
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
 

 
 
 

HOW TO BUILD VALID AND CREDIBLE SIMULATION MODELS 
 
 

Averill M. Law 
 

Averill M. Law & Associates, Inc. 
6601 East Grant Road, Suite 110 

Tucson, AZ 85715, U.S.A. 
   

   
   
ABSTRACT 

In this tutorial we present techniques for building valid and 
credible simulation models.  Ideas to be discussed include 
the importance of a definitive problem formulation, discus-
sions with subject-matter experts, interacting with the deci-
sion-maker on a regular basis, development of a written 
conceptual model, structured walk-through of the concep-
tual model, use of sensitivity analysis to determine impor-
tant model factors, and comparison of model and system 
output data for an existing system (if any).  Each idea will 
be illustrated by one or more real-world examples.  We 
will also discuss the difficulty in using formal statistical 
techniques (e.g., confidence intervals) to validate simula-
tion models. 

1 WHAT IS MODEL VALIDATION 

Use of a simulation model is a surrogate for experimenta-
tion with the actual system (existing or proposed), which is 
usually disruptive, not cost-effective, or simple impossible.  
Thus, if the model is not a “close” approximation to the ac-
tual system, any conclusions derived from the model are 
likely to be erroneous and may result in costly decisions 
being made.  Validation should and can be done for all 
models, regardless of whether the corresponding system 
exists in some form or whether it will be built in the future. 

We now give definitions of validation and credibility.  
Validation is the process of determining whether a simula-
tion model is an accurate representation of the system, for 
the particular objectives of the study.  The following are 
some general perspectives on validation:  

 
• A “valid” model can be used to make decisions 
 similar to those that would be made if it were 
 feasible and cost-effective to experiment with the 
 system itself. 
• The ease or difficulty of the validation process 
 depends on the complexity of the system being 
 modeled and on whether a version of the system 
 currently exists (see Section 2.8).  For example, a 
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 model of a neighborhood bank would be relatively 
 easy to validate since it could be closely observed.  
 On the other hand, a model of the effectiveness of 
 a naval weapons system in the year 2025 would 
 be virtually impossible to validate completely, 
 since the location of the battle and the nature of 
 the enemy weapons would be unknown.  Also, it 
 is often possible to collect data on an existing sys-
 tem that can be used for building and validating a 
 model. 
• A simulation model of a complex system can only 
 be an approximation to the actual system, no mat-
 ter how much time and money is spent on model 
 building.  There is no such thing as absolute 
 model validity, nor is it even desired.  Indeed, a 
 model is supposed to be an abstraction and simpli-
 fication of reality.  The more time (and hence 
 money) that is spent on model development, the 
 more valid the model should be in general.  How-
 ever, the most valid model is not necessarily the 
 most cost-effective.  For example, increasing the 
 validity of the model beyond a certain level might 
 be quite expensive, since extensive data collection 
 may be required, but might not lead to signifi-
 cantly better insight or decisions. 
• A simulation model should always be developed
 for a particular set of objectives.  In fact, a model 
 that is valid for one objective may not be for an-
 other. 
• Validation is not something to be attempted after 
 the simulation model has already been developed, 
 and only if there is time and money remaining.  
 Unfortunately, our experience indicates that this 
 recommendation is often not followed. 

 
Example 1.  An organization paid a consulting com-
pany $500,000 to perform a “simulation  study” that 
had a six-month duration.  After the study was sup-
posedly completed, a person from the client organiza-
tion called us and asked, “Can you tell me in five min-
utes on the phone how to validate our model?” 
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• Each time a simulation model is being considered 
for a new application its validity needs to be reex-
amined.  The current purpose may be substantially 
different from the original purpose or the passage 
of time may have invalidated certain model pa-
rameters. 

 
A simulation model and its results have credibility if 

the decision-maker and other key project personnel accept 
them as “correct.”  Note that a credible model is not neces-
sarily valid, and vice versa.  The following things help es-
tablish credibility for a model: 

 
• The decision-maker’s understanding of and 

agreement with the model’s assumptions  
• Demonstration that the model has been validated 

and verified (i.e., that the model computer pro-
gram has been debugged) 

• The decision-maker’s ownership of and involve-
ment with the project 

• Reputation of the model developers 
• A compelling animation. 
 
