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ABSTRACT 

This paper presents a method for allocating production ca-
pacity among flexible and dedicated machines based on 
uncertain demand forecasts of products in a production 
portfolio. Given multiple scenarios of future demands with 
the associated probabilities, the method provides alterna-
tive capacity allocations by quantifying the expected val-
ues of the product quality and cost. The product quality is 
estimated as the total performance variations from the 
nominal design for each product in a portfolio. The produc-
tion cost is estimated as the total annual equivalent of in-
vestment and operation costs for each production period. A 
multi-objective genetic algorithm is utilized to compute the 
Pareto-optimal capacity allocations that quantify the trade-
offs between the expected product quality and cost.  Case 
studies on an automotive valvetrain production are pre-
sented, where, under the demand forecasts with low uncer-
tainty, the allocation of flexible machines is encouraged 
only at production steps critical to quality and cost.  

1 INTRODUCTION 

The average number of products in a manufacturing firm’s 
portfolio is increasing in an effort to provide the products 
accommodating the consumer preferences in today’s 
highly segmented markets. To maintain their competitive 
positions, it is crucial for firms to accommodate demand 
changes for the products in their portfolio. The precise 
forecasts of market demands are extremely difficult, if not 
impossible, since they depends on many parameters such 
as the general state of the economy, competitors’ products, 
and changes in customer preferences and expectations.  

Firms’ agility to emerging demands largely depends 
on how quickly and economically they can make adjust-
ments in production capacity of each product in their port-
folio. Since the acquisition (for increasing demands) or sal-
vation (for decreasing demands) of existing production 
machines can take as long as one year in many industries, 

 

firms must either rely on forecasted demands that are prone 
to be erroneous, or seek quick remedies such as overtime 
and outsourcing that can only provide a short-term solution. 
While the use of flexible machining tools (FMTs) can pro-
vide the agility without a long lead time, their added cost 
over the dedicated machines must be carefully accessed in 
order to maintain adequate costs of all products in a portfo-
lio. It is, therefore, of great interests to develop a decision-
support tool for allocating production capacities among 
flexible and dedicated machines, such that production flexi-
bility is introduced only where it is necessary.  To be a prac-
tical aid for a decision maker, such a tool should be capable 
of quantifying a trade-off between quality and cost of prod-
ucts in a portfolio, under the presence of uncertainty in de-
mand forecasts. 

As an extension of our previous work (Kazancioglu 
and Saitou 2004) on simulation-based multi-period capac-
ity planning, this paper presents a method for allocating 
production capacity among flexible and dedicated ma-
chines based on uncertain demand forecasts of multiple 
products in a production portfolio. The extensions are 
made in the incorporation of flexible machines (previously 
only dedicated machines are considered), and uncertainties 
in demand forecasts (previously demand forecasts are as-
sumed accurate).  

Given multiple scenarios of future demands with the 
associated probabilities, the method provides alternative 
capacity allocations (selections of numbers and types of 
production machines) by quantifying the expected values 
of the total quality and cost of all products in a portfolio. 
The product quality is estimated as the sum of performance 
variations from the nominal design for each product in a 
portfolio, obtained form computer analyses of product per-
formances. The production cost is estimated as the sum of 
the annual equivalent of capital investment cost, operating 
cost, backorder cost, and holding cost at each production 
period. With the expected values of product quality and 
cost for multiple demand scenarios being two objectives, a 
multi-objective genetic algorithm (Coello, van Veldhuizen, 
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and Lamont  2002) computes the Pareto-optimal capacity 
allocations that quantify the trade-offs between quality and 
cost objectives. Case studies on an automotive valvetrain 
production are presented, where, under the demand fore-
casts with low uncertainty, the allocation of flexible ma-
chines is encouraged only at production steps critical to 
quality and cost.  

2 RELATED WORK 

Multi-product capacity planning has been the area of active 
research. Below previous work is listed with the focuses on 
1) the robust capacity planning in the presence of demand 
uncertainty, 2) the optimal allocation of flexibility, and 3) 
the use of simulation for modeling and optimizing complex 
manufacturing systems.  

