
Proceedings of the 2004 Winter Simulation Conference
R .G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

FROM EMERGENCY DEPARTMENTS TO COTTAGE CHEESE TO FIRE DEPARTMENTS:
LEARNING SIMULATION EXPERIMENTATION THROUGH WEBGPSS

Richard G. Born

Department of Operations Management and Information Systems
College of Business

Northern Illinois University
DeKalb, IL 60115, U.S.A.

ABSTRACT

An important component of any simulation course is the
discussion of experimental design. WebGPSS has been
used by the author for two years to discuss experimenta-
tion in an introductory course in discrete-event simula-
tion. This paper discusses how to set up simulation ex-
periments using WebGPSS by presenting three business
problems whose solutions require careful attention to ex-
perimental design. The first problem looks at staffing an
emergency department of a hospital with physicians. The
second problem involves the optimal method for stocking
a perishable food product such as cottage cheese on a su-
permarket shelf, showing that under realistic conditions,
spoilage can be minimized by placing newer containers in
the front. The third problem involves analysis of a pro-
posal for two neighboring communities currently operat-
ing completely separate fire departments to integrate their
two systems in a way that could reduce the amount of
time that fires are unattended.

1 INTRODUCTION

WebGPSS (Ståhl 2003) is the most modern implementa-
tion of micro-GPSS, a streamlined version of GPSS, the
General Purpose Simulation System, which originated
more than 40 years ago. WebGPSS has been in existence
for about three years and has been used by students in
Sweden (Herper and Ståhl 2003) and in the United States
(Born 2003). In addition, I. Ståhl, developer of WebGPSS,
has taught simulation modeling using WebGPSS to Eng-
lish-speaking students throughout Europe.

A variety of features of WebGPSS make it particu-
larly appropriate for teaching simulation modeling to
business students. First, it has a Graphical User Interface
that allows students to build models graphically in the
form of block diagrams, supplying operands by double-
clicking on the blocks within the block diagram. Second,
it is available both on the Web and as a stand-alone ver-

sion on a CD. Third, it has many pedagogical simplifica-
tions, including fewer block symbols, making it much
easier to learn than traditional GPSS. Fourth, it has an
extensive error trapping and reporting mechanism with
more than 500 error codes, accomplished with the help of
several thousand GPSS students over the years who have
been asked to report any errors for which the error code is
not understandable or helpful. Fifth, a multi-language fo-
cus has made it relatively straightforward to develop
WebGPSS systems in Swedish, and English, and there is
now some interest in the development of both French and
Spanish versions. Sixth, WebGPSS has a complete
teachware package (Born and Ståhl 2003) containing
more that 500 PowerPoint slides designed for learning
and teaching all of the material covered in Ståhl (2003).
Some of the features of this teachware package can be
found in Schriber et al. (2003). Last, and of particular
interest in this paper, is the ability to set up and perform
simulation experiments, with provision for both text out-
put in the form of confidence intervals, and a histogram
of result variable values.

We begin by discussing how to set up simulation ex-
periments using WebGPSS. This is accomplished by look-
ing at a very simple problem involving staffing the emer-
gency department (ED) of a hospital with physicians. We
then study a problem that we shall refer to as the cottage
cheese problem. Here we will find a rather surprising re-
sult that under realistic conditions, spoilage of cottage
cheese can be minimized by placing the newer containers
in the front of a supermarket shelf. Finally, we will inves-
tigate a proposal to integrate two neighboring community
fire departments in a way that could potentially reduce the
amount of time that fires are unattended.

2 STAFFING THE EMERGENCY DEPARTMENT
OF A HOSPITAL WITH PHYSICIANS

One of the most difficult problems facing hospital emer-
gency departments worldwide is the reduction of patient

Born

waiting times. Mahapatra et al. (2003) have developed a
simulation model for the entire care delivery system that
exists at an academic emergency department in York
Hospital, Pennsylvania. This model is quite comprehen-
sive and involves a sequence of activities including arri-
val, triage, registered nurse (RN) assessment, MD as-
sessment, initial diagnosis and treatment, diagnostic
testing, junior doctor supervision/teaching, follow
up/treatment planning, discharge or admit, and access to
inpatient beds and admitting physicians. In order to in-
troduce simulation experimentation using WebGPSS, we
shall consider an extremely small, simplified portion of
what is involved in modeling a hospital emergency de-
partment—staffing the ED with physicians.

