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ABSTRACT 

The use of multiple predictor smoothing methods in sam-
pling-based sensitivity analyses of complex models is in-
vestigated.  Specifically, sensitivity analysis procedures 
based on smoothing methods employing the stepwise ap-
plication of the following nonparametric regression tech-
niques are described: (i) locally weighted regression 
(LOESS), (ii) additive models (GAMs), (iii) projection 
pursuit regression (PP_REG), and (iv) recursive partition-
ing regression (RP_REG).  The indicated procedures are 
illustrated with both simple test problems and results from 
a performance assessment for a radioactive waste disposal 
facility (i.e., the Waste Isolation Pilot Plant).  As shown by 
the example illustrations, the use of smoothing procedures 
based on nonparametric regression techniques can yield 
more informative sensitivity analysis results than can be 
obtained with more traditional sensitivity analysis proce-
dures based on linear regression, rank regression or re-
sponse surface regression when nonlinear relationships be-
tween model inputs and model predictions are present. 

1 INTRODUCTION 

Sampling-based approaches to uncertainty and sensitivity 
analysis are both effective and widely used (Helton and 
Davis 2000, 2002, 2003).  Analyses of this type involve the 
generation and exploration of a mapping from uncertain 
analysis inputs to uncertain analysis results.  The underly-
ing idea is that analysis results y(x) = [y1(x), y2(x), …, 
ynY(x)] are functions of uncertain analysis inputs x = [x1, 
x2, …, xnX].  In turn, uncertainty in x results in a corre-
sponding uncertainty in y(x).  This leads to two questions:  
(i) What is the uncertainty in y(x) given the uncertainty in 
x?, and (ii) How important are the individual elements of x 
with respect to the uncertainty in y(x)?  The goal of uncer-
tainty analysis is to answer the first question, and the goal 
of sensitivity analysis is to answer the second question.  In 
practice, the implementation of an uncertainty analysis and 
the implementation of a sensitivity analysis are very 
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closely connected on both a conceptual and a computa-
tional level. 

Five basic components underlie the implementation of 
a sampling-based uncertainty and sensitivity analysis:  (i) 
Definition of distributions D1, D2, …, DnX that character-
ize the epistemic uncertainty in the components x1, x2, …, 
xnX of x, (ii) Generation of a sample x1, x2, …, xnS from 
the x’s in consistency with the distributions D1, D2, …, 
DnX, (iii) Propagation of the sample through the analysis to 
produce a mapping [xi, y(xi)], i = 1, 2, …, nS, from analy-
sis inputs to analysis results, (iv) Presentation of uncer-
tainty analysis results (i.e., approximations to the distribu-
tions of the elements of y constructed from the 
corresponding elements of y(xi), i = 1, 2, …, nS), and (v) 
Determination of sensitivity analysis results (i.e., explora-
tion of the mapping [xi, y(xi)], i = 1, 2, …, nS). 

The primary focus of this presentation is the sensitiv-
ity analysis component of a sampling-based uncertainty 
and sensitivity analysis. Traditional parametric regression 
procedures, often in conjunction with the use of rank trans-
formations, are popular and usually effective sensitivity 
analysis tools (Section 2). However, such procedures can 
fail to identify the effects of influential variables when the 
underlying relationships between analysis inputs and 
analysis results are both nonlinear and nonmonotonic. 
Nonparametric regression procedures are presented as tools 
for use in sensitivity analyses when more traditional para-
metric regression procedures fail to identify the relation-
ships that exist between analysis inputs and analysis results 
(Section 3). The application of  nonparametric regression 
procedures in sensitivity analysis is illustrated with two 
analytic test functions (Campolongo 2000) and a result 
from a performance assessment (PA) for the Waste Isola-
tion Pilot Plant (WIPP, Helton and Marietta 2000) (Section 
4). The presentation then ends with a brief discussion (Sec-
tion 5). 

2 PARAMETRIC REGRESSION ANALYSIS 

Traditional parametric regression analysis provides an al-
gebraic representation of the relationships between a de-
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pendent variable y (i.e., an element of y)  and one or more 
independent variables (i.e., elements of x). Unless stated 
otherwise, regression analysis is usually assumed to in-
volve the construction of linear models of the form 
 

 0
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ˆ
nX

j j
j

y b b x
=

= +∑ . (1) 

 
 The regression coefficients in Equation (1) are usually  de-
termined such that the sum 
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is minimized.  As a result, the regression model in Equa-
tion (1) is often referred to as a least squares model. 

