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ABSTRACT 

We describe research intended to build an agent-based 
model that is “organizationally realistic.” By this we mean 
that the attributes of the artificial organization of agents con-
form to empirical results for human organizational systems. 
We build upon the definitional structure of computational 
organization theory (Carley and Prietula 1994b) and repre-
sent an organization as a network of agents, tasks, resources, 
and knowledge (Krackhardt and Carley 1998). We do not 
assume an  a priori design requirement. Rather, organiza-
tional structures are posited to emerge endogenously, the 
particulars being a key area of study. Agent interactions are 
governed by local network dynamics, agent-specific rules, 
and explicit universal constraints (Hazy and Tivnan 2003).  

1 COMPUTATIONAL ORGANIZATION THEORY 

To provide a basis for the agent model, we build upon the 
axiomatic definition of an organization often used in com-
putational organizational theory and modeling (Carley and 
Prietula 1994a). This axiomatic base, known as ACTS the-
ory, can be summarized as follows: “organizations are 
viewed as collections of intelligent agents who are cogni-
tively restricted, task oriented, and socially situated” (p. 
56). To look at the artificial organization that results from 
agent interactions, we adopt a precise description of an or-
ganization as a connected network interlinking agents, 
tasks, resources, and knowledge.  

This description, known as the PCANSS or meta-
matrix representation (Krackhardt and Carley 1998), has 
proven to be a useful platform for research, in part because 
it offers unambiguous structural measurements for testing 
hypotheses (Carley and Krackhardt 1999; Carley and Ren 
2001; Carley, Ren, and Krackhardt 2000). PCANSS takes 
its name from the sub-matrices that make up the whole or 
meta-matrix linking each element to all others. Specifi-
cally, the sub-matrices are as follows: the Precedence ma-
trix for task-to-task links, the Capabilities matrix for re-

 

source-to-task links, the Assignment matrix for agent-to-
task links, the Needs matrix for resource-to-task links, the 
Social matrix for agent-to-agent links, and the Substitutes 
matrix for resources-to-resources links. In this representa-
tion, all knowledge relevant to collective activities is repre-
sented as a collection of knowledge nodes that is external 
to the agents. This controversial aspect of the PCANSS 
formalism is potentially the most powerful. Relevant 
knowledge, whether within or outside agent memory, is 
considered as its own network relating policies, values, in-
structions, or objectives and may be embodied in manuals, 
e-mails, databases, or an agent’s memory, either as explicit 
or implicit knowledge (Nonaka 1994).  

Agents access knowledge nodes through network con-
nections, either directly or through other agents. They also 
access resources, are assigned tasks, and communicate 
with other agents through network connections. First-order 
links connect a particular node with its neighbors. Links of 
a neighbor to other nodes are called second-order connec-
tions. The network changes as each agent interacts with its 
local environment over time. For this to occur, agents carry 
a symbolic representation of their places in the network. As 
random events, or events initiated by other agents, occur, 
each agent uses its symbolic representation and its rules to 
change its local situation. For example, a link to new 
knowledge may be created (Hazy and Tivnan 2003).  

To assess whether emergence occurs in this system, 
we use Sallach’s (2003) definition of emergence as being 
the contributing process of organization to multi-level sys-
tems. Sallach asserted that social phenomena emerge from 
agent (e.g., individual) interactions. This notion provides 
an ontological basis for our research.  

2 ACTION THEORY OF ORGANIZATIONS 

To bridge the gap between individual and organization lev-
els of analysis, we adopt an open systems approach 
(Jackson 2003, von Bertalanffy 1950) and use the general 
theory of action (Parsons 1951, Schwandt and Marquardt 
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2000) to evaluate organization-level effects. In particular, 
we use Schwandt’s (1997) Organizational Learning Sys-
tems Model (OLSM). 