The U.S. Department of Defense (DoD) is a large user 

of simulation models, and in recent years years there has 
been considerable interest in verification, validation, and a 
concept known as accreditation (VV&A).   Accreditation 
(see Defense Modeling and Simulation Office 2000) is the  
official certification (by the project sponsor) that a simula-
tion model is acceptable for a specific purpose.  The main 
reason that accreditation is mandated within DoD is that 
someone must take the responsibility for the decision to 
use a model for a particular application, since a large 
amount of money and people’s lives may be at stake. 

 
Note that many of the ideas and examples presented in 

this paper are based on the chapter “Building Valid, Credi-
ble, and Appropriately Detailed Simulation Models” in 
Law and Kelton (2000) and also on the simulation short 
courses presented by the author.  Other references on 
model validation are Balci (1998), Banks et al. (2005), 
Carson (1986), Sargent (2004), and Shannon (1975).  

The remainder of this paper is organized as follows.  
We present in Section 1.1 a seven-step approach for con-
ducting a successful simulation study.  In Section 2 we dis-
cuss techniques for developing a more valid and credible 
simulation model.  Guidelines for obtaining good model 
data are given in Section 3.  Finally, Section 4 provides a 
summary of the most important validation ideas. 

1.1 A Seven-Step Approach for Conducting a Success-
ful Simulation Study 

In Figure 1 we present a seven-step approach for conduct-
ing a successful simulation study.  Having a definitive ap-
25
proach for conducting a simulation study is critical to the 
study’s success in general and to developing a valid model 
in particular.  In Section 2 we will relate each of our vali-
dation/credibility enhancement techniques to one or more 
of these steps. 

We now discuss important activities that take place in 
each of the seven steps. 

 
Step 1. Formulate the Problem  
 

• Problem of interest is stated by the decision-  
  maker 

 - It may not be stated precisely or in quantita-
 tive terms. 

 - An iterative process is often necessary. 
• A kickoff meeting(s) for the simulation project is 
 (are) conducted, with the project manager, the 
 simulation analysts, and subject-matter experts 
 (SMEs) in attendance.  The following things are 
 discussed at this meeting: 

  - The overall objectives for the study 
  - The specific questions to be answered by the 

  study (without such specificity it is impossi- 
  ble to determine the appropriate level of   
  model detail) 

  - The performance measures that will be used  
  to evaluate the efficacy of different system  
  configurations 

  - The scope of the model  
  - The system configurations to be modeled  
  - The time frame for the study and the required 

  resources (people, computers, etc.).  
 

Step 2. Collect Information/Data and Construct Concep-
 tual Model 
 

• Collect information on the system layout and op-
 erating procedures.  
• Collect data to specify model parameters and 
 probability distributions (e.g., for the time to fail-
 ure and the time to repair of a machine). 
• Document the model assumptions, algorithms, 
 and data summaries in a written conceptual 
 model.   
• The level of model detail should depend on the 
 following: 
 - Project objectives  
 - Performance measures of interest 
 - Data availability 
 - Credibility concerns 
 - Computer constraints 
 - Opinions of SMEs 
 - Time and money constraints 
• There should not be a one-to-one correspondence 
 between the model and the system. 
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Figure 1: A Seven-Step Approach for Conducting a  
                Successful Simulation Study 
 

• Collect performance (output) data from the exist-
 ing system (if any) to use for model validation in 
 Step 5. 

 
Step 3. Is the Conceptual Model Valid? 
 

• Perform a structured walk-through of the concept-
 tual model before an audience that includes the 
 project manager, analysts, and SMEs.  This is 
 called conceptual-model validation.  
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• If errors or omissions are discovered in the con-
 ceptual model, which is almost always the case, 
 then the conceptual model must be updated before 
 proceeding to programming in Step 4. 

 
Step 4. Program the Model 

 
• Program the conceptual model in a commercial 

  simulation-software package or in a general-  
  purpose  programming language (e.g., C, C++,  
  and Java). 

• Verify (debug) the computer program. 
 