An important property of least squares regression 
models is the equality 
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where y denotes the estimated expected value for y. The 
ratio 
 

 ( ) ( )2 22

1 1
ˆ

nS nS

i i
i i

R y y y y
= =

= − −∑ ∑  (4) 

 
provides a measure of the extent to which the regression 
model can match the observed data.  Specifically, when the 
variation about the regression model is small, then the cor-
responding R2 value is close to 1, which indicates that the 
regression model is accounting for most of the uncertainty 
in y.  Conversely, an R2 value close to 0 indicates that the 
regression model is not very successful in accounting for 
the uncertainty in y.  When the individual xj in the regres-
sion model in Equation (1) are linearly independent, the R2 
value for the regression model can be expressed as 
 
 2 2 2 2

1 2 ,nXR R R R= + + +K  (5) 
 
where 2

jR  is the R2 value that results from regressing y on 

only xj.  Thus, 2
jR  is equal to the contribution of xj to the 

R2 value for the regression model in Equation (1) when the 
xj’s are independent. 

The regression coefficients bj, j = 1, 2, …, nX, are not 
very useful in sensitivity analysis because each bj is influ-
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enced by the units in which xj is expressed and also does 
not incorporate any information on the distribution as-
signed to xj.  Because of this, the regression model in 
Equation (1) is usually reformulated as 
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where y , jx , ŝ  and ŝj denote estimated means and standard 
deviations for y and xj. The coefficients bjŝj/ŝ in Equation 
(7) are referred to as standardized regression coefficients 
(SRCs). 

The SRC bjŝj/ŝ provides a measure of variable impor-
tance based on the effect on y relative to the standard de-
viation of y of moving xj away from its expected value by a 
fixed fraction of its standard deviation.  Further, when the 
xj’s are independent, the inclusion or exclusion of an indi-
vidual xj from the regression model has no effect on the 
SRCs for the remaining variables in the model.  Thus, as 
long as the xj’s are independent, the SRCs bjŝj/ŝ provide a 
useful measure of variable importance, with (i) the abso-
lute values of the coefficients bjŝj/ŝ providing a compara-
tive measure of variable importance (i.e., variable xu is 
more important than variable xv if |buŝu/ŝ| > |bvŝv/ŝ|) and (ii) 
the sign of bjŝj/ŝ indicating whether xj and y tend to move 
in the same direction or in opposite directions.  However, 
when xj’s are not independent, SRCs do not provide reli-
able indications of variable importance. 

For purposes of sensitivity analysis, there is usually no 
reason to construct a regression model containing all the 
uncertain variables (i.e., x1, x2, …, xnX) as indicated in 
Equation (1). Rather, a more appropriate procedure is to 
construct regression models in a stepwise manner.  With 
this procedure, a regression model is first constructed with 
the most influential variable (e.g., 1x%  as determined based 
on R2 values for regression models containing only single 
variables).  Then, a regression model is constructed with 1x%  
and the next most influential variable (e.g., 2x%  as deter-
mined based on R2 values for regression models containing 

1x%  and each of the remaining variables).  The process then 
repeats to determine 3x%  in a similar manner and continues 
until no more variables with an identifiable effect on yk can 
be found.  Variable importance (i.e., sensitivity) is then in-
dicated by the order in which variables are selected in the 
stepwise process, the changes in cumulative R2 values as 
additional variables are added to the regression model, and 
the SRCs for the variables in the final regression model.  
An example of a sensitivity analysis of this form is pre-
sented in Table 1. 
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Table 1:  Example of Stepwise Regression Analysis to Identify Uncertain Variables Affecting the Uncertainty in WIPP Re-
pository Pressure under Undisturbed Conditions at 10,000 yr Performed for a Sample of Size 300 from 31 Uncertain Vari-
ables (Table 8.6, Helton and Davis 2000) 
 

Stepa Variableb SRCc R2d 
1 WMICDFLG 0.718 0.508 
2 HALPOR 0.466 0.732 
3 WGRCOR 0.246 0.792 
4 ANHPRM 0.129 0.809 
5 SHRGSSAT 0.070 0.814 
6 SALPRES 0.063 0.818 

a Steps in stepwise regression analysis. 
b Variables listed in the order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression model. 
 

 
This section only considers linear regression models.  

However, linear regression models also include models of 
forms such as 
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This inclusion exists because the preceding model is still 
linear in its coefficients (i.e., b0, the bj, the bjl); in essence, 
the indicated transformations involving the xj (i.e., fj(xj), 
fjl(xj, xl)) are simply defining a new set of analysis inputs to 
be used in a regression-based sensitivity analysis.  Results 
can be improved in some analyses by well-chosen variable 
transformations of the form indicated in Equation (8).  
However, in large analyses involving many uncertain 
analysis inputs (i.e., xj) and many possibly time-dependent 
analysis results (i.e., y’s), the a priori determination of suit-
able transformations can be difficult.  Also, care must be 
taken to suitably account for any correlations that may be 
introduced by the chosen transformations (i.e., fj(xj) and 
fjl(xj, xl) may be highly correlated). 

