(

d2
1 − d1σ̄1

√
�t1 − 1

S2
0 σ̄ 2

1 �t1

)
(25)

Rho: e−rT (ST − K)+1[ max
1≤i≤m

Si < H ]

×
(

−T +
m∑

i=1

di

√
�ti

σ̄i

)
(26)

where in (24)–(26), �ti = ti − ti−1,

di = (ln(Si/(Si−1ξi)) − (r − 1

2
σ̄ 2

i )�ti)/(σ̄i

√
�ti),

and σ̄ 2
i is the variance between ti−1 and ti .

We give the simulation results for this option in Table 4.
Table 4: Simulation Estimates of Price and
Greeks for a Discrete Knock-Out Barrier Op-
tion

MODEL
SV SVJ SVCJ

Simulation Price 5.0481 5.1731 5.2487
(sdt. err.) 0.0291 0.0345 0.0394
LR Delta 0.2499 0.2541 0.2207
(std. err.) 0.0029 0.0044 0.0064
LR Gamma -0.0605 -0.0655 -0.0659
(std. err.) 0.0017 0.0019 0.0025
LR Rho 21.0779 21.2292 18.2402
(std. err.) 0.1955 0.3719 0.5647

Option Parameters: S0=100, K=100, T =1
year, H=120, m=4 and monitoring times are
{0.25, 0.5, 0.75, 1.0}

4.4 Forward Start Options

We next consider forward start options. These are options
whose strike is set at a future date. In particular, if T1
is the time when strike is set, T2 is the option expiration,
Si is the stock price at time Ti , and k is the constant that
determines the strike, then the forward start option payoff
at time T2 is given by (S2 − kS1)

+. For example, if k = 1
then at time T1, the option becomes an at-the-money option
with expiration T2. Kruse (2003) develops a closed-form
solution for this option under the SV model by integrating
the pricing formula with the conditional density of the
variance value at time T1. However, the implementation
is not very straightforward since it includes another level
of integration to already complex integrals in the Heston
formula. Therefore simulation may be considered as an
alternative for finding prices and sensitivities of this option.

Again, the LR estimators are easily derived by multi-
plying the discounted payoff with the score function.
LR estimators:

Delta: e−rT2(S2 − kS1)
+

×
(

d1

S0σ̄1
√

�t1

)
(27)

Gamma: e−rT2(S2 − kS1)
+

×
(

d2
1 − d1σ̄1

√
�t1 − 1

S2
0 σ̄ 2

1 �t1

)
(28)

Rho: e−rT2(S2 − kS1)
+

×
(

−T +
m∑

i=1

di

√
�ti

σ̄i

)
(29)

where in (27)–(29), �ti = ti − ti−1,

di = (ln(Si/(Si−1ξi)) − (r − 1

2
σ̄ 2

i )�ti)/(σ̄i

√
�ti),

and σ̄ 2
i is the variance between ti−1 and ti .
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We can use an alternative method for simulating a
forward start option that will allow us to get more efficient
estimators for the price and sensitivities. Note that at time
T1, we know the stock price, strike and the expiration
of the option. Therefore the option price at time T1 can
be written using closed form formulas. Let CE(S, K, T )

denote the price of a European call option with initial
stock price S, strike K and time to expiration T . Note
also that, the option price is linearly homogenous with
respect to the stock price and the strike, i.e., we can write
CE(S, kS, T ) = S CE(1, k, T ). Using this expression, and
following the above arguments, the price of a forward start
option can be written as:

CFW = E[e−rT1S1CE(1, k, T2 − T1)] (30)

Note that CE(1, k, T2−T1) is not a constant since it depends
on the realization of the variance at time T1. Using (30),
we can derive PW derivative estimators for a forward start
option.
PW estimators:

Delta: e−rT1CE(1, k, T2 − T − 1)
S1

S0
(31)

Gamma: 0 (32)

Rho: e−rT1S1

(
∂CE

∂r

)
(33)

where in (33), ∂CE/∂r is the rho of a European call option
and can be evaluated using closed form formulas (see Reiss
and Wystup 2001). The PW estimator for gamma in (32)
is identically zero since the expression S1/S0 in the delta
estimator in (31) does not actually depend on S0.

The simulation results are given in Table 5. The price
estimator given in (30) is denoted as Formula Sim. Price.
When we use the closed form formulas in the simulation,
computing time per simulation increases since a numerical
integration is done for each formula. We adjust the number
of simulation trials for PW method such that it takes roughly
the same amount of time as the LR method. As seen from the
results, using closed form formulas decreases the standard
error significantly.

5 CONCLUSIONS

In this paper we have derived PW and LR methods for the
exact simulation of Greeks under stochastic volatility and
jump models. After finding an appropriate set of condi-
tioning variables, we have expressed the stock price as a
series of lognormal random variables which allowed us to
apply standard techniques of PW and LR methods to de-
rive unbiased simulation estimators. The implementation is
based on the exact simulation algorithm derived in Broadie
and Kaya (2004). Through this algorithm, we are able to
Table 5: Simulation Estimates of Price and Greeks
for a Forward Start Option

MODEL
SV SVJ SVCJ

Formula Sim. Price 6.9688 6.8957 7.0593
(sdt. err.) 0.0086 0.0134 0.0127
Plain Sim. Price 7.0502 6.9145 7.1163
(sdt. err.) 0.0422 0.0516 0.0637
PW Delta 0.0697 0.0690 0.0706
(std. err.) 0.0001 0.0001 0.0001
LR Delta 0.0688 0.0671 0.0677
(std. err.) 0.0014 0.0017 0.0022
PW Gamma 0 0 0
(std. err.) 0 0 0
LR Gamma 0.0000 0.0001 0.0006
(std. err.) 0.0003 0.0004 0.0006
PW Rho 62.4620 62.6915 62.1034
(std. err.) 0.0889 0.1469 0.1502
LR Rho 62.8403 62.3380 61.7331
(std. err.) 0.3621 0.4167 0.4909

Option Parameters: S0=100, k=1, T1=1 year, T2=2
years

simulate the conditioning variables, such as the variance
path and the integral of the variance, exactly. This is criti-
cal, because using discretization methods such as Euler or
Milstein for this step would introduce discretization bias
into the simulation estimates.

We gave the simulation estimators for the Greeks of
a European call option, and some path-dependent options
including a forward start option. As in the case of forward
start options, it is sometimes possible to take advantage
of the specific form of the payoff to derive more efficient
estimators.
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