Step 5. Is the Programmed Model Valid? 
 

• If there is an existing system, then compare simu-
 lation model output data for this system with the 
 comparable output data collected from the actual 
 system (see Step 2).  This is called results valida-
 tion. 
• Regardless of whether there is an existing system, 
 the simulation analysts and SMEs should review 
 the simulation results for reasonableness.  If the 
 results are consistent with how they perceive the 
 system should operate, then the simulation model 
 is said to have face validity. 
• Sensitivity analyses should be performed on the 
 programmed model to see which model factors 
 have the greatest impact on the performance 
 measures and, thus, have to be modeled carefully. 

 
Step 6. Design, Conduct, and Analyze Experiments 
 

• For each system configuration of interest, decide 
 on tactical issues such as run length, warmup per-
 iod, and the number of independent model repli-
 cations. 
• Analyze the results and decide if additional ex-
 periments are required. 

 
Step 7. Document and Present the Simulation Results 
 

• The documentation for the model (and the associ-
 ated simulation study) should include the concept-
 tual model (critical for future reuse of the model), 
 a detailed description of the computer program, 
 and the results of the current study. 
• The final presentation for the simulation study 
 should include an animation and a discussion of 
 the model building/validation process to promote 
 model credibility. 
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2 TECHNIQUES FOR DEVELOPING VALID AND 

CREDIBLE MODELS 

In this section we present practical techniques for develop-
ing valid and credible models.  At the end of each subsec-
tion title, we state in square brackets (“[ ]”) in which of the 
seven steps (at a minimum) the technique should be ap-
plied. 

2.1 Formulating the Problem Precisely [1] 

It is critical to formulate the problem of interest in a pre-
cise manner.  This should include an overall statement of 
the problem to be solved, a list of the specific questions 
that the model is to answer, and the performance measures 
that will be used to evaluate the efficacy of particular sys-
tem configurations.  Without a definitive statement of the 
specific questions of interest, it is impossible to decide on 
an appropriate level of model detail.  Performance meas-
ures must also be clearly stated since different measures 
may dictate different levels of model detail (see Law and 
Kelton 2000, pp. 678-679 for an example). 

When the decision-maker first initiates a simulation 
study, the exact problem to be solved is sometimes not 
precisely stated or even completely understood.  Thus, as 
the study proceeds and a better understanding is obtained, 
this information should be communicated to the decision-
maker who may reformulate the problem.  

2.2 Interviewing Subject-Matter Experts [1, 2] 

There will never be a single person who knows all of the 
information necessary to build a simulation model.  Thus, 
it will be necessary for the simulation analysts to talk to 
many different SMEs to gain a complete understanding of 
the system to be modeled.  Note that some of the informa-
tion supplied by the SMEs will invariably be incorrect – if 
a certain part of the system is particularly important, then 
at least two SMEs should be queried.  In Section 2.6, we 
will discuss a technique that helps ensure that a model’s 
assumptions are correct and complete – this technique is 
also useful for resolving differences of opinion among 
SMEs.  

2.3 Interacting with the Decision-Maker on a Regular 
Basis [1-7] 

One of the most important ideas for developing a valid and 
credible model is for the analyst to interact with the deci-
sion-maker and other members of the project team on a 
regular basis.  This approach has the following key bene-
fits: 

 
• Helps ensure that the correct problem is solved 
27
• The exact nature of the problem may not be ini-
tially known. 

• The decision-maker may change his/her objec-
tives during the course of the study. 

• The decision-maker’s interest and involvement in 
the study are maintained. 

• The model is more credible because the decision-
maker understands and agrees with the model’s 
assumptions. 

 
Example 2. A military analyst worked on a simulation 
project for several months without interacting with the 
general who requested it.  At the final Pentagon brief-
ing for the study, the general walked out after five 
minutes stating, “That’s not the problem I’m interested 
in.” 

2.4 Using Quantitative Techniques to Validate Com-
ponents of the Model [2] 

The simulation analyst should use quantitative techniques 
whenever possible to test the validity of various compo-
nents of the overall model.  We now give examples of 
techniques that have been used for this purpose. 