Nonlinear regression provides an alternative to linear 
regression that can be useful in some analyses.  In nonlin-
ear regression, at least some of the model coefficients are 
operated on by nonlinear functions.  For example, 

 
 ( ) ( )0 1 2 1 3 4 2ˆ exp siny b b b x b b x= + +  (9) 

 
is a nonlinear model because b2 and b4 appear in expres-
sions that are operated on by nonlinear functions.  A major 
challenge in the use of nonlinear regression in sensitivity 
analysis is the determination of a suitable form for the 
nonlinear regression model. 

A rank transformation can be used to convert a nonlin-
ear but monotonic relationship between the xj and y into a 
linear relationship (Iman and Conover 1979).  With this 
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transformation, the values for the xj and y are replaced by 
their corresponding ranks.  Specifically, the smallest value 
for a variable is assigned a rank of 1; the next largest value 
is assigned a rank of 2; tied values are assigned their aver-
age rank; and so on up to the largest value, which is as-
signed a rank of nS.  Use of the rank transformation results 
in rank (i.e., Spearman) correlation coefficients (RCCs), 
rank regressions, standardized rank regression coefficients 
(SRRCs) and partial rank correlation coefficients (PRCCs).  
In the presence of nonlinear but monotonic relationships 
between the xj and y, use of the rank transform can sub-
stantially improve the resolution of sensitivity analysis re-
sults (Table 2). 

3 NONPARAMETRIC REGRESSION 

There are drawbacks to the parametric regression tech-
niques indicated in Section 2 that can reduce their effec-
tiveness in some sensitivity analyses.  First, it is necessary 
to provide an a priori specification of the form of the re-
gression model (e.g., linear as in Equations (1) and (8), 
nonlinear as in Equation (9), or linear with rank trans-
formed data).  Unfortunately, when complex patterns of 
behavior are present, it can be difficult to determine the 
appropriate form for a regression model.  Such determina-
tions can be a particular challenge in exploratory analyses 
that can involve 10s or even 100s of analysis results, with 
each result potentially requiring the specification of a dif-
ferent regression model.  Second, the specified form for the 
regression is required to hold across the entire mapping 
from analysis inputs to analysis results, which makes the 
representation of local behavior and/or asymptotes diffi-
cult.  In addition, grid-based procedures (Kleijnen and 
Helton 1999) have the drawback that the associated sensi-
tivity results can be dependent on the particular grid se-
lected for use.  Unfortunately, the most appropriate grid for 
use with these procedures is not always apparent. 
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Table 2:  Comparison of Stepwise Regression Analyses with Raw and Rank-Transformed Data for Cumulative Brine Flow 
over 10, 000 yr under Undisturbed Conditions from Anhydrite Marker Beds to Disturbed Rock Zone Surrounding the WIPP 
Repository Performed for a Sample of Size 300 from 31 Uncertain Variables (Table 8.8, Helton and Davis 2000). 
 

Raw Data Rank-Transformed Data Stepa Variableb SRCc R2d Variableb SRRCe R2d 
1 ANHPRM 0.562 0.320 WMICDFLG −0.656 0.425 
2 WMICDFLG −0.309 0.423 ANHPRM 0.593 0.766 
3 WGRCOR −0.164 0.449 HALPOR −0.155 0.802 
4 WASTWICK −0.145 0.471 WGRCOR −0.152 0.824 
5 ANHBCEXP −0.120 0.486 HALPRM 0.143 0.845 
6 HALPOR −0.101 0.496 SALPRES 0.120 0.860 
7    WASTWICK −0.010 0.869 

a Steps in stepwise regression analysis. 
b Variables listed in order of selection in regression analysis. 
c SRCs for variables in final regression model. 
d Cumulative R2 value with entry of each variable into regression model. 
e SRRCs for variables in final regression model. 
 
 

Nonparametric regression procedures provide an alterna-
tive to parametric regression procedures and grid-based 
procedures that can mitigate the potential problems indi-
cated in the preceding paragraph.  With nonparametric re-
gression procedures, an a priori specification of the exact 
algebraic form of the regression model is not required.  
Rather, an iterative procedure is used to construct a model 
that captures the relationships that are present in the map-
ping between analysis inputs and a particular analysis re-
sult.  This iterative construction procedure does not require 
the use of a grid and produces a model that can represent 
local patterns of behavior.  Nonparametric regression is of-
ten referred to as smoothing.  Popular nonparametric re-
gression procedures include (i) locally weighted regression 
(LOESS), (ii) generalized additive models (GAMs), (iii) 
projection pursuit regression (PP_REG), and (iv) recursive 
partitioning regression (RP_REG).  These procedures are 
briefly described below. 