2.1 Problem Statement

Patients arrive at the ED on average every 6 minutes, ex-
ponentially distributed. Each patient requires an average
of 45 minutes of a physician’s time, and this time is nor-
mally distributed with a standard deviation of 8 minutes.
For simplicity it can be assumed that the physician visits
the patient just once, and does not return to that patient
later. We want to investigate how the time a patient waits
to be examined by a physician is related to the size of the
pool of physicians. Since an ED is operational 24/7, we
will run our simulation model for a period of 24 hours.

2.2 The WebGPSS Model

The WebGPSS block diagram for our simplified ED is
shown in Figure 1. It consists of two segments, the patient
segment on the left and the stop segment on the right.

We first discuss the patient segment. The
GENERATE block produces the exponentially distributed
patient arrivals, using the built-in exponential distribution
function and random stream 1. The ADVANCE block
produces the normally distributed physician service times,
using the built-in standard normal function and random
stream 2. Using a separate random number stream for each
of the two random input variables in our model ensures
that the inter-arrival and service time are the same for each
successive patient as the experimental variable changes.
The ENTER and LEAVE blocks are used, respectively, to
access a physician from the storage EDPHYS and then free
the physician when the service is completed. The LET
blocks on either side of ENTER are used to compute the
time that the patient waits, with this time stored in a pa-
rameter called P$WAIT. In the LET block preceding
ADVANCE, these wait times are accumulated in a
savevalue called X$TOTWT. This final let block has an
address COUNT. N$COUNT, referenced in the stop seg-
ment, then represents the total number of patients who
have entered this let block, i.e. that total number of patients
who have finished waiting.

Figure 1: The Emergency De-
partment Block Diagram

Regarding the stop segment, the simulation is run for
24 hours of 60 minutes each, as indicated by the
GENERATE block. The LET block computes the average
waiting time X$AVGWT, and the TERMINATE block
brings the simulation to a stop.

The number of physicians available in the ED is de-
fined in the Capacities window as shown in Figure 2. We
see that WebGPSS allows defining the capacity of a stor-
age by the use of a savevalue, which we call X$NUMPHY.

Figure 2: The Capacities Window

Born

2.3 Three Experiments with the Emergency

Department Model

We first run an experiment 40 times with six physicians.
Doing this would allow us to compare the experimental re-
sults for patient waiting time to actual ED waiting times,
providing some validation for our WebGPSS model. Fig-
ure 3 summarizes the results of this experiment.

 (a)

 (b)

 (c)
Figure 3: ED Experiment with 6 Physicians

Figure 3(a) shows the Experiment window, with

X$NUMPHY as the experimental variable to change and
X$AVGWT as the result variable. Figure 3(b) shows the
output results after 40 runs, indicating a 95% confidence
interval for average waiting time between 137.71 and
169.83 minutes. Figure 3(c) shows the WebGPSS histo-
gram of average patient waiting times (i.e. EXPVAR, the
experiment variable) for the 40 runs. We see that, for ex-
ample, in 6 runs, the average waiting time was between 76
and 109 minutes. Clearly, six physicians are by no means
adequate in number to meet patient needs.

In our second 40-run experiment with the ED model,
we will let the number of physicians available for service
vary from 6 to 11. Figure 4(a) shows the Experiment win-
dow, and Figure 4(b) shows the output results. Invalue re-
fers to the values for the experimental variable
X$NUMPHY, Output Average refers to the average value
for the result variable X$AVGWT, and the two columns to
the far right of the experiment results window provide 95%
confidence intervals for the mean value of the patient wait-
ing time. While we would naturally expect the waiting
time to decrease as the number of physicians increases, this
type of experiment can also be used for optimization in
models where either a minimum or maximum value is de-
sired for a result variable.