If one has fit a theoretical probability distribution (e.g., 
exponential or normal) to a set of observed data, then the 
adequacy of the representation can be assessed by using 
graphical plots and goodness-of-fit tests (see Law and Kel-
ton 2000, chapter 6). 
 As will be discussed in Section 3, it is important to use 
appropriate data in building a model; however, it is equally 
important to exercise care when structuring these data.  For 
example, if several sets of data have been observed for the 
“same” random phenomenon, then the correctness of merg-
ing these data sets can be assessed by using the Kruskal-
Wallis test of homogeneity of populations (see Law and 
Kelton 2000, pp. 394-395).  If the data sets appear to be 
homogeneous, they can be merged and the combined data 
set used for some purpose in the simulation model. 
 

Example 3. Consider a manufacturing system for 
which time-to-failure and time-to-repair data were col-
lected for two “identical” machines made by the same 
vendor.  However, the Kruskal-Wallis test showed that 
the two distributions were, in fact, different for the two 
machines.  Thus, each machine was given its own 
time-to-failure and time-to-repair distributions in the 
simulation model.  

2.5 Documenting the Conceptual Model [2] 

Communication errors are a major reason why simulation 
models very often contain invalid assumptions.  The 
documentation of all concepts, assumptions, algorithms, 
and data summaries can lessen this problem.  It will also 
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increase the credibility of the model.  A (conceptual) 
model should not be an “exact” description of how the sys-
tem works, but rather a description of how it works relative 
to the particular issues that the model is to address.  This 
report is the major documentation for the model and should 
be readable by analysts, SMEs, and technical managers.  
The following are some of the things that should be in-
cluded in the conceptual model: 

 
• An overview section that discusses overall project 

goals, specific issues to be addressed by the 
model, and relevant performance measures  

• A process-flow/system-layout diagram 
• Detailed descriptions of each subsystem (in bullet  

  format for easy reading) and how they interact 
• What simplifying assumptions were made and 

why 
• Summaries of model input data (technical analy-

ses should be put in appendices to promote report 
readability by decision-makers) 

• Sources of important or controversial information. 
 
The conceptual model should contain enough detail so 

that it is a “blueprint” for creating the simulation computer 
program (in Step 4). 

2.6 Performing a Structured Walk-through of the 
Conceptual Model [3] 

As previously discussed, the simulation analyst will need 
to collect system information from many different SMEs.  
Furthermore, these people are typically very busy dealing 
with the daily problems that occur within their organiza-
tion, often resulting in their giving something less than 
their undivided attention to the questions posed by the 
simulation analyst.  As a result, there is a considerable 
danger that the analyst will not obtain a complete and cor-
rect description of the system.  An effective way of dealing 
with this potential problem is to conduct a structured walk-
through of the conceptual model before an audience of 
SMEs and decision-makers.  Using a projection device, the 
analyst goes through the conceptual model bullet-by-bullet, 
but not proceeding from one bullet to the next until every-
body in the room is convinced that a particular bullet is 
correct and at an appropriate level of detail.  A structured 
walk-through will increase both the validity and credibility 
of the simulation model.  (As stated above, this exercise is 
called conceptual-model validation.) 

The structured walk-through should ideally be held at 
a remote site (e.g., a hotel meeting room), so that people 
give the meeting their full attention. Furthermore, it should 
be held prior to the beginning of programming in case ma-
jor problems are uncovered at the meeting.  The conceptual 
model should be sent to participants prior to the meeting 
and their comments requested.  We do not, however, con-
28
sider this a substitute for the structured walk-through itself, 
since people may not have the time or motivation to review 
the document carefully on their own.  Furthermore, the in-
teractions that take place at the actual meeting are invalu-
able.  
 

Example 4.  At a structured walk-through of a trans-
portation system, a significant percentage of  the as-
sumptions given to us by our corporate sponsor were 
found to be wrong by the SMEs present.  (Due to the 
large geographic distances between the home offices 
of the sponsor and the SMEs, it was not possible for 
the SMEs to be present at the kickoff meeting for the 
project.)  As a result, various people were assigned re-
sponsibilities to collect information on different parts 
of the system.  The collected information was used to 
update the conceptual model, and a second walk-
through was successfully performed. 