The LOESS technique (Cleveland 1979) is based on 
the assumption that the relationship between y and x is of 
the form 
 
 ( ) ( ) ( ) ,y f α= = +x x x xβ  (10) 
 
where β(x) = [β1(x), β2(x), …, βnX(x)] and x = [x1, x2, …, 
xnX]T.  In turn, an approximate relationship of the form 
 
 ( ) ( ) ( )ˆ ˆˆŷ f α= = +x x x xβ  (11) 
 
is sought with LOESS.  The quantities ˆ ( )α x  and ˆ ( )xβ  for 
a given value of x are defined to be the values for α and β 
= [β1, β2, …, βnX] that minimize the sum 
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where (i) dr(x) is the distance to the rth nearest neighbor of 
x in nX-dimensional Eulidean space, (ii) I[0,dr(x))(||x – xi||) 
equals 1 if ||x – xi|| < dr(x) and equals 0 otherwise, and (iii) 
the individual independent variables (i.e., x1, x2, …, xnX) 
are normalized to mean zero and standard deviation one so 
that the value for the norm || ⋅ || is not dominated by the 
units used for these variables.  The determination of α and 
β is straightforward with the use of appropriate matrix 
techniques (p. 139, Simonoff 1996). 

For GAMs (Hastie and Tibshirani 1990), the function 
f(x) is assumed to have the form 
 

 ( ) ( )
1

,
nX

j j
j

f f x
=

= ∑x  (13) 

 
where the fj are arbitrary functions that will be determined 
as part of the analysis process.  In turn, the observed values 
for y are assumed to be of the form 
 

 ( ) ( )
1

.
nX

i i j ij
j

y f f x
=

= = ∑x  (14) 

 
Given initial estimates 2̂f , 3̂f , …, n̂Xf  for f2, f3, …, fnX, an 

estimate 1̂f  for f1 can be obtained through use of the rela-
tionship 
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for i = 1, 2, …, nS.  In particular, a scatterplot smoother 
(e.g., LOESS with only one independent variable) can be 
used to smooth the partial residuals on the left hand side of 
Equation (15) across x1.  This produces an estimate 1̂f  for 
f1 defined across the range of values for x1.  Given this es-
timate for f1, the estimate 2̂f  for f2 can be refined in the 

same manner across the range of values for x2 with 1̂f , 

3̂f , 4̂f , …, n̂Xf .  This procedure then continues and re-
petitively cycles through the variables.  The cycling con-
tinues until convergence is achieved.  The result is ˆ

jf  de-
fined at x1j, x2j, …, xnS,j for j = 1, 2, …, nX.  Additional 
detail is available elsewhere (pp. 90 – 91, Hastie and Tib-
shirani 1990; pp. 300 – 302, Chambers and Hastie 1992). 

The PP_REG procedure (Friedman and Stuetzle 1981)  
involves both dimension reduction and additive modeling 
and is based on the assumption that f(x) has the form 
 

 ( ) ( )
1

,
nD

s s
s

f g
=

=∑x xα  (16) 

 
where αs = [α1s, α2s, …, αnX,s], x = [x1, x2, …, xnX]T, αsx 
corresponds to a linear combination of the elements of x, 
and gs is an arbitrary function.  Values for gs, αs and nD 
are determined as part of the analysis procedure.  The ex-
pression in Equation (16) is an additive model with the 
quantities αsx replacing the elements xj of x as the inde-
pendent variables.  Further, this expression involves a re-
duction in dimension as nD is usually smaller than nX.  
The entities 1α̂ , 2α̂ , …, ˆ nDα  and ĝ1, ĝ2, …, ĝnD are es-
timated as part of the construction process.  This is accom-
plished by first estimating α1 and g1.  Specifically, 1α̂  and 
ĝ1 are defined to be the values for α and gα that minimize 
the sum 
 

 ( ) 2

1
,

nS

i i
i

y g
=
⎡ ⎤−⎣ ⎦∑ xα α  (17) 

 
where α ∈ RnX, ||α|| = 1, and gα is the outcome of using a 
scatterplot smoother (e.g., LOESS) on the points [yi, αxi], i 
= 1, 2, …, nS.  Once 1α̂  and ĝ1 are estimated, the partial 
residuals yi − ĝ1( 1ˆ ixα ), i = 1, 2, …, nS, are used to obtain 

2α̂  and ĝ2.  Specifically, 2α̂  and ĝ2 are defined to be the 
values for α and gα that minimize the sum 
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where α ∈ RnX, ||α|| = 1, and gα is the outcome of using a 
scatterplot smoother on the points [yi − ĝ1( 1α̂  x), αxi], i = 
1, 2, …, nS.  This process continues until no appreciable 
improvement based on a relative error criterion is ob-
served. 