Schwandt (1997) defined organizational learning as 
“a system of actions, actors, symbols and processes that 
enables an organization to transform information into 
valued knowledge which in turn increases its long-run 
adaptive capacity” (p. 8). Schwandt’s OLSM contains 
four performance and four learning action subsystems, 
each with its own interchange medium. In this research, 
we focus on the Environmental Interface subsystem and 
its medium of interchange, new information, and on the 
Dissemination and Diffusion subsystem and its medium 
of interchange, structuration.  

The Environmental Interface subsystem acts as the in-
formation-input mechanism for the organizational system 
(Schwandt 1997, p. 9). This subsystem of actions focuses 
externally to relate the organization’s performance and 
learning systems to its environment and to develop the 
means by which it pursues different goals and meets 
changing environmental conditions. Its interchange 
medium is new information, which must be found, gath-
ered, and imported into the system. 

The Dissemination/Diffusion subsystem moves, trans-
fers, retrieves, and captures information and knowledge for 
the system. The actions of this subsystem are characterized 
by their ability to meet the integrating requirements of the 
other subsystems; they include acts of communication, 
networking, management, coordination, and implemen-
tation, roles supporting the norms associated with the 
movement of information and knowledge (Schwandt and 
Marquardt 2000). Structuration (Giddens 1984), the inter-
change medium, is more than a structure of the social sys-
tem; it is an integration of organizational structures, roles, 
norms, objects, and processes that provide this dynamic 
quality called structuration (Schwandt and Marquardt 
2000). Effects of structuration can be considered as 
changes to the organization network (Hazy, Tivnan, and 
Schwandt 2004a). 

The above context, as the next section describes, pro-
vides a lexicon that enables us to define some of the rela-
tionships between agent-level phenomena and organization-
level effects. Thus, some observed organizational phenom-
ena, certain social structures—for example, the organiza-
tion’s boundary (Hazy, Tivnan, and Schwandt 2003a, 2004a, 
2004b)—or social roles (Duong and Grefenstette 2004) can 
be explicitly shown to be emergent in nature. 

3 THE MODEL 

To develop an organizationally realistic agent-based Model 
of Organization, Structural Emergence, and Sustainability 
(MOSES), we chose to imitate a common coordination 
situation: interdependent tasks that must all be completed 
to gain collective reward (Axelrod 1984, 1997; Barnard 
1938; Shea and Guzzo 1985). In particular, at the agent 
level, this situation depicts the classic game theory di-
lemma of cooperation versus defection in agent choice 
(Fudenberg and Levine 1998, Nash 1950, von Neumann 
and Morgenstern 1945); and at the collective level, it de-
picts the fitness value to the many of cooperation by the 
many (Axelrod 1984, 1997; Simon 1990). In an economic 
or market-based implementation, such as the one described 
here, this approach amounts to mimicking a production 
process (Smith 1776/1976) or value chain (Porter 1985) 
within the collective. 

To implement a generic cooperation environment, 
structurally interdependent and sequential tasks, i є N, were 
defined  (i.e., task i+1 depended for input upon the resources 
output by task i). Thus, resources moved through a value 
chain of N tasks from raw materials to final product. 

Resources were defined such that each task required a 
resource as input (i.e., a PCANSS needs connection). Upon 
the completion of each task, a resource was output that was 
either used as an input for another task or, if it represented 
the final product, was immediately converted into energy to 
be distributed among selected cooperating agents according 
to the payoff function described in the following section. 

Agents were defined as action catalysts within the sys-
tem, interacting dynamically with their local network con-
nections to change their local connection environment 
(Hazy and Tivnan 2003). Tasks and resources do not inter-
act spontaneously; rather, an appropriately connected agent 
must be present to perform the task with its respective in-
put resource. When an agent is connected to a task (i.e., a 
PCANSS assignment) and to the appropriate resources 
(i.e., a PCANSS capability), and when the task is con-
nected to the resource as its input (i.e., a PCANSS needs 
connection), then a reaction occurs: the task is executed, 
and resources are transformed to move along the value 
chain. Figure 3 shows these value chain relationships. 