Eppen, Martin, and Schrage (1989) consider a multi-
product, multi-plant, multi-period capacity planning prob-
lem where the appropriate type and level of production ca-
pacity at several locations are sought under risk. 
Paraskevopoulos, Karakitsos, and Rustem (1991) report on 
the significance of uncertainty in capacity investment, pro-
duction and pricing decisions of firms and state that capac-
ity expansion models need to consider uncertainty. Harri-
son and van Mieghem (1999) present a model to determine 
optimal investment strategies for a manufacturing firm that 
employs multiple resources to market several products to 
an uncertain demand. These works, however, rely on sim-
ple analytical models of dedicated production facilities, 
and do not address the issues of the optimal allocation of 
flexible production capacity.  

Jordan and Graves (1995) claim, based on a simple 
model disregarding costs, that limited flexibility configura-
tions have approximately equal benefits of total flexibility 
to cope with uncertain demand. Li and Tirupati (1994, 
1995) examine a multi-product dynamic investment model 
over a finite planning horizon and state that the demand for 
each product in a portfolio can be met by investing on 
dedicated only, flexible only or some combination of dedi-
cated and flexible capacity. Zhang et al. (2004) study a 
discrete-time capacity expansion problem involving multi-
ple product families, multiple machine types and stochastic 
dynamic demand. Gigglio (1970) presented a method to 
help determine the optimal amount and timing of capacity 
expansions for situations where demand or facility life is 
stochastic. While the allocation of flexible production ca-
pacity is explicitly considered, these works lacks the de-
tailed quantifications of product quality and its impact on 
production cost. Further, the analyses are limited to simple 
manufacturing systems due to the use of analytical models.  

 Production simulations, such as discrete-event simula-
tions (Banks, Carson, and Nelson 1996), are used to model 
complex manufacturing systems which analytical models 
cannot handle. Thanks to the recent increase in computer 
speed, simulations have become a practical alternative to 
analytical models (Smith 2003, Eldabi and Paul 2001). 
Völkner and Werners (2000) state the appropriateness of 
simulation-based approaches in decision making with re-
spect to complex dynamic systems and uncertain data. 
Kamrani et al. (1998) present a simulation-based method-
ology to design manufacturing cells using both design and 
manufacturing attributes, and demonstrate the superiority 
of simulation-based results to mathematical model due to 
its ability to incorporate higher details. Bermon and Hoon 
(1999) report Capacity Optimization Planning System 
(CAPS) used by IBM for semiconductor manufacturing, 
which finds the volume mix of products to maximize prof-
its and the required production capacity. Saitou, Mal-
pathak, and Qvam (2002) presented a simulation-based ro-
bust optimization of flexible manufacturing systems under 
forecasted product plan variation. Lee and Saitou (2002) 
extend this work by incorporating the redesign of the da-
tum schemes of produced parts to improve their process 
similarity. While production models are realistic, these 
works also merely focus on production cost, with limited 
or no quantification of product quality as a result of capac-
ity allocations.  

In the present paper, discrete-event simulations and a 
surrogate model of detailed computer analyses are used to 
model production system and product performance, respec-
tively. Using these simulations, the trade-offs between ex-
pected production cost and product quality under demand 
uncertainty are quantified as Pareto-optimal capacity allo-
cations using a multi-objective genetic algorithm (Coello, 
van Veldhuizen, and Lamont 2002).  

3 METHOD 

Figure 1 illustrates an overview of the method. Given mul-
tiple scenarios of future demands with the associated prob-
abilities, it provides, through multi-objective optimization, 
Pareto-optimal capacity allocations (selection of the types 
and numbers of machines) for each production period, with 
respect to the two objectives: the expected quality of all 
product types and the expected total production cost. The 
discrete event simulation simulates the production process 
until steady state, and calculates the investment and opera-
tion costs for all production periods. Using the part quali-
ties in the finished goods inventory (FGI) obtained from 
the discrete-event simulation, the product model (a surro-
gate model of detailed computer analyses) calculates the 
distribution of product performances for each product type, 
based on which the product quality is estimated.  