The RP_REG procedure (Breiman et al. 1984) is based 
on splitting the data into subgroups where observations 
within each subgroup are more homogeneous than they are 
over the set of all observations.  Then, f(x) is estimated 
with regression models defined for each subgroup.  Spe-
cifically, f(x) is estimated by 
 

 ( ) ( ) ( )
1

ˆ ˆˆ ,
nP

s s s
s

f Iα
=

= +∑x x xβ  (19) 

 
where (i) As, s = 1, 2, …, nP, designate the subgroups into 
which the data are partitioned, (ii) ŷ = ˆsα + ˆ

sxβ  is the least 
squares approximation to y associated with As, and (iii) Is 
is the indicator functions such Is(x) = 1 if x is associated 
with As and Is(x) = 0 otherwise.  The subgroups As, s = 1, 
2, …, nP, are developed algorithmically from the observa-
tions [xi, yi], i = 1, 2, …, nS. 

The preceding procedures can all be carried out in a 
stepwise manner to determine variable importance, with (i) 
the most important variable 1x%  being the variable that re-
sults in the single-variable model with the most predictive 
capability, (ii) the second most important variable 2x%  be-
ing the variable that in conjunction with 1x%  results in the 
two-variable model with the most predictive capability, 
and so on until (iii) some stopping criteria is reached that 
indicates that the consideration of additional variables does 
not produce models with improved predictive capability.  
Order of selection in the stepwise construction process and 
fraction of variability explained (i.e., R2 as defined in 
Equation (8)) can be used to indicate variable importance.  
The F-statistic with appropriate degrees of freedom (a 
topic too complicated for consideration here; see Section 
3.9 in Hastie and Tibshirani (1990) and Section 3.13 in 
Ruppert et al. (2003)) can be used to determine a stopping 
point in the stepwise variable selection procedure. 

The R2 value is the primary quantity used in this pres-
entation to assess the contribution of the uncertainty asso-
ciated with a group of variables to the uncertainty in an 
analysis result.  In particular, if x%  = [ 1x% , 2x% , …, px% ] is a 
vector of variables taken from the variables x1, x2, …, xnX 
under consideration in a particular analysis (i.e., x = [x1, x2, 
…, xnX] is the vector of uncertain inputs under considera-
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tion), ˆ ( )f x%  = f̂ ( 1x% , 2x% , …, px% ) is an approximation to 
the real model f(x) = f(x1, x2, …, xnX) estimated with a par-
ticular procedure from a mapping [yi, xi], i = 1, 2, …nS, 
from analysis inputs to analysis results, and ix%  = [ 1ix% , 

2ix% , …, ipx% ] for i = 1, 2, …, nS, then 
 

 ( ) [ ]2 22

1 1

ˆ1
nS nS

i i i
i i

R y f y y
= =

⎡ ⎤= − − −⎣ ⎦∑ ∑x%  (20) 

 
provides an estimate of the fraction of the uncertainty in y 
that derives from the uncertainty associated with the vari-
ables in x% .   

In the following, R2 is calculated in a stepwise manner 
for use in determining variable importance.  The most im-
portant variable, designated 1x% , is the element of x = [x1, 
x2, …, xnX] that gives the largest value for R2.  That is, x% = 
[x1], x% = [x2], …, x% = [xnX] are considered in the definition 
of R2 in Equation (20), and the xj that gives the highest 
value for R2 is deemed to be the most important variable 
and taken to be 1x% .  The second most important variable, 
designated 2x% , is the element of x = [x1, x2, …, xnX] that 
gives the largest value for R2 when all possible values for 
x%  = [ 1x% , xj], 1x%  ≠xj, are considered.  The third most im-
portant variable, designated 3x% , is determined in like man-
ner from consideration of vectors of the form x%  = [ 1x% , 2x% , 
xj], 1x%  ≠xj and 2x%  ≠xj, and so on through all nX elements 
of x. 

