
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A HYBRID AGENT-CELLULAR SPACE MODELING APPROACH
FOR FIRE SPREAD AND SUPPRESSION SIMULATION

Xiaolin Hu

Georgia State University
Department of Computer Science

34 Peachtree Street, Suite 1438
Atlanta, GA 30303, U.S.A.

Alexandre Muzy

Università di Corsica
Laboratory SPE UMR CNRS 6134

Campus Grossetti, BP 52
20250 Corti, FRANCE

Lewis Ntaimo

Texas A&M University
239C Zachry Engineering Center

College Station
TX 77843-3131, U.S.A.

.

ABSTRACT

This paper presents a first effort to integrate DEVS-based
cellular space models with agent models using dynamic
structure DEVS for the simulation of forest fire spread and
suppression. The main focus is on the interaction between
mobile agents (such as fire fighters, air-tankers) and forest
cells. DEVS models’ dynamic structure modeling
capability is applied where couplings between mobile
agents and forest cells are dynamically added and removed
when the agents move in the cellular space. Two methods,
a time-based method and an event-based method, are
discussed to update a mobile agent’s position in a cellular
space. A system architecture is presented and a prototype
fire spread and suppression example is implemented.
Based on this initial work, we hope to understand more
about the nature of this hybrid agent-cellular space
approach and to apply it to the modeling and simulation of
forest fires and other ecological applications.

1 INTRODUCTION

The ecological problem of wildfires is concerned with
propagation processes that are distributed in both time and
space. Therefore, the study of fire spread often requires
developing simulation models that consider the system
evolution in both time and space. Hence, such simulation
models are generally of a large-scale nature and are
challenging to be efficiently simulated. Furthermore, once
a fire starts there is an immediate need to effectively
contain it. This calls for incorporating fire fighting or fire
suppression modeling into the fire spread simulation
models.

In forest fire simulation, Cellular Automata (CA) has
been often used to discretize the space into cells. Recently,
studies such as (Ameghino et al., 2001; Ntaimo et al.,

248
2004; Muzy et al., 2005) pinpoint the need for developing
new classes of CA for fire spreading applications using the
Discrete EVent System Specification (DEVS) formalism
(Zeigler, et al., 2000). Unlike CA, DEVS models can
receive external updated information, and the fire
parameters can be updated at any moment due to the
continuous time nature of the discrete event specifications.
Moreover, founded on the DSDEVS formalism (Barros,
1997), Dynamic Structure Cellular Automata (DSCA)
(Barros and Mendes, 1997 ; Muzy et al., 2004) allows to
dynamically add active cells, to remove the quiescent ones
and to change couplings between cells. Hence, a more
faithful modeling and a more efficient simulation can be
obtained. Using DEVS to model fire spread includes
developing DEVS cellular models and couple them to form
a cellular space. This cellular modeling approach has the
ability to effectively represent large-scale spatial dynamic
phenomena for timely simulations (e.g. Ameghino et al.,
2001; Muzy et al., 2002; Zeigler 2003). In the cellular
approach, the actual forest is modeled as a cell-space and is
divided into forest cells. Fire spread is abstracted and
modeled within a forest cell using a fire spread
mathematical model of choice. Such a mathematical model
uses the forest cell properties such as fuel, topography,
wind speed and direction as input to compute the fire
spread and other parameters of interest within the cell.

Besides modeling and simulating fire spread, there is
also a need to effectively model and simulate fire
suppression activities. Towards that end, (Ameghino et al.,
2001) has incorporated fire suppression into a cellular Cell-
DEVS (Wainer and Giambiasi, 2001) model. (Ntaimo et
al., 2004; Ntaimo and Zeigler, 2005) also developed
cellular DEVS models of forest fire spread that include fire
suppression control measures. These works model both fire
spread and fire suppression using the cellular modeling
approach. Thus each cell either incorporates fire
suppression activities directly or is coupled to a separated