3.1 Production System Model 

We consider a cellular manufacturing system where the ma-
chines performing the same process are grouped in a cell, 
with part buffers between cells for two subsequent proc-
esses. Figure 2 shows an example configuration of a three-  
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Figure 1: Overview of Method 

 
cell production system with eight buffers. Each cell con- 
sists of one or more machines of a machine type, which 
specifies the following: 

 
• process type (eg., cell 1, cell 2) 
• product type (eg., A only, B only, both A and B) 
• mean (µ) and standard deviation (σ) of process 

time [sec] 
• setup time and cost [$] 
• tolerance specification (µ and σ) on the relevant 

product parameters (such as dimensions)  
• machine price and operating cost [$] 

 
The design variable x  = (xijk) is the n-period capacity 

allocation for a production system with a given configura-
tion, namely the number of machines of type k at cell j for 
the i-th period:  
 
 0 ,  ][1, ],  [1, ], [1, jijkx i n j m k l∈ ∈ ∈ ∈Z , (1) 
 
where 0Zis the set of non-negative integers, n is the num-
ber of periods, m is the number of cells, lj is the number of 
available machine types at cell j. For instance, Figure 2 
shows a 2 period (n = 2) capacity allocation of a 3-cell (m 
= 3) production system with three available machine types 
in each cell (l1 = 12 = 13 = 3), which can be represented 
with 3x3x2=18 integer variables as in Table 1. 

 

 
(a) 

 
(b) 

Figure 2: Example 2-Period Capacity Allocation of a 3-
Cell Production System: (a) Period 1 and (b) Period 2 

 
Table 1: Design Variables for Capacity Allocation in 
Fig. 2 (a) 

x111 = 0 x121 = 1 x131 = 0 x211 = 0 x221 = 1 x231 = 1 
x112 = 0 x122 = 1 x132 = 1 x212 = 1 x222 = 0 x232 = 2 
x113 = 1 x123 = 0 x133 = 1 x213 = 1 x223 = 2 x233 = 0 

 
It is assumed that every product type requires the proc-

essing at all cells before reaching FGI. Therefore, each cell 
must have at least one machine for each product type, 
which gives the following constraint:  
 
 1

t
jk MT

ijkx
∈

≥∑ , (2) 

 
where [1, ]t

j jMT l⊆ is a set of machine types (dedicated or 
flexible) that can process the product type t in cell j. 

For a given capacity allocation (specified by variable 
x), the operation of the production system is simulated us-
ing a discrete event simulation, whose flow chart is shown 
in Figure 3. Simulation is chosen due to its flexibility in 
modeling various production system configurations, and 
the ease of recording the types of the machines used for 
each part going into FGI, which are required for estimating 
the quality of the finished products as described below. 
During the simulation, the process time for each machine is 
numerically sampled according to the normal distribution 
with the mean and standard deviation of the machine type. 
After simulating production until its steady state for each 
period in demand forecasts, the total amount of production 
and the utilization of each machine are calculated in order 
to estimate the operating cost. 
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Figure 3: Flowchart of Discrete-Event Simulation 

3.2 Product Model 

The product model takes product parameters (eg. part di-
mensions) as inputs and calculates one or (typically) more 
measures of product performances. The model can be ana-
lytical, a simulation, or a surrogate model of an expensive 
computer analyses as adopted in the following case study.  

The variations in product performances from their 
nominal values is depends on the variations of the input 
product parameters (eg., part dimensions). For a given ca-
pacity allocation (specified by variable x), these variations 
of the input product parameters can be estimated by the 
tolerance specifications of the machines each part has gone 
through before reaching FGI. For instance, the variations 
of a part following the machined marked black in Figure 2 
(a) depend on the tolerance specifications of M3 in cell 1, 
M1 in cell 2, and M3 in cell 3.  