The contribution of x%  to the uncertainty in y that is es-
timated by R2 is formally defined by 

 

 ( ) ( )( )2 22 1 ,E y E y E y E yρ ⎛ ⎞⎡ ⎤= − − −⎡ ⎤⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠
x%  (21) 

 
where (i) 
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(ii) (X, X, pX), ( %X , %X , Xp % ) and ( % cX , c%X , cX

p
%

) are the  

probability spaces associated with x, x% , and cx% , where cx%  
contains the elements of x not contained in x% , and (iii) 
dX(x), ( )Xd x% %  and ( )c

cX
d x
%

%  are the corresponding density 
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functions for x, x%  and cx%  (Saltelli et al. 1999).  For the 
simple test functions considered in the next section, ρ2 can 
be calculated and used in comparisons with its correspond-
ing estimate R2 defined in Equation (20). However, the di-
rect calculation of ρ2 is too computationally demanding to 
be practical for large models of the type used in the WIPP 
PA. 

A more detailed discussion of the use of nonparamet-
ric regression in sensitivity analysis is given in Storlie and 
Helton (2005). General discussions of nonparametric re-
gression procedures are give by Hastie and Tibshirani 
(1990), Chambers and Hastie (1992), Simonoff (1996), 
Bowman and Azzalini (1997) and Ruppert et al. (2003). 

4 EXAMPLE RESULTS 

As indicated in the Introduction, the application of non-
parametric regression procedures in sensitivity analysis is 
illustrated with two analytic test functions and a result 
from a PA for the WIPP. The two test functions are given 
by   
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with [a1, a2, …, a8] = [0, 1, 4.5, 9, 99, 99, 99, 99], and 
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The independent variables x1, x2, …, x8 are assumed to be 
independent and uniformly distributed on [0, 1]. The result 
from the WIPP PA is pressure (WAS_PRES) in the reposi-
tory at 10, 000 yr subsequent to a drilling intrusion at 1000 
yr. The underlying model involves 31 uncertain variables 
and is based on the numerical solution of a system of 
nonlinear partial differential equations (Vaughn et al. 
2000). 

The analyses for the test functions in Equations (22) 
and (23) use a random sample of size 300 from x1, x2, …, 
x10,  where x9 and x10 are spurious variables included in 
the sample that, like x1, x2, …, x8, are independent and uni-
formly distributed on [0, 1]. The analyses for WAS_PRES  
use a sample of size 300 obtained by pooling three inde-
pendent Latin hypercube samples of size 100 from 31 un-
certain variables.  

The analyses for the three examples are presented in 
Tables 3–5. In these tables, LIN_REG, RANK_REG and 
RS_REG are used to indicate linear regression, rank 



Storlie and Helton 

 

Table 3:  Sensitivity Analyses for Test Function  y = f(x1, x2, …, x8) in Equation (22) 

Vara R2b dfc p-vald Vara R2b dfc p-vald Vara R2b dfc p-vald Vara R2b dfc p-vald 
LIN_REG RANK_REG RS_REG LOESS 

x10 0.0231 1.0 0.0084 x10 0.0239 1.0 0.0073 x1 0.6970 2.0 0.0000 x1 0.7373 3.3 0.0000 
GAM PP_REG x2 0.8560 3.0 0.0000 x2 0.8008 4.4 0.0000 

x1 0.7513 6.0 0.0000 x1 0.7486 5.4 0.0000 x3 0.8682 4.0 0.0000 TRUE MODEL 
x2 0.9143 6.0 0.0000 x2 0.9141 5.4 0.0000 x6 0.8745 5.0 0.0159 x1 0.7115 NAe NA 
x3 0.9292 6.0 0.0000 x8 0.9449 5.8 0.0000 RP_REG x2 0.9546 NA NA 
x4 0.9324 2.0 0.0017 x3 0.9610 5.3 0.0000 x1 0.7500 3.0 0.0000 x3 0.9891 NA NA 
        x2 0.9654 32.0 0.0000 x4 0.9996 NA NA 
        x3 0.9792 32.0 0.0000 x5 0.9997 NA NA 
        x4 0.9808 -3.0 0.0000 x6 0.9998 NA NA 
        x9 0.9886 49.0 0.0000 x7 0.9999 NA NA 
            x8 1.0000 NA NA 

a Variables listed in order of selection with sample of size nS = 300. 
b Cumulative R2 value with entry of each variable into model (see Equation (21) for True Model and Equation (20) for all other cases). 
c Incremental degrees of freedom with entry of each variable into model. 
d p-value for model with addition of each new variable. 
e NA indicates that result is not applicable. 
 