2.7 Performing Sensitivity Analyses to Determine Im-
portant Model Factors [5] 

An important technique for determining which model fac-
tors have a significant impact on the desired measures of 
performance is sensitivity analysis.   If a particular factor 
appears to be important, then it needs to be modeled care-
fully. The following are examples of factors that could be 
investigated by a sensitivity analysis: 

 
• The value of a parameter (see Example 5) 
• The choice of a probability distribution 
• The entity moving through the simulated system  
• The level of detail for a subsystem.  

 
Example 5. In a simulation study of a new system, 
suppose that the value of a probability is estimated to 
be 0.75 as a result of conversations with SMEs.  The 
importance of getting the value of this probability “ex-
actly” correct can be determined by running the simu-
lation with 0.75 and, for example, by running it with 
each of the values 0.70 and 0.80.  If the three simula-
tion runs produce approximately the same results, then 
the output is not sensitive to the choice of the prob-
ability over the range 0.70 to 0.80.  Otherwise, a better 
specification of the probability is needed.  (Strictly 
speaking, to determine the effect of the probability on 
the model’s results, we should make several independ-
ent replications of the model using different random 
numbers for each of the three cases.) 
 
If one is trying to determine the sensitivity of the 

simulation output to changes in two or more factors of in-
terest, then it is not correct, in general, to vary one factor at 
a time while setting the other factors at some arbitrary val-
ues.  (This dangerous practice is sometimes called the one-



Law 

 
factor-at-a-time approach.)  A more correct approach is to 
use statistical experimental design, which is discussed in 
Law and Kelton (2000, Chapter 12) and in Montgomery 
(2005).  The effect of each factor can be formally estimated 
and, if the number of factors is not too large, interactions 
among the factors can also be detected. 

2.8 Validating the Output from the Overall Simula-
tion Model [5] 

The most definitive test of a simulation model’s validity is 
establishing that its output data closely resemble the output 
data that would be observed from the actual system.  If a 
system similar to the proposed one now exists, then a 
simulation model of the existing system is developed and 
its output data are compared to those from the existing sys-
tem itself.  If the two sets of data compare “closely,” then 
the model of the existing system is considered “valid.”  
(The accuracy required from the model will depend on its 
intended use and the utility function of the decision-
maker.)  The model is then modified so that it represents 
the proposed system.  The greater the commonality be-
tween the existing and proposed systems, the greater our 
confidence in the model of the proposed system.  There is 
no completely definitive approach for validating the model 
of the proposed system.  If there were, then there might be 
no need for a simulation model in the first place.  If the 
above comparison is successful, then it has the additional 
benefit of providing credibility for the use of simulation.  
(As stated above, the idea of comparing the model and sys-
tem output data for the existing system is called results 
validation.) 
 

Example 6. A U.S. Air Force test agency performed a 
simulation study for a bomb wing of bombers using 
the Logistics Composite Model (LCOM).  The ulti-
mate goal of the study was to evaluate the effect of 
various proposed logistics policies on the availability 
of the bombers, i.e., the proportion of time that the 
bombers were available to fly missions.  Data were 
available from the actual operations of the bomb wing 
over a 9-month period, and included both failure data 
for various aircraft components and a bomb-wing 
availability of 0.9.  To validate the model, the Air 
Force first simulated the 9-month period with the ex-
isting logistics policy and obtained a model availabil-
ity of 0.873, which is 3 percent different than the his-
torical availability.  This difference was considered 
acceptable because an availability of 0.873 would still 
allow enough bombers to be available for the Air 
Force to meet its mission requirements. 

 
Example 7. A manufacturer of heat-treated aluminum 
products was thinking of replacing its existing batch 
furnace by a new continuous furnace in order to in-
29
crease its production capacity (see Law 1991).  We 
first simulated the existing system and found that the 
model monthly throughput differed from the historical 
monthly throughput by less than one percent.  Thus, it 
appeared that the model of the existing system was 
reasonably “valid.”   