While the variations in production performances can 
be estimated by Monte Carlo sampling of the input product 
parameters based on the tolerance specifications of the ma-
chines, doing so within an optimization loop will be com-
putationally very expensive due to the need of a large 
number samples to achieve sufficiently high statistical con-
fidence. Since we are interested in the variations in product 
performances during steady-state production, the means and 
standard deviations of the product performances (denoted as 
µc and σc below) are estimated as follows:  

 
1. Before optimization: For all possible sequences 

of machines a part can go though before reaching 
FGI, obtain the means and standard deviations of 
the input product parameters, and calculate µc and 
σc using Monte Carlo simulation. Record the re-
sults in a look up table. 

2. During optimization: For each candidate capac-
ity allocation specified by the optimizer, do the 
discrete-event simulation until steady-state to ob-
tain FGI. Calculate µc and σc using the record of 
the machine types each part in FGI went through 
and the look-up table obtained in Step 1. 

 
Since each part in FGI followed one of the machine se-
quences in the look-up table for which µc and σc are 
known, obtaining µc and σc resulting from all parts in FGI 
is equivalent to knowing the distribution of the samples 
consisting of the samples of several known distributions. 
This can be done by using the fact that for sufficiently 
large ni and ni+1, the distribution of the ni + ni+1 samples 
consisting of ni samples of N(µi, σi) and ni+1 samples of 
N(µi+1, σi+1) is approximated by N(µ, σ) where:  
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Accordingly, the following iterative algorithm will calcu-
late the mean and standard deviation of in n=∑ samples 
consisting of ni samples of N(µi, σi) where i = 1,2,…, m 
(Kazancioglu, 2004):  
 

1. i ←1.  
2. Calculate µ and σ by Equation (3) (given below). 
3. ni+1 ← ni+ni+1, µi+1 ← µ, σi+i ← σ , i ← i + 1. 
4. If i = m, return µ and σ. Otherwise go to step 2. 

 
In the following case study, it is confirmed that this algo-
rithm accurately calculates µc and σc comparable to the re-
sults of Monte Carlo simulation. 

3.3 Demand Forecasts  

Demand forecasts are given as an event tree with associ-
ated probabilities, where a probable demand (numbers of 
production for each product type) during the i-th period is 
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associated with a node at depth i, and the probability that 
the demands at a node occurs is associated with the edge 
incident to the node. Figure 4 illustrates an example. For-
mally, demand forecast DF is a pair of set of demands D 
and set of probability P:  
 

 0

0
| |

( , )
{ | ; }
{ | ; ; 1 for [1, ]},

nt
s s

s s s
s k

DF D P
D s S
P p p s S p k n

=

=
= ∈ ∈

= ∈ ∈ = ∈∑
Z
R 

d d  (4) 

 
where nt is the number of product types in a portfolio, 
and 0R are the non-negative subset of real numbers. The ele-
ments in D and P are “indexed” with sequence s denoting to 
their paths from the root (see Figure 4 for examples):  
 
 1 0{ | , , ; , [1, ], [0, ]}l iS s s b b b i l l n= =< > ∈ ∈ ∈… Z .(5) 
 

Demand scenario dss is a sequence of the demands in 
D along a path from the root to a node corresponding to ds. 
By letting 0, ,s t b t S b= ∈ ∈D Z (symbol “ D ” is the con-
catenation operator of two sequences), it can be recursively 
defined as: 

 

 
if | | 0

otherwise.
b

s
t s

d t
d

< > =
=  < > D

ds
ds

 (6) 

 
In Figure 4, for example, ds<0,1,2> = ds<0,1> D< d<0,1,2> > 

= ds<0> D< d<0,1> , d<0,1,2> > = < d<0>, d<0,1>, d<0,1,2> >. De-
mand scenario dss with |s| = n represents demand predic-
tions of all n periods, which we refer to as a complete de-
mand scenario. Similarly, the probability of occurrence qs 
of demand scenario dss is defined as the product of the 
probabilities in P along the path:  
 

 
if | | 0

otherwise.
b

s
t s

p t
q

q p
=

=  ×
 (7) 

 
In Figure 4, for example, q<0,1,2> = q<0,1> × p<0,1,2> = 

q<0> × p<0,1> × p<0,1,2> =  p<0> × p<0,1> × p<0,1,2>.  