 

Table 4:  Sensitivity Analyses for Test Function y = f(x1, x2, x3) in Equation (23) 
 

Vara R2b dfc p-vald Vara R2b dfc p-vald Vara R2b dfc p-vald Vara R2b dfc p-vald 
LIN_REG RANK_REG RS_REG LOESS 

x1 0.1579 1.0 0.0000 x1 0.1442 1.0 0.0000 x1 0.1595 2.0 0.0000 x1 0.2685 3.3 0.0000 
x3 0.1735 1.0 0.0185 PP_REG x2 0.2026 3.0 0.0014 x3 0.3613 4.3 0.0000 

GAM x2 0.3572 5.3 0.0000 RP_REG TRUE MODEL 
x2 0.3775 8.0 0.0000     x2 0.3785 9.0 0.0000 x2 0.4463 NA3 NA 
x1 0.7449 8.0 0.0000     x1 0.7722 38.0 0.0000 x1 0.7593 NA NA 
        x9 0.8367 20.0 0.0000 x3 1.0000 NA NA 
        x3 0.8579 2.0 0.0000     

a Variables listed in order of selection with sample of size nS = 300. 
b Cumulative R2 value with entry of each variable into model (see Equation (21) for True Model and Equation (20) for all other cases). 
c Incremental degrees of freedom with entry of each variable into model. 
d p-value for model with addition of each new variable. 
a NA indicates that result is not applicable. 

 

 
regression and response surface regression, respectively, 
where RS_REG denotes a model of the form 
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Further, the designators LOESS, GAM, PP_REG and 
RP_REG remain as in Section 3, and the designator TRUE 
MODEL indicates results obtained with the test functions 
and the variance decomposition described in Equation (21). 

Methods based on LIN_REG and RANK_REG per-
form poorly for the test function  y = f (x1, x2, …, x8) in 
Equation (22) and result in very low R2 values (Table 3). In 
contrast, the remaining methods perform well and  result in 
R2 values between 0.80 and 0.99. The RP_REG procedure 
performed best as its R2 values are in close agreement with 
results from an analytic variance decomposition (i.e., 
TRUE  MODEL) for the four dominant variables (i.e., x1, 
x2, x3, x4). After RP_REG, the GAM procedure performs 
237
best but does not match the R2 values from TRUE MODEL 
quite as well. 

Methods based on LIN_REG, RANK_REG, RS_REG, 
LOESS and PP_REG all  perform poorly for the test func-
tion  y = f (x1, x2, x3) in Equation (23)  (Table 4). Again, 
results obtained with the RP_REG and GAM procedures 
compare best with the TRUE  MODEL results. However, 
the comparisons are not as good as those in Table 3, with 
the GAM procedure failing to identify the effect of x3 and 
the RP_REG procedure indicating an effect for the spuri-
ous variable x9. 

Methods based on LIN_REG, RANK_REG and 
LOESS perform poorly for the variable WAS_PRES from 
the WIPP PA (Table 5) and result in final models with R2 
values between 0.26 and 0.52. Further, LIN_REG and  
RANK_REG fail to identify the dominant variable 
BHPRM. The RS_REG, GAM, PP_REG and RP_REG 
procedures perform reasonably well and result in final 
models with R2 values between 0.81 and 0.93. Based on R2 
values and knowledge with respect to the actual effects of 
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Table 5:  Sensitivity Analyses for Pressure (WAS_PRES) in the Repository at 10, 000 yr Subsequent to a Drilling Intrusion at 
1000 yr 