 (a)

 (b)
Figure 4: ED Experiment with the Number
of Physicians Varying from 6 to 11

In our final ED experiment, we will show how

WebGPSS can be used to perform pair-wise comparisons.
Figure 5(a) shows the Experiment window. Whenever the
Number of values is set to 2, WebGPSS will always per-
form a pair-wise comparison experiment, with the result
being the difference Result(Lowest value)-Result(Highest
value). Figure 5(b) shows that the output result is the dif-
ference Result(9 physicians)-Result(10 physicians). We
see that after only five runs, the 95% confidence interval is

orn
B

entirely positive, indicating that the average waiting time is
greater for 9 physicians than it is for 10 physicians. The
greatest advantage of doing pair-wise comparisons is that
one can reach valid conclusions after a smaller number of
simulation runs. We shall see in the remaining sections of
this paper that pair-wise comparisons are also extremely
useful when comparing the results of two completely dif-
ferent scenarios.

 (a)

 (b)
Figure 5: ED Experiment Using Pair-Wise Com-
parison

3 THE COTTAGE CHEESE PROBLEM

First, we want to provide some motivation for this prob-
lem. The author has noticed the following regarding the
placement of milk gallons when shopping in the super-
market. There are several rows of milk gallons, some
more at eye level, and others at a lower level requiring
one to bend down to grab the gallon. To the author’s sur-
prise, the dates on the milk gallons on the eye level
shelves are the new dates, while those at the bottom level
shelves are the older dates. Intuition, perhaps misled, had
suggested to the author that the store manager would
want to place the older gallons at eye level, so that being
easier to reach, customers would be more likely to grab
them first. This scenario then led the author to devise a
slightly modified problem involving cottage cheese. This
is an extremely interesting problem that should be studied
by all involved with inventory theory.

3.1 Problem Statement

The manager of a local supermarket has a single, deep
shelf for cottage cheese. A customer who comes to buy a
container of cottage cheese will always grab the one at the
front of this deep shelf. In order to avoid spoilage, and
hence monetary loss or loss of reputation to the supermar-
ket, how should the stock boy be instructed to place newly
arriving containers of cottage cheese? Should he place
them at the front of the shelf so that customers will grab
them first, or should he place them at the back of the shelf,
behind containers that have not yet been sold? Assume the
following parameters regarding this problem:

• The shelf can hold 20 containers of cottage cheese.
• Every 3.5 days (Monday morning and Thursday af-

ternoon) new cottage cheese containers arrive from
the distributor. The distributor leaves just enough
containers to fill the shelf (e.g., if there were five
containers on the shelf when the distributor arrived,
she would leave 15 new containers).

• Customer arrivals are exponentially distributed
with an average of one day apart.

• A container is considered spoiled if it has been on
the shelf for more than 10 days when it is sold.

• You simulate one year (365 days) and provide for
statistics on the number of containers that were
sold in a spoiled state for the two different meth-
ods for stocking the shelf.

3.2 The WebGPSS Model

To conserve space in this paper, rather than provide the
block diagram view of the model, we show the WebGPSS
program listing in Figure 6. While comments on individ-
ual lines of code provide details regarding the logic in-
volved in the model, a few general remarks are in order.

In the program listing, we first see two HELP control
statements. WebGPSS provides a HELP control state-
ment that allows the interactive input of values for
savevalues. The user is asked to key in a value of 1 for
X$POLICY if containers are to be placed on the shelf in
FIFO fashion, and a value of 2 if LIFO is used. The win-
dow that the user sees for inputting the value of
X$POLICY is shown in Figure 7. Similarly, the user in-
teractively inputs the number of cottage cheese contain-
ers, X$SHELF, that fit on the shelf.

The program consists of three segments. The first
segment simply sets the simulation to run for one year (365
days). The second segment creates exponential customer
arrivals with an average of one day apart, giving these arri-
vals higher priority (999999) than transactions created in

Born

the other segments. W$WAITIN refers to the current con-
tents of the block whose address in WAITIN.