3.4 Quality and Cost Objective Functions 

The first objective is the expected value of the weighted sum 
of the coefficient of variation of each performance criterion 
for each product type, under a given demand forecast DF:  
 

 

1 1
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1
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f w
σ
µ

∈
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=

=

∑

∑∑

x x ds

x ds
 (8) 
where nc is the number of performance criteria, nt is the 
number of product types, µi

t and σi
t
 are the mean and stan-

dard deviation of criterion i of product type t obtained by 
the product model, and wi

t is the weight of criterion i of 
product type t. 
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Figure 4: Example Demand Forecasts for n Periods 
 

The second objective function is the expected values 
of the sum of the annual equivalent of capital investment 
cost (IC), salvage cost (SC), operating cost (OC), backor-
der cost (BC), and holding cost (HC) for each period 
(Park, 2001):  

 

 

2 2

| |

2

1

( , ) ( , )

( , )

     {(1 ) } ,

s s
s S
s n

s

n

i i i i i i
i

F DF q f

f

IC SC OC BC HCε δ η

∈
=

=

=

= + + + + +

∑

∑

x x ds

x ds  (9) 

 
where ε = η(1+η)n/{(1+η)n-1} is the capital recovery factor 
for equal payments during n periods with capital cost η, 
and δi = (1+η)-I is the discount factor for the present value 
of future cash flows. 

The capital investment cost ICi for period i is the cost 
of new machines purchased at the beginning of period i, 
assuming there are no machines available at the beginning 
of period 1:  
 

 1 1

( 1)
1 1

1

max(0, ) [2, ] ,

j

j

lm

jk ijk
j k

i lm

jk ijk i jk
j k

c x i
IC

c x x i n

= =

−
= =


=

= 
 × − ∈


∑∑

∑∑
 (10) 

 
where cjk is the price of machine of type k in cell j. 

 
The salvage cost SCi for period i is the (negative) cost 

of exiting machines sold at its market value at the end of  
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period i, assuming all machines are sold at the end of pe-
riod n:  

 

 1 1

1 1 1

[1, 1]

 ,

j
ijko

i

j njk
njko

jm
A

jk
j k o O

i l xm
A

jk
j k o

c i n
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c i n
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= = ∈

= = =


− ∈ −
= 
− =


∑∑∑

∑∑∑
 (11) 

 
where α is the yearly percentage decrease in the market 
value of a machine, Aijko is the age of the o-th machine of 
type k in cell j in period i. Oi is a set of max(0, x(i-1)jk - xijk) 
indices of machines of type k in cell j sold after period i.  

The operating cost OCi of period i is the sum of the 
product of the machine utilization, operating cost, and total 
operation time in a period: 
 

 
1 1 1

(1 )
j ijk

ijko

l xm
A

i ijko jk i
j k o

OC u oc tλ
= = =

= × + ×∑∑∑ , (12) 

 
where uijko is the utilization of the o-th machine of type k in 
cell j in period i, ocjk is the operation cost of machine type k 
in cell j, λ is the yearly percentage increase in the operation 
cost, and ti is the operating time. They are given as: 
 

 
max

/

min( , / ) ,
ijko ijko s

i i i s

u bt t

t t d n t

=

= ×
 (13) 

 
where btijko is the operating time (busy time) of the o-th 
machine of type k in cell j in period i, ts is the total opera-
tion time simulated, tmax is the maximum operation time, di 
is the demand in period i of scenario dss, and ni is the num-
ber of products produced in period i. The values of btijko, ts, 
and ni are provided by the discrete event simulation of the 
production process.  

The back order cost BCi = cb×max(0,di–ni) penalizes 
poor customer service due to unmet demand by a cost pro-
portional to the amount of the demand that cannot be filled, 
where cb is the back order cost. Similarly, an inventory 
holding cost HCi = ch×max(0,ni–di) is incurred when there 
is excess production, ch being the unit holding cost.   