Knowledge was defined as a specialized resource, one 
that determines the efficiency of the catalyzed reaction—
an agent connection (also a PCANSS capability) to a 
higher-value knowledge node leads to more efficient trans-
formation along the value chain. This approach is imple-
mented as greater value in the final product and is thus, ul-
timately, a higher payoff for distribution among 
cooperating agents. Higher-value knowledge is imple-
mented in the model as knowledge based upon new infor-
mation introduced into the environment more recently. 

New agent-to-knowledge connection, that is, learning, 
occurs through agent-to-agent interaction. If the agent’s 
method matrix—its symbolic representation of its envi-
ronment (Hazy and Tivnan 2003)—is such that it has visi-
bility through an interacting agent to that agent’s knowl-
edge connections, then the first agent can become 
connected to the second agent’s knowledge. In other 
words, it can learn. Although the implementation described 
here assumes that information and knowledge is always 
exchanged when agents with appropriate methods matrices 
interact, conceptually there could be a negotiation, using 
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tags, wherein agents build a level of trust or alignment with 
other agents. Based on this trust, the agent could decide 
what kind of information—perhaps even false informa-
tion—is exchanged in an interaction. Future research could 
use game theory to inform the exchange logic of interac-
tions. When the knowledge gained can be applied to per-
form tasks more efficiently, this learning process is called 
knowledge diffusion (Schwandt 1997).  

The organization’s boundary is defined at the agent 
level. In particular, it is defined as a limitation to an agent’s 
capacity to act as catalyst within the organization. Agents 
that are in a position to catalyze task and resource transfor-
mation interactions—that is, that can engage in coordinated, 
collective behavior—are considered to be inside the bound-
ary. Those unable to catalyze transformation interactions are 
said to be outside the organization’s boundary. The state of 
being inside or outside the organization boundary varies 
over time. Agents that spend time both inside and outside 
the organization’s boundary are called boundary spanners. 
Agents’ boundary spanning costs the organization its poten-
tial for transformation events (i.e., efficiency declines). 
However, when new knowledge originates outside the or-
ganization, the potential benefits to efficiency can outweigh 
this cost (Hazy, Tivnan and Schwandt 2004b). Thus, agent-
level boundary phenomena can be seen to represent the 
tradeoff between performance and learning at the organiza-
tion level, an example of emergent organizational structure 
(Hazy, Tivnan and Schwandt 2004a, 2004b).  

When an agent is outside the organization’s boundary 
and encounters another agent, an outsider agent, the origi-
nal agent can learn provided it has visibility into the out-
sider agent’s knowledge connections. This is determined 
by the agent’s method matrix and method function and, in 
theory, may be subject to interaction dilemmas, like the 
prisoners dilemma described in game theory (Fudenberg 
and Levine 1998). Because agents outside the organiza-
tion’s boundary cannot perform or catalyze the organiza-
tion’s tasks, learning connections gained outside the 
boundary do not initially have context within the organiza-
tion’s interdependence structure, its collective objectives 
(Nonaka 1994). As such, these new connections are re-
ferred to as new information connections rather than as 
knowledge connections when the agent is outside the 
boundary. Thus, agent interactions outside the boundary 
lead to information transfer events rather than knowledge 
diffusion events (Hazy, Tivnan and Schwandt 2004b). 

Once the information is carried across the boundary 
of the organization by the boundary-spanning agent, and 
once further agent interactions occur—now in the context 
of the interdependent task and reward environment—
knowledge diffusion results. Thus, the mechanism 
whereby boundary-spanning agents gather new informa-
tion from outside the organization’s boundary and import 
it into the system for diffusion as knowledge is defined at 
the organization level (Parsons 1951, Schwandt 1997) us-
ing only local agent interactions and locally determined 
agent capabilities and decisions. 

The above describes the logic used to develop an agent-
based Model of Organization, Structural Emergence, and 
Sustainability (MOSES). Sustainability results from the evo-
lution of the system. It is determined to a large extent by the 
nature of the payoff function described in the next section. 