 
Vara R2b dfc p-vald Vara R2b dfc p-vald Vara R2b dfc p-vald Vara R2b dfc p-vald

LIN-REG RANK_REG RS_REG LOESS 

HALPRM 0.1188 1.0 0.0000 HALPRM 0.1207 1.0 0.0000 BHPRM 0.4550 2.0 0.0000 BHPRM 0.4610 3.3 0.0000

BPCOMP 0.1724 1.0 0.0000 BPCOMP 0.1716 1.0 0.0000 HALPRM 0.5499 3.0 0.0000 HALPRM 0.5202 4.4 0.0000

ANHPRM 0.2168 1.0 0.0001 ANHPRM 0.2023 1.0 0.0008 BPCOMP 0.6201 4.0 0.0000     

HALPOR 0.2428 1.0 0.0016 BPVOL 0.2258 1.0 0.0030 ANHPRM 0.6873 5.0 0.0000     

BPVOL 0.2679 1.0 0.0017 HALPOR 0.2494 1.0 0.0026 HALPOR 0.7299 6.0 0.0000     

GAM SHRGSSAT 0.2636 1.0 0.0182 WGRCOR 0.7713 7.0 0.0000     

BHPRM 0.4906 8.0 0.0000 PP_REG WMICDFLG 0.8030 8.0 0.0000     

ANHPRM 0.5622 4.0 0.0000 BHPRM 0.4794 5.4 0.0000 BPMAP 0.8273 9.0 0.0001     

BPCOMP 0.6246 2.0 0.0000 HALPRM 0.5564 1.7 0.0000 BPINTPRS 0.8456 10.0 0.0018     

HALPRM 0.6865 2.0 0.0000 ANHPRM 0.6373 4.2 0.0000 RP_REG     

HALPOR 0.7287 4.0 0.0000 BPCOMP 0.7234 13.4 0.0000 BHPRM 0.4906 9.0 0.0000     

WGRCOR 0.7559 4.0 0.0000 WMICDFLG 0.7898 5.8 0.0000 HALPRM 0.6053 8.0 0.0000     

BPVOL 0.7681 1.0 0.0002 WGRCOR 0.8135 6.6 0.0000 ANHPRM 0.7041 10.0 0.0000     

SHRBRSAT 0.7826 6.0 0.0076 BPVOL 0.8632 7.3 0.0000 BPCOMP 0.8307 27.0 0.0000     

WMICDFLG 0.7920 2.0 0.0029 ANHBCEXP 0.8886 -0.1 0.0000 WGRCOR 0.8382 -13.0 0.0000     

BPINTPRS 0.7989 1.0 0.0028 HALPOR 0.9077 12.3 0.0000 HALPOR 0.9003 28.0 0.0000     

SHRGSSAT 0.8053 1.0 0.0034 SALPRES 0.9253 6.4 0.0000 BPINTPRS 0.9285 18.0 0.0000     

a Variables listed in order of selection with sample of size nS = 300. 
b Cumulative R2 value with entry of each variable into model (see Equation (20)). 
c Incremental degrees of freedom with entry of each variable into model. 
d p-value for model with addition of each new variable. 

 

 
the sampled variables, the PP_REG and RP_REG proce-
dures performed best. 

In addition to the two test functions and the variable 
WAS_PRES, the complete study (Storlie and Helton 2005) 
considered two additional test functions and five additional 
variables from the WIPP PA. 

5 OBSERVATIONS AND INSIGHTS 

The following observations and insights are based on the 
three examples described in this presentation and on the 
additional seven examples contained in the complete study  
(Storlie and Helton 2005). Nonparametric methods worked 
quite well for sensitivity analysis and provide a useful ad-
dition to currently employed sampling-based sensitivity 
analysis procedures. 

The overall best method considered in this study is 
RP_REG.  In the test cases, it almost always ordered the 
input variables correctly and estimated the contributions to 
the R2 accurately.  The drawback is that it takes longer to 
apply than any of the other methods. 
238
The GAM and RS_REG procedures had good per-
formance on the test data and are fast computationally. The  
RS_REG procedure can model a certain degree of interac-
tion while GAM does not.  However, GAM can model 
more general nonlinearity than RS_REG.  Also, multiplica-
tive interaction terms could be used in GAM to make it a 
more general method. 

The LOESS and PP_REG procedures displayed some 
problems that could reduce their usefulness for  sensitivity 
analysis.  Specifically, LOESS sometimes failed to identify  
important input variables, although it usually identified the 
two most important variables. The PP_REG procedure 
showed a tendency to err in the opposite direction and of-
ten included insignificant input variables in the model. 

Given the nonlinear relationships that can be present in 
analyses with complex computer models, one should be 
cautious about using only linear methods for sensitivity 
analysis.  However, when a linear regression with raw or 
rank-transformed data is appropriate, it should be used as it 
is the easiest method to implement and interpret.  

 A reasonable analysis strategy is initially to fit linear 
regressions with raw and rank-transformed data and ob-
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serve the R2 values. If these values are below 0.9, then fit a 
RS_REG surface.  If RS_REG also has an R2 below 0.9, 
then fit a GAM surface.  If the GAM surface still has a low 
R2, then fit a RP_REG model.  This approach restricts the 
use of the more computationally demanding RP_REG pro-
cedure to situations where its use is necessary.  This is im-
portant because real analyses can involve carrying out sen-
sitivity analyses for hundreds of time-dependent analysis 
results (e.g., see the sensitivity analyses summarized in 
Helton and Marietta (2000)). The authors’ experience is 
that linear regression with rank-transformed data and ex-
amination of associated scatterplots is usually sufficient to 
carry out a successful sensitivity analysis. However, there 
are situations where this approach will not be successful. 
Then, nonparametric regression procedures can often pro-
vide the needed techniques to determine the relationships 
between  uncertain analysis inputs and analysis results.  
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