3.5 Problem Formulation 

Based on the above equations, the problem can be written 
as the following multi-objective integer programming:  
 

 

1 2

0

minimize { ( , ), ( , )}
subject to:
        1

,  ] .         [1, ],  [1, ], [1,
t
jk MT

ijk

jijk

F DF F DF

x

x i n j m k l
∈

≥
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∑

Z

x x

 (14) 
This problem is solved using a multi-objective genetic algo-
rithm (MOGA), an extension of GAs that do not require mul-
tiple objectives to be aggregated into a single value, (e.g. as a 
weighted sum). Instead of static aggregates such as a 
weighted sum, multi-objective genetic algorithms dynami-
cally determine an aggregate of multiple objective values of a 
solution based on its relative quality in the current popula-
tion, typically as the degree to which the solution dominates 

others in the current population (Coello, van Veldhuizen, and 
Lamont  2002).  

4 CASE STUDIES 

A case study is conducted on an automotive valvetrain 
production system. The main function of the valvetrain 
(Figure 5 (a)) is to control the flow of intake and exhaust 
gases with linear motion of valves, which is obtained by 
transforming the rotational motion of camshaft. The case 
study focuses on the production of valve stems and cam-
shafts, and their effects on the horsepower, torque, and fuel 
consumption of the engine.  

 

  
(a) (b) 

Figure 5: (a) Valvetrain (Kazancioglu et al. 2003, Ka-
zancioglu 2004); (b) Integrated Valvetrain-Engine 
Simulation 

4.1 Product and Production System Models 

The product model is a surrogate model (Artificial Neural 
Network) of an integrated valvetrain-engine simulation 
model of Ford Duratec 2.5L V6 SI engine, developed using 
commercial software GT-Vtrain and GT-Power (Kazan-
cioglu et al. 2003; Kazancioglu 2004), shown in Figure 5 
(b). The inputs are the selective dimensions of valves and 
cams: valve stem length (LVS), valve stem diameter (VD), 
cam lift duration angle (ANGD), and cam lift beginning 
angle (D0). The outputs are the horsepower, torque, and 
fuel consumption of the engine. 

Figure 6 shows the cell configuration of the valvetrain 
production system with an example capacity allocation. It 
produce valve stems and cam shafts, and assembles them 
with engine blocks. The line for valve stems consists of cells 
1 and 2 for machining LVS and VD, respectively. The line 
for camshafts consists of cell 3 for grinding cam lobes (con-
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trols ANGD) and cell 4 for assembling the finished cam 
lobes to camshaft (controls D0).  
 

 

 
Figure 6: Valvetrain Production System 

 
It is assumed that the system produces two (2) types of 

valvetrains, A and B, where type A valvetrains are made of 
type A valves and cams, and type B valvetrains are made 
of type B valves and cams. Machines types 1, 2, and 3 are 
valvetrain, a dedicated machine for type B valvetrain, and 
a flexible machine for both types changeover time of re-
spectively defined as a dedicated machine for type A 
20minutes with hourly changeover costs of $30-130. Note in 
call cells, the tolerances of the flexible machines are higher 
than the dedicated machines. Table 2 shows the machine 
data. Due to the complex requirements of the production 
simulation, an in-house software in Visual Basic with a Mi-
crosoft Excel front-end is developed (Kazancioglu, 2004). 
 
Table 2: Machine Data for Valvetrain Production System 

 Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
Mach. Id. 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 5-3 
µPT [min] 35 45 50 20 25 30 38 45 52 40 45 50 4 
σ PT [min] 1 1 1 1 1 1 2 2 2 2 2 2 0.5 
OC [$/h] 10 15 20 5 7 12 12 20 26 12 20 25 5 
ST [min] n/a n/a 20 n/a n/a 20 n/a n/a 20 n/a n/a 20 n/a 
SC [$/h] n/a n/a 50 n/a n/a 30 n/a n/a 130 n/a n/a 130 n/a 
P [K$] 200 270 350 150 200 300 350 500 650 300 500 650 60 
Tol  [mm] 0.015 0.002 0.001 0.03 0.025 0.01 0.003 0.002 0.001 0.5 0.15 0.07 n/a  

 
In industries where there are rapid technological ad-

vances or dynamically changing customer preferences such 
as electronics and automotive industry, keeping inventory is 
risky since the products in stock may become obsolete be-
fore they are sold. As such, the case study assumed the pro-
duction stops as soon as the demand is met at each period (a 
no back-order, no-inventory policy). Also, the input buffers 
providing raw materials never starve. The cost of capital, 
depreciation rate of machines and rate of increase operation 
cost are assumed 10%, 50% and 10% per year, respectively. 