 
A number of statistical tests (t, Mann-Whitney, etc.) 

have been suggested in the validation literature for compar-
ing the output data from a simulation model with those 
from the corresponding real-world system (see, for exam-
ple, Shannon 1975, p. 208).  However, the comparison is 
not as simple as it might appear, since the output processes 
of almost all real-world systems and simulations are non-
stationary (the distributions of the successive observations 
change over time) and autocorrelated (the observations in 
the process are correlated with each other).  Thus, classical 
statistical tests based on independent, identically distrib-
uted (IID) observations are not directly applicable.  Fur-
thermore, we question whether hypothesis tests, as com-
pared with constructing confidence intervals for 
differences, are even the appropriate statistical approach.  
Since the model is only an approximation to the actual sys-
tem, a null hypothesis that the system and model are the 
“same” is clearly false.  We believe that it is more useful to 
ask whether or not the differences between the model and 
the system are significant enough to affect any conclusions 
derived from the model.  For a brief discussion of statisti-
cal procedures that can be used to compare model and sys-
tem output data, see Section 2.10. 
 In addition to statistical procedures, one can use a Tur-
ing test (see Schruben 1980) to compare the output data 
from the model to those from the system.  People knowl-
edgeable about the system (e.g., SMEs) are asked to exam-
ine one or more sets of system data as well as one or more 
sets of model data without knowing which data sets are 
which.  If these SMEs can differentiate between the system 
and model data, their explanation of how they were able to 
do so is used to improve the model. 
 
 Example 8. An animation version of the Turing test 
 was used in validating a simulation model of micro-
 scopic vehicle flow on a freeway.  An animation  
 of    traffic flow from the simulation was displayed  
 simultaneously on a large-screen monitor with an ani-
 mation produced from data collected from the actual 
 freeway.  The data from the freeway were collected 
 by a video camera mounted on an airplane. 
 
 Whether or not there is an existing system, analysts 
and SMEs should review simulation output (numerical re-
sults, animations, etc.) for reasonableness.  (Care must be 
taken in performing this exercise, since if one knew exactly 
what output to expect, then there would be no need for a 
model.)  If the simulation results are consistent with per-
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ceived system behavior, then, as stated above, the model is 
said to have face validity. 
 

Example 9. The above idea was put to good use in the 
development of a simulation model of the U.S. Air 
Force manpower and personnel system.  (This model 
was designed to provide Air Force policy analysts 
with a system-wide view of the effects of various pro-
posed personnel policies.)  The model was run under 
the baseline personnel policy, and the results were 
shown to Air Force analysts and decision-makers, who 
subsequently identified some discrepancies between 
the model and perceived system behavior.  This in-
formation was used to improve the model, and after 
several additional evaluations and improvements, a 
model was obtained that appeared to approximate cur-
rent Air Force policy closely.  This exercise improved 
not only the validity of the model, but also its credibil-
ity. 

2.9 Using Graphical Plots and Animations of the 
Simulation Output Data [5-7] 

Graphical plots (static or dynamic) and animations (dy-
namic) are useful for showing that a simulation model is 
not valid and for promoting model credibility.  The follow-
ing are some examples of graphical plots: 

 
• Histogram (a graphical estimate of the underlying 

probability density or mass function) 
• Correlation plot (shows if the output data are 

autocorrelated)  
• Time plot (one or more model variables are plot-

ted over the length of the simulation run to show 
the long-run dynamic behavior of the system) 

• Bar charts and pie charts. 
 
An animation, which shows the short-term dynamic 

behavior of a system, is useful for communicating the es-
sence of a model to decision-makers and other people who 
do not understand or care about the technical details of the 
model.  Thus, it is a great way to enhance the credibility of 
a model.  Animations are also useful for verification of the 
simulation computer program, for suggesting improved 
operational procedures, and for training. 

2.10 Statistical Techniques for Comparing Model and 
System Output Data [5] 

 In this section we discuss the possible use of statistical 
procedures for carrying out the comparison of model and 
system output data discussed in Section 2.8. 