Figure 6: WebGPSS Program Listing of the Cottage
Cheese Model

Figure 7: Input Window for Shelf Stocking
Policy, with LIFO Selected

The third segment in our cottage cheese model is the

most complex:

• It generates cottage cheese distributor arrivals

every 3.5 days.
• X$COPIES is one less than the number of con-

tainers of cottage cheese that the distributor must
leave to fill the shelf.

• WebGPSS priority can be real numbers—
negative, zero, or positive, with larger numbers
representing higher priority. Therefore, assigning
the simulation clock’s value (CL) to a transac-
tion’s priority will ensure a LIFO policy, in which
newly arriving containers get placed in the front
of the shelf. On the other hand, assigning the
negative of the simulation clock’s value (-CL) en-
sures a FIFO policy, with newly arriving contain-
ers being placed in the back of the shelf.

• The WebGPSS SPLIT block makes copies of
transactions that inherit PRIORITY from the
original. The SPLIT block in our model creates
enough containers to fill the shelf with cottage
cheese containers, when both the copies and the
original are considered.

• The ARRIVE block starts measuring the time a
container spends on the shelf before being pur-
chased by a customer. The DEPART block con-
cludes measurement of this shelf time.

• Only one container at most can be at a position in
the front of the shelf at any given time. The
SEIZE and RELEASE blocks accomplish this in
our model.

• The WebGPSS WAITIF block causes transactions
to wait if and as long as a condition is true, with
waiting transactions actually waiting in the block
immediately preceding the WAITIF. The container
in the front of the shelf must first wait if and as long
as a customer is not in the store (SIGNAL=NU, for
not in use). Then it must wait while a customer is
actually picking the container from the front of the
shelf (SIGNAL=U, for in use).

3.3 Output Analysis

We note that there is a QTABLE control statement in the
listing of the cottage cheese model shown in Figure 6. This
queue table computes statistics for the ARRIVE/DEPART
set TIME, which represents the shelf time for cottage cheese
containers. The upper limit for the lowest class in 0 min-
utes, the width of each class is 10 minutes, and there are 2
classes. Therefore, any times greater than 10 minutes will
be tallied as an overflow, and would represent cottage
cheese containers that were sold in a spoiled state.

Figure 8 shows the queue table for FIFO stocking of a
shelf that can hold 20 cottage cheese containers, while Fig-
ure 9 shows the corresponding results for LIFO stocking.
A number of observations can be made when comparing
these two stocking policies:

• The mean shelf time with the LIFO policy (8.11

days) is less than half the mean shelf time for the
FIFO policy (17.98 days).

• The percentage of cottage cheese containers sold
in a spoiled state for the LIFO policy is only
17.60%, compared to 96.37% for the FIFO policy.

• The variability of shelf time is much greater for
the LIFO policy. This is shown by comparing the
standard deviation in shelf time for the two poli-
cies, the maximum time, and the average value of

Born

the overflow. Apparently, some cottage cheese
containers under a LIFO policy spend a lot of
time near the back of the shelf.

Figure 8: Shelf Times with FIFO Stocking

Figure 9: Shelf Times with LIFO Stocking

Clearly, under realistic conditions, it makes sense to

use a LIFO policy and have the stock boy place newly ar-
riving cottage cheese containers at the front of the shelf,
thus avoiding significant spoilage. Having studied this
problem, the author now understands why the supermarket
discussed at the beginning of this section placed newly ar-
riving milk gallons at eye level and older gallons at a more
difficult to reach lower level.

Although this problem consists of a relatively small
number of blocks, 26, the logic and use of WebGPSS con-
structs are complex enough that one can expect that a rela-
tively small number of students would be able to come up
with a solution on their own. However, once presented
with the solution, students can readily make modifications
to the model that would compare the two stocking policies
using the WebGPSS Experiment window along with some
of the techniques discussed in Section 2 of this paper.