4 THE PAYOFF FUNCTION 

The payoff function determines the amount of collective re-
sources that the organization gains following the completion 
of the final task in the value chain (i.e., the final task includes 
taking the  product to market). Recalling that the organization 
is sustained only by agents’ possessing energy to perform 
tasks for the benefit of the collective, the payoff function de-
termines the resources available for re-capitalization into raw 
materials and energy to be distributed to agents.  

For this analysis, payoff per unit of final product is 
assumed to be a function of the following three factors:  
(a) an arbitrary maximum payoff, (b) the currency of the 
knowledge used to produce the product (i.e., compared to 
the most current knowledge), and (c) the turbulence in the 
environment. We assume that the maximum payoff repre-
sents the most value that could be realized when the most 
up-to-date knowledge is used to create the product. From 
this maximum payoff, the actual payoff is reduced by a 
factor that captures both the age of the knowledge used in 
the production of the particular product and the volatility 
of the market. If older, outdated knowledge is used, the 
payoff function adjusts to account for the declining value 
of aging knowledge. In this analysis, the adjustment factor 
has three terms: (a) the Knowledge Gap—the difference 
between the current knowledge generation and the genera-
tion of the knowledge actually applied in production, (b) 
the Turbulence Factor—the number of time steps between 
knowledge generations (i.e., market volatility), and (c) the 
Maximum Payoff. 

Therefore, for each time step in which the organization 
produces a final product, it is converted into energy units 
that are subsequently divided equally between the member 
agents of the organization identified to receive reward (i.e., 
the organization maintains an egalitarian reward system) 
(Axtell 1999). Consistent with the above description, the 
payoff occurs according to the following equation: 
 

( )* 1 Turbulence FactorPayoff Maximum Payoff Knowledge Gap
Maximum Payoff

 
= − 

 
 
where the Payoff is assumed to equal a Knowledge Gap ad-
justment downward from a Maximum Payoff. The effect is 
that more turbulent environments are more forgiving of 
knowledge gaps. Of course, knowledge gaps develop more 
quickly and are more prevalent in turbulent environments. 
This relationship represents the idea that an extremely high 
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Maximum Payoff would tend to make an organization less 
vulnerable to change in the environment. An organization 
with significant intellectual property protection, for example, 
would have higher margins and therefore would tend to be 
less vulnerable to knowledge decay in the short run, while in 
the long run the same organization needs to maintain an 
awareness of changing trends in its market  (i.e., maintaining 
its Requisite Variety (Ashby 1956)). 

Although this payoff function is used throughout this 
study, variations in its structure may prove of interest in 
future research.  

5 IMPLEMENTATION DETAIL 

The model was coded in JAVA, an object-oriented pro-
gramming language ideally suited for agent-based model-
ing. The reader will note that a complete JAVA program of 
MOSES is available from the authors upon request. It was 
implemented as a grid-world artificial society (Epstein and 
Axtell 1996), which was allowed to evolve over discrete 
time steps. In this instance of MOSES, the agents them-
selves did not apply a genetic algorithm (Epstein and 
Axtell 1996, Holland 1975/1992, 1995) that evolved inde-
pendently of the overall network configuration. However, 
the agents did include changing knowledge connections, 
which represented learning in the social context. Agents 
interacted randomly with objects in the grid world, includ-
ing other agents. The results of all agent and object interac-
tions were processed during each time step, and these val-
ues became the initial conditions for the following time 
step (Hazy and Tivnan 2003). 

The  grid world is the environment in which action 
occurs. It is defined as a 150-by-150 grid that wraps 
around both ends (i.e., a torus). A convex and connected 
50-by-150 section of the grid, called the Outback, was de-
fined to be outside of the organization’s boundary. The 
edge of the Outback was the organization’s boundary. 
When agents were in the Outback, they could not perform 
tasks that transformed resources, although they could learn 
from other agents. 