Suppose that R1, R2, …, Rk are observations from a 
real-world system and that M1, M2, …, Ml are output data 
from a corresponding simulation model (see Example 10 
30
below).  We would like to compare these data sets in some 
way to determine whether the model is an accurate repre-
sentation of the real-world system.  However, most classi-
cal statistical approaches such as confidence intervals and 
hypothesis tests assume that the real-world data and the 
model data are each IID data sets, which is generally not 
the case (see the discussion in Section 2.8).  Thus, these 
classical statistical approaches are not directly applicable 
to our comparison problem. 

 
Example 10. Consider a manufacturing system where 
the output data of interest are the times in system of 
successively completed parts.  These data are not in-
dependent for the actual system (nor for a correspond-
ing simulation model).  For example, if the system is 
busy at a particular point in time, then all of the parts 
being processed will tend to have large times in sys-
tem (i.e., the times are positively correlated). 
 
Law and Kelton (2000, pp. 283-290) discuss inspec-

tion, confidence-interval, and time-series approaches that 
might possibly be used for comparing model and system 
output data. 

3 GUIDELINES FOR OBTAINING GOOD MODEL 
DATA 

A model is only valid for a particular application if its 
logic is correct and if it uses appropriate data.  In this sec-
tion we provide some suggestions on how to obtain good 
model data. 

3.1 Two Basic Principles 

If a system similar to the one of interest exists, then data 
should be obtained from it for use in building the model.  
These data may be available from historical records or may 
have to be collected during a time study.  Since the people 
who provide the data might be different from the simula-
tion analysts, it is important that the following two princi-
ples be followed: 

 
• The analysts need to make sure that the data re-

quirements (type, format, amount, why needed,  
conditions under which it should be collected, 
etc.) are specified precisely to the people who 
provide the data.  

• The analysts need to understand the process that 
produced the data, rather than treating the obser-
vations as just abstract numbers.  For example, 
suppose that data are available on the time to load 
a ship, but there are a few observations that are 
significantly larger than the rest (called outliers).  
Without a good understanding of the underlying 
process, it is impossible to know whether these 
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large observations are the result of measuring or 
recording errors, or are just legitimate values that 
occur with small probability. 

3.2 Common Difficulties 

The following are four potential difficulties with data: 
 
• Data are not representative of what one really 

wants to model. 
 

Example 11. The data that have been collected during 
a military field test may not be representative of actual 
combat conditions due to differences in troop behavior 
and to lack of  battlefield smoke. 

 
• Data are not of the appropriate type or format. 

 
Example 12. In modeling a manufacturing system, the 
largest source of randomness is usually random down-
times of a machine.  Ideally, we would like data on 
time to failure (in terms of actual machine busy time) 
and time to repair of a machine.  Sometimes data are 
available on machine breakdowns, but quite often they 
are not in the proper format.  For example, the times to 
failure might be based on wall-clock time and include 
periods that the machine was idle or off-shift. 

 
• Data may contain measuring, recording, or round-

ing errors. 
 

Example 13. Data representing the time to perform 
some task are sometimes rounded to the closest 5 or 
10 minutes.  This may make it difficult to fit a con-
tinuous theoretical probability distribution to the data, 
since the data are now discrete. 

 
• Data may be “biased” because of self-interest. 

 
Example 14. The maintenance department in an 
automotive factory reported the reliability of certain 
machines to be greater than reality to make themselves 
look good. 

4 SUMMARY 

All simulation models need to be validated or any decisions 
made with the model may be erroneous.  The following are 
the ideas that we believe are the most important for devel-
oping a valid and credible model: 

 
• Formulating the problem precisely 
• Interviewing appropriate SMEs 
• Interacting with the decision-maker on a regular 

basis throughout the simulation project to ensure 
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that the correct problem is being solved and to 
promote model credibility 

• Developing a written conceptual model  
• Performing a structured walk-through of the con-

ceptual model – for a nonexistent system, this 
may be the single most-important validation tech-
nique 

• Performing sensitivity analyses to determine im-
portant model factors 

• Comparing model and system results for an exist-
ing system (if any) – this is, in general, the most 
definitive validation technique available 

• Using a Turing test to compare model and system 
output data 

• Reviewing of model results and animations to see 
if they appear to be reasonable 

 
Many of the above ideas would seem to be just com-

mon sense.  However, our experience indicates that they 
are very often not applied. 
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