4 THE FIRE DEPARTMENTS PROBLEM

We finally discuss a somewhat modified version of a simu-
lation application problem originally appearing in Watson
and Blackstone (1989). This problem involves the analy-
sis of a proposal to integrate the fire departments from two
neighboring communities if it can be shown that doing so
would reduce the amount of time that fires are unattended.
The original problem in Watson (1989) was designed as a
pencil-and-paper problem for students to analyze, given
historical wall clock times and corresponding service times
for fire calls for each of the two communities. The author
of this paper viewed this as an ideal problem for WebGPSS
scenario analysis. We begin by looking at a detailed
statement of the problem.

4.1 Problem Statement

Two neighboring communities, Springdale and Winter-
ville, currently operate completely separate fire depart-
ments. A proposal has been made, however, to the city
councils of the two communities, to integrate the two fire
departments. Anytime that a fire truck is not available in
one of the communities, a “hot line” call would be made to
the fire station in the other community. If a fire truck is
available there, it would answer the call. If not, the call
would revert back to the original community to be handled
by a fire truck there as soon as one is available. Due to po-
litical considerations, the proposal to integrate the two fire
departments will be seriously considered only if it can be
shown that a merger will reduce the amount of time that
fires are unattended. The following additional facts and
assumptions apply:

• Any fire call requires service from exactly one
truck.

• Springdale has two fire trucks and Winterville has
one.

• Fire call arrivals for Springdale are exponentially
distributed with a mean of 4 hours, while fire call
arrivals for Winterville are exponentially distrib-
uted with a mean of 5 hours.

• Service times for all calls, regardless of the commu-
nity of origin, are randomly distributed as follows:

• 30% of the calls require 0.5 hour
• 40% of the calls require 1 hours
• 20% of the calls require 1.5 hours
• 10% of the calls require 2 hours

• To answer a call in the other community adds ½

hour to the service time. This time is evenly di-
vided between ¼ hour to drive to the call and ¼
hour to return to the station.

• Assume that fires responded to by a community’s
own fire truck are instantaneous, i.e. the time for
the truck to drive to the fire is negligible.

Design a WebGPSS experiment that will provide the city
councils with information on whether or not the merger
would reduce the amount of time that fires are unattended.
Run the model for one year of system operation.

Born

4.2 The WebGPSS Model

The WebGPSS program listing for the fire departments
model is shown in Figure 10. As in the previous model,
comments on individual lines of code provide details re-
garding the logic involved in the model, but we will pro-
vide some discussion regarding how this model was built
using the WebGPSS graphical user interface.

 simulate 1
winser FUNCTION RN2,R
0.5 30
1 40
1.5 20
2 10
sprser FUNCTION RN4,R
0.5 30
1 40
1.5 20
2 10
! Scenario (1=separate, 2=combined)?
 HELP INPUT,X$SCENAR
sprtrk CAPACITY 2
wintrk CAPACITY 1
 QTABLE time,0,1,20

 GENERATE 4*fn$xpdis(1) ! Fire call at Springdale
 ARRIVE time ! Start measuring unattended time
 LET P$TIME=-CL ! Parameter with start time
 IF X$SCENAR=1,sprblk ! Separate if 1, combined if 2
 IF sprtrk=F,trywin!Springdale trucks busy-try W'vill
sprblk ENTER sprtrk ! Get a Springdale truck
 DEPART time ! End measuring unattended time
 LET+ P$TIME,CL ! Parameter now has unattended time
BL1 LET+ X$TOTTIM,P$TIME ! Accumulate unattended times
 ADVANCE fn$winser ! Put out the Springdale fire
 LEAVE sprtrk ! Free the Springdale truck
 TERMINATE ! End of this fire call incident
trywin IF wintrk=F,sprblk ! W’ville busy, back to S'dale
 ENTER wintrk !Get a Winterville truck
 ADVANCE 0.25 ! Drive truck to Springdale
 DEPART time ! End measuring unattended time
 LET+ P$TIME,CL ! Parameter now has unattended time
BL2 LET+ X$TOTTIM,P$TIME ! Accumulate unattended times
 ADVANCE fn$sprser ! Put out the Springdale fire
 ADVANCE 0.25 ! Drive truck back to Winterville
 LEAVE wintrk ! Free the Winterville truck
 TERMINATE ! End of this fire call incident