Located randomly at various positions on the grid, 
but not in the Outback, were pockets of resources. Both 
member agents (inside the organization) and non-member 
agents (in the Outback) moved randomly about this grid 
at  each time step. Agents consumed energy at each time 
step. Energy was replenished when the final product was 
completed according to the payoff function and payoff 
distribution algorithm. If an agent’s energy level reached 
zero, the agent was considered dead and was removed 
from the game. 

Only boundary-spanning member agents could cross 
the organization’s boundary. Thus, most agents were lim-
ited to motion either inside or outside the organization’s 
boundary. For simplicity, the term “agent” will be used for 
member agents. The term “outsider agents” will be used 
when referring to non-members. 
At each time step, all agents moved randomly around 
the grid. Encounters with resources resulted in their trans-
formation into further refined outputs according to the 
knowledge level of the agent and the agents’ task assign-
ments. Both member and outsider agents interacted amongst 
themselves and exchanged information and knowledge that 
might have enhanced the ability of the one or the other agent 
to perform a specific task in future rounds. For simplicity, in 
the implementation described, the agents were hard coded 
with a simplistic interaction strategy—to always exchange 
information—rather than a more complex strategy, such as 
one used to solve the prisoners dilemma (Fudenberg and 
Levine 1998, Macy and Skvoretz 1998). 

Some number of member agents were designated as 
boundary spanners: able to cross the organization’s bound-
ary and interact with non-organizational actors who pos-
sessed new information. All new information was intro-
duced first into these outsider agents. This was how 
knowledge was refreshed, but the member agent had to re-
turn to the organization to pass along the refreshed knowl-
edge in order for it to be useful to the organization.  This 
continued until all agents were dead or otherwise for a 
user-defined number of steps, because dead agents were 
not replaced during a run, nor could they change their 
boundary spanner designation. 

6 REPRESENTATIVE RUNS 

The following section describes the model behavior using 
results from three different representative model runs—
arbitrarily identified as Model Run 1, Model Run 2, and 
Model Run 3. Each model run resulted from the same set 
of parametric conditions: the number of boundary spanners 
was set to 40 of the 100 organizational members, and the 
turbulence interval was set to 15 (or three business weeks 
between the introduction of new information in the envi-
ronment). Although the parametric conditions remained 
constant in each of the three representative examples, Fig-
ures 1 and 2 illustrate that dramatically different trajecto-
ries (or outcomes) resulted in each run. 

Figure 1 identifies the number of surviving agents 
within each model run at any given time, up to a defined 
suspense date (essentially ten years of life for the virtual 
organizations). Note that the organizations represented by 
Model Runs 1 and 2 no longer have any surviving agents 
by time 233 and 1582, respectively. This result concludes 
the model run in these two cases and, for our purposes, 
represents the dissolution of the organization. 

Figure 1 also shows a period of stability (i.e., zero 
agent attrition) occurring early in each of the three model 
runs. In Model Run 1, the organization appears to have re-
versed an initial trend of poor performance, but it simply 
cannot sustain this reversal and rapidly decays. In Model 
Run 2, the organization initially enjoys an extended pe-
riod of strong performance (an exploitation focus—
March 1991) until it finds itself misaligned with the 
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Figure 1: Number of Surviving Agents over Time in 
Three Representative Model Runs 
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Figure 2: Production over Time in Three Representa-
tive Model Runs  

 
changing environmental conditions—a competency trap 
(Levinthal and March 1993, Levitt and March 1988). In 
contrast, the organization represented by Model Run 3 
appears to overcome similar conditions of initial attrition 
and an environmental shift. 