4.2 Demand Forecasts 

Two, 3-period demand forecasts with different uncertainties 
are studied, where type B valvetrain replaces type A in time 
at different rates. Figure 7 shows the demand forecast with 
low uncertainties, and Figure 8 shows its most likely demand 
scenario, illustrating a slow replacement of type A by type B. 
Figure 9 shows the demand forecast with high uncertainties, 
and Figure 10 shows its demand scenario with the fastest re-
placement of type A. It should be noted that in both demand 
forecasts the demand for the period 1 is assumed to be known 
with no uncertainties (i.e., p<0>=1.0). 

 

 
Figure 7: Demand Forecast with Low Uncer-
tainty 
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Figure 8: Most Likely Demand Scenario of the 
Demand Forecast in Figure 7 
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Figure 9: Demand Forecast with High Uncer-
tainty 
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Figure 10: Demand Scenario of the Demand Forecast in 
Figure 9 with the Fastest Replacement of Product Type A 

4.3 Results 

Figure 11 shows the Pareto optimum results for high and 
low uncertainty forecasts, and Tables 3 and 4 list the 3-
period capacity allocations corresponding to the options 1 
(high uncertainty) and 2 (low uncertainty) indicated in Fig-
ure 11. As one might expect, the results suggest that the 
capacity allocations for the high uncertainty forecast must 
utilize more flexible machines (machine type 3), increasing 
the total cost of production.  They also result in higher 
qualities, since the tolerance of the flexible machines are 
higher than the ones of the dedicated machines.  
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Figure 11: Pareto Optimum Results 

 
Table 3: Capacity Allocation for Option 1 (High Uncer-
tainty) 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
Mach. Id. 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 4-1 4-2 4-3 5-3 
Period 1 2 3 5 2 3 4 2 2 4 3 2 5 3 
Period 2 2 3 3 2 2 3 2 2 3 2 2 4 3 
Period 3 3 3 6 3 3 4 3 2 5 3 3 6 3 

 
 

option 1 

option 2
Table 4: Capacity Allocation for Option 2 (Low Uncer-
tainty) 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 
Mach. Id. 1-11-21-32-1 2-22-3 3-1 3-2 3-3 4-1 4-2 4-3 5-3 
Period 1 5 4 1 3 4 2 3 4 1 4 4 2 3 
Period 2 3 3 1 3 4 1 2 4 2 2 4 3 3 
Period 3 5 6 2 4 5 2 5 6 1 5 7 2 4 

 
The results for the low uncertainty forecast, on the 

other hand, provide a wide range of alternatives: The ca-
pacity allocations with more flexible machines have higher 
product quality at the expense of higher total cost, whereas 
the ones with only dedicated machines have lower cost, at 
the expense of lower product quality. These low-cost, low-
quality alternatives do not appear for the high uncertainty 
forecasts, due to the risk involved in committing to the 
dedicated machines, which would result in the very high 
production cost in some demand scenarios with dramatic 
demand changes. 

5 CONCLUSION 

This paper presented a simulation-based method for capacity 
allocation among flexible and dedicated machines based on 
uncertain demand forecasts. Given demand scenarios with 
the associated probabilities, the method provided Pareto-
optimal capacity allocations based on the expected values of 
the product quality and cost. The product quality was esti-
mated as the total performance variations for each product in 
a portfolio. The production cost was estimated as the total in-
vestment and operation costs for each production period.  A 
case study on an automotive valvetrain production was pre-
sented. The analysis of the resulting Pareto optimal capacity 
allocations suggested that firms should invest on a larger per-
centage of flexible machines when there was high uncertainty 
in the future demand forecasts. Due to the use of simulations, 
the method can be easilty customized for different product 
and production system characteristics. 
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