 GENERATE 5*fn$xpdis(3) ! Similar code for Winterville
 ARRIVE time
 LET P$TIME=-CL
 IF x$SCENAR=1,winblk
 IF wintrk=F,tryspr
winblk ENTER wintrk
 DEPART time
 LET+ P$TIME,CL
BL3 LET+ X$TOTTIM,P$TIME
 ADVANCE fn$sprser
 LEAVE wintrk
 TERMINATE
tryspr IF sprtrk=F,winblk
 ENTER sprtrk
 ADVANCE 0.25
 DEPART time
 LET+ P$TIME,CL
BL4 LET+ X$TOTTIM,P$TIME
 ADVANCE fn$winser
 ADVANCE 0.25
 LEAVE sprtrk
 TERMINATE
 GENERATE 24*7*52 ! Run for a year (time in hours)
 LET X$AVGHRS=X$TOTTIM/(N$BL1+N$BL2+N$BL3+N$BL4)
 LET X$AVGTIM=X$AVGHRS*60 ! Minutes = more precision
 TERMINATE 1 ! Stop the simulation

 start 1
 end

Figure 10: Program Listing of the Fire Department Model

First, we note that there are two FUNCTION control
statements. These were created for the purpose of provid-
ing the random service times for fire calls. The Random

Function window that was used to create the function
called WINSER (for Winterville service times) is shown in
Figure 11.

Figure 11: The WebGPSS Random
Function Window

The user specifies the random stream to be used

(stream 2) and keys the values and frequencies in the
Definition frame. The corresponding graph is shown to
the right in the Random function window. A similar
function SPRSER (for Springdale service times) uses a
different random number stream (stream 4), so that ser-
vice times are controlled for each city from one scenario
to another.

We next see a HELP control statement that allows in-
teractive input for the scenario. If X$SCENAR has the
value 1, then we are modeling the separate fire depart-
ments, else we model the proposed combined fire depart-
ments. Figure 12 shows the Start values window in which
the model developer sets up the capability to interactively
input the value of X$SCENAR via the prompt Scenario
(1=separate, 2=combined)?

Figure 12: The WebGPSS Start Values Window with
a User Defined Prompt

The CAPACITY control statements shown in Figure

6 are used to define the number of fire trucks for each of
the two communities. As an example, Figure 13 shows
how the capacity for Springdale was set to 2 fire trucks
via the Capacities window.

Born

Figure 13: The WebGPSS Capacities Window

4.3 Output Analysis

We note that there is a QTABLE control statement in the
listing shown in Figure 10. This queue table computes
statistics for the ARRIVE/DEPART set TIME, which
represents the time during which a fire is unattended af-
ter a call comes in to a fire department. The upper limit
for the lowest class in 0, the width of each class is 1
hour, and there are 20 classes.

Figure 14 shows the queue table results for the sce-
nario where the two community’s fire departments re-
main separate, while Figure 15 shows the queue table re-
sults for the scenario for their proposed merger. At least
two observations can be made when comparing the two
scenarios:

• The average unattended time for fires with sepa-

rate fire departments (0.08 hour) is more than
twice that with the fire departments combined
according to the proposal (0.03 hour).

• With separate departments, 2.83% of the fires
are unattended for more than one hour. With
combined fire departments, this figure is ten
times smaller, at only 0.28%.

Figure 14: Queue Table of Unattended Times for Fires
under the Scenario of Separate Fire Departments