Figure 2 provides another explanatory perspective for 
the differentiation between the model runs. Figure 2 illus-
trates the aggregate organizational production for each of 
the three organizations. Note that the production rates (i.e., 
the slope of the respective lines) differ. The organization 
represented in Model Run 1 begins production almost im-
mediately but at a lower rate, one insufficient to sustain the 
organization. The organization identified in Model Run 2 
maintains production at the highest rate but, due to a lack 
of boundary spanning, seems to remain unaware that the 
environmental conditions for its products have changed 
(e.g., it continues to produce first-generation cellular 
phones when the market demand has shifted to second-
generation digital phones). Alternatively, the organization 
represented in Model Run 3 experiences a decline in its 
production rate (Time = 1450) due to changing environ-
mental conditions like those in Model Run 2. This decline 
in production begins to create a resource-constrained envi-
ronment within the organization, which eventually leads to 
agent attrition (Time = 1800). Unlike in Model Run 2, 
however, the organization in Model Run 3 adapts its prod-
uct offerings based on the information it gleans from 
boundary-spanning activity; thus, it resumes its production 
in such a manner as to sustain the organization in its cur-
rent state as well as maintain its awareness of environ-
mental conditions. 

7 VALIDATION 

To gain confidence that the simulation model approximated 
observed behavior of organizations along the dimensions of 
interest, we identified stylized facts for comparison. Our hy-
potheses involved the output level or relative fitness of busi-
ness organizations producing output by performing a series 
of interdependent tasks. These tasks were assumed to use re-
sources and belong to a value chain. Tasks used raw materi-
als and converted them into work-in-progress inventory and 
then to final outputs. We therefore used empirically derived 
and supported theoretical constructs as our stylized facts. 

First, as expected, we observed the production of out-
put along a series of contingent tasks, none of which would 
produce the final product. Thus, we replicated the value 
chain—a stylized fact set that we sought to simulate as par-
tial validation of our model (Porter 1980, 1985; Sterman 
2000). Within the simulated environment, resources were 
transformed at various stages of value creation by the ac-
tion of the agents with the appropriate task assignment and 
knowledge. Agents consumed energy with each step, and 
the collective’s energy reserve was replenished for agents 
only when the collective goal was produced— 
precisely the outcome one would expect in a value chain 
(Porter 1985). Failure to continually achieve this collective 
goal—that is, to perform all of the tasks along the value 
chain—led to the death of individual agents and, eventu-
ally, to the end of the collective. As Figure 3 indicates, J 
independent tasks each transformed one resource, Rj, in the 
value chain into the next resource, Rj+1. When any agent 
connected to task Tj became connected to resource Rj by 
random movement, resource Rj was transformed into Rj+1.  

 

R 1 R 2 R 3 ..... R J+1

Task 1 Task 2 Task J

Agent Agent Agent

Energy  
Figure 3:  Porter (1985) Value Chain 
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The above “production process” continued until the 
completion of final task TJ, wherein a final product, RJ+1, 
was created and a payoff function was exercised. This pay-
off function added energy to the appropriate agents and pro-
vided new raw resource, R1, to re-initiate the production  
process. In this way, the collective could sustain itself, and 
individual agents could survive by benefiting from collective 
success. Thus, the value chain was effectively simulated. 

Second, we sought to simulate collective activity and 
collective reward, as distinct from individual activity and 
reward. Thus, we chose to use results from team effective-
ness research, such that reward interdependence, task in-
terdependence, and potency could be observed as predic-
tors of successful collective action (Shea and Guzzo 1985). 
For valuation, results were compared with these studies to 
demonstrate that the model does indeed simulate collective 
action: task interdependence, reward interdependence, and 
collective potency (Lestor, Meglino, and Korsgaard 2002; 
Shea and Guzzo 1985). Thus, in the base case, no agent 
could perform all of the tasks itself, and all tasks had to be 
completed for any reward to be distributed. Also, re-
sources, tasks, and relevant knowledge were available to 
agents, thereby simulating the collective’s ability, or “po-
tency,” to execute successfully (Shea and Guzzo 1985). 
Because no one agent could produce the final good inde-
pendently, cooperative action and collective success were 
both necessary for individual survival.  

Finally, because the environment was changing, em-
pirical results and organizational theory predicted that 
without boundary spanners, the organization would even-
tually fail to respond to the environment and then dissolve. 
We therefore compare our results at this extreme with the 
observed decline of organizations that fail to gather new 
information from the environment (De Vries 1999). Few 
organizations are able to sustain themselves when low lev-
els of boundary spanning are observed, further supporting 
the model’s validity. 