Let us now see how to make use of the WebGPSS ex-

periment window to compare unattended times for fires un-

Figure 15: Queue Table of Unattended Times for Fires
under the Scenario of Combined Fire Departments

der the two scenarios. Here, we design a pair-wise compari-
son experiment in which we look at the difference in unat-
tended times for fires under the two scenarios. First, it is
noted from Figure 10 that X$TOTTIM has been accumulat-
ing the unattended times for fires. In the stop segment, the
first LET block computes the average unattended time in
hours, X$AVGHRS, by dividing the accumulated total by the
number of incidents. X$AVGTIM then converts this to min-
utes for more precision. We can, therefore, let X$SCENAR
be our experimental variable, and X$AVGTIM be our result
variable, with an experiment designed as shown in Figure 16.
The Results window of Figure 17 shows that after only three
runs, we can conclude with at least 97.5 percent probability
that the average unattended time for fires is about 3 minutes
or 0.05 hours greater if we continue to run the two communi-
ties fire departments separately. This, we also note, agrees
nicely with the results obtained from the queue table statistics
of Figures 14 and 15, where we see the difference would be
0.08 – 0.03 = 0.05 hour. It appears that the city councils of
the two communities have ample evidence that a merger of
their fire departments should reduce the amount of time that
fires are unattended.

Figure 16: Pair-Wise Comparison
Experiment Comparing Two Fire
Department Scenarios. The Experi-
ment Window

Born

Figure 17: Pair-Wise Comparison Experiment Compar-
ing Two Fire Department Scenarios. The Results Window

5 CONCLUSIONS

We have, in this paper, presented a primer on how to set up
and design experiments using WebGPSS. The three mod-
els discussed—the hospital emergency department prob-
lem, the cottage cheese problem, and the fire departments
problem—provide the reader with a variety of business
problems having a wide range in complexity. These prob-
lems show that one can develop very realistic and useful
simulation models with relative ease using WebGPSS. All
of this model building is accomplished using a graphical
user interface that is both intuitive and powerful. Any
reader of this paper who is interested in obtaining copies of
any or all of the models discussed, ready for opening in
WebGPSS, is encouraged to contact the author at the email
address provided in the biography.

REFERENCES

Born, R. 2003. Teaching discrete-event simulation to busi-
ness students: the alpha and omega. In Proceedings of
the 2003 Winter Simulation Conference, ed. S. Chick,
P. J. Sánchez, D. Ferrin, and D. J. Morrice, 1964-
1972. Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers.

Born, R. and I Ståhl. 2003. WebGPSS Slide Presentation.
DeKalb, IL: R. Born. Available on request from R.
Born at <rborn@niu.edu>.

Herper, H. and I. Ståhl. 2003. Modeling and simulation in
high schools – two European examples. In Proceed-
ings of the 2003 Winter Simulation Conference, ed. S.
Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice,
1973-1981. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers.
Mahapatra, S., C. P. Koelling, L. Patvivatsiri, B. Fraticelli,
D. Eitel, and L. Grove. 2003. Pairing emergency sever-
ity index5-level triage data with computer aided system
design to improve emergency department access and
throughput. In Proceedings of the 2003 Winter Simula-
tion Conference, ed. S. Chick, P. J. Sánchez, D. Ferrin,
and D. J. Morrice, 1917-1925. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Schriber, T., I. Ståhl, J. Banks, A. Law, A. Seila, and R.
Born. 2003. Simulation textbooks – old and new
(panel). In Proceedings of the 2003 Winter Simulation
Conference, ed. S. Chick, P. J. Sánchez, D. Ferrin, and
D. J. Morrice, 1952-1963. Piscataway, New Jersey:
Institute of Electrical and Electronics Engineers.

Ståhl, I. 2003. Simulation made simple with WebGPSS – a
tutorial. Stockholm: Stockholm School of Economics.

Watson, H. and J. Blackstone, Jr. 1989. Computer simu-
lation – 2nd edition. New York: Wiley.

AUTHOR BIOGRAPHY

RICHARD G. BORN is an Associate Professor of Man-
agement Information Systems in the Department of Opera-
tions Management and Information Systems in the College
of Business at Northern Illinois University. He has taught
simulation modeling for the past 13 years to university stu-
dents at all levels from undergraduate to graduate, includ-
ing M.S. students in Management Information Systems,
M.S. students in Accountancy, and M.B.A. students. His
email address is <rborn@niu.edu>.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 2087
	02: 2088
	03: 2089
	04: 2090
	05: 2091
	06: 2092
	07: 2093
	08: 2094
	09: 2095