8 COMPUTATIONAL EMPIRICAL RESULTS 

To explore the potential usefulness of the above theoretical 
formulation, we have conducted some initial agent-based 
modeling computational experiments consistent with the 
above framework but under simplified assumptions. In this 
section we briefly describe some results to date. 

Agent-based modeling consistent with the previously 
described network approach was used to study the implica-
tions of boundary-spanning activity on organizational 
learning (Hazy, Tivnan, and Schwandt 2002) and, more 
generally, the notion of boundary permeability as a con-
struct in agent-based modeling of complex systems (Hazy, 
Tivnan, and Schwandt 2003b). In these two studies, local 
agent interactions and the resulting information flows pro-
duced the emergent effect of varying social structure, each 
structure having different fitness in the specific context of 
the turbulence and complexity of the external environment.  
In a third study, the effect of differential rewards to 
agents on organizational outcomes was studied in the con-
text of agent learning and collective performance (Hazy, 
Tivnan and Schwandt 2004a). Results of this study showed 
that when rewards are distributed based upon contribution, 
either to actual production or to the diffusion of knowledge 
that informed production, rather than being divided equally 
among all agents, outcomes improve. Because collective 
outcomes improve, an individual agent’s survival potential 
improves if it participates in production or the diffusion of 
knowledge—essentially, the result implies that when 
agents are rewarded for contributions of either exploitation 
or exploration, collective outcomes improve (March 1991). 
When rewards are provided to the agents that provided 
relevant knowledge to other agents, the emergent effect is 
an increase in organizational performance and sustainabil-
ity. This offers computational empirical support for (a) in-
dividual fitness value of an agent-resident intelligence 
mechanism that provides visibility into the agent’s local 
network connections and promotes the diffusion of knowl-
edge, and (b) an increased understanding of the emergent 
relationship between boundary-spanning individuals, or-
ganizational learning, and organizational performance.  

9 FUTURE RESEARCH DIRECTIONS 

The results described above represent first steps toward our 
goal of an organizationally realistic agent-based model that 
demonstrates emergent social structure and the dynamics 
of sustainability in human organizing projects. Future re-
search directions include implementing an emergent task 
structure and/or payoff function that simulates disruptive 
technologies and a rugged fitness landscape; allowing new 
information to develop within the organization as innova-
tion; modeling multiple, interacting organizations, perhaps 
with overlapping boundaries, and studying the flow of new 
information between them; adding genetic algorithms and 
tags to agents, so that they learn and interact according to 
their own self-interests (e.g., the prisoner’s dilemma) 
(Colomer 1995, Duong and Grefenstette 2004, Fudenberg 
and Levine 1998, Macy and Skvoretz 1998); and including 
more complex membership processing (such as trust and 
reputation), perhaps through tags, that enables exclusionary 
behaviors, roles, the addition of new agents, and the emer-
gence of an authority hierarchy. 

To achieve our long-term goal, many questions remain 
unanswered: How does collective intentionality emerge, 
such that emergent agency can be defined at the organiza-
tion level? How does one represent the synthesis of knowl-
edge into an architecture that includes distinct types of 
knowledge such as values, norms, and goals, and how does 
one simulate its effects on local interaction? How are the 
quality and reliability of information influenced by diffu-
sion within the system (Lawson and Butts 2004)? What are 
the implications of this effect? How are exploration and 
exploitation balanced at a system level, and what is the role 



Hazy and Tivnan 
 

of leadership (Hazy 2004) in this process? How can com-
putational models help us to explore the complexity of or-
ganizational dynamics (Tivnan 2004)? Although these 
questions are arguably some of the deepest in organization 
science, we believe that computation methods such as 
those described here have brought the field to the threshold 
of understanding. With MOSES, the next steps taken just 
might lead to the promised land!  
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