Hu, Muzy, and Ntaimo
fire suppression model. Different from the above works,
this paper proposes a hybrid modeling approach that
integrates cellular DEVS models and agent models using
dynamic structure DEVS for fire spread and suppression
simulation. We consider this as an alternative approach to
model fire spread and fire suppression, which can be
treated as separated activities. Fire spreading is a series of
ignitions progressing through a fuel bed. Fire suppression
refers to the activities connected with restricting the spread
of fire following its detection. For forest fire, fire
suppression efforts are usually carried out by fire fighters
or air-tankers. Based on this observation, our research
separates the concerns of fire spread that is modeled by
cellular space model from fire fighting that is modeled by
agent models. A similar approach has been taken by
(Duboz et al., 2004), which proposed a formalization of
Multiple Agent System (MAS) using DSDEVS. During the
simulation, agents and resources of the environment
(contained in the cells) can be destroyed or created and
couplings can be added or removed. Our work, while
following the same direction, focuses more on the hybrid
nature of agents and cellular models and the interactions
between them.

The rest of this paper is organized as follows. In the
next section design considerations for the hybrid agent and
cellular space modeling approach are given. In Section 3
the system architecture of the proposed approach is
presented and in Section 4 a prototype fire spread and
suppression example is given. Conclusions and discussions
of this research, including future research directions, are
given in Section 5.

2 DESIGN CONSIDERATIONS FOR HYBRID
AGENT-CELLULAR SPACE MODELING

This section discusses some design considerations that are
important to support hybrid agent and cellular space
modeling and simulation.

2.1 Dynamic Coupling Change between
Agents and Cells

Agents are used to model fire fighters and air-tankers. In
order to carry out fire fighting actions, an agent needs to
know the fire spreading conditions from its environment
and then take actions to affect the environment. In our
approach, we allow an agent to interact with one (and only
one) cell where it locates at any given time (this restriction
can be relaxed to allow an agent to interact with multiple
local cells.) Couplings are added between the agent and
that cell. This allows the cell to send the agent fire
spreading condition messages and the agent to send the cell
fire fighting action messages. When an agent changes its
location in the cellular space, the cell that is coupled to the
agent is changed too. Thus the couplings between an agent
and the corresponding cells will be dynamically added and
249
removed during simulation. For example, when an agent
moves from cell_A to cell_B, couplings between the agent
and cell_A are removed and couplings between the agent
and cell_B are added.

This feature of dynamic coupling change can be
modeled by DEVS’ dynamic structure modeling capability
(Barros, 1997). In (Hu et al., 2005), four dynamic structure
change operations: addModel(), removeModel(),
addCoupling(), removeCoupling(), have been defined.
Among them, addModel() and removeModel() allow
models to be added and removed dynamically.
addCoupling() and removeCoupling() allow couplings
between models to be added and removed dynamically. To
support dynamic couplings, a special atomic model, such
as the couplingManager in Figure 2, is created and added
into the system. This model receives position information
from an agent and finds the corresponding cell where the
agent locates. It invokes coupling changes if the agent has
moved out from an old cell and arrived in a new cell.

Let LX×LY denote the size of each cell in the two
dimensional cellular space. For an agent with position
(x,y), the ID (C_IDx, C_IDy) of the cell that corresponds to
the agent’s position can be calculated as follows:

)/(floor_ LXxIDC x = (1)

)/(floor_ LYyIDC y = (2)

For a system with multiple agents, each agent has a

unique ID and is coupled to its corresponding cell.
Multiple agents may occupy (thus are coupled to) the same
cell. To allow the couplingManager to know which agent
is coupled to which cell, the mapping information between
agentID and cellID is maintained and updated as agents
move in the cellular space.

2.2 Movement in the Cellular Space

Dynamic coupling changes are triggered by agents’
movements in the cellular space. In our approach, each
agent keeps track of its own position. To model an agent’
movement and to update its position in the cellular space,
we define an agent’s position as (x,y) in a two dimension
coordinate system with (0,0) corresponding to the bottom
left corner of the cellular space. An agent’s position at time
t is defined as (x(t), y(t)). Motion of an agent is controlled
by its speed (r(t), θ(t)), where r(t) is the value of the speed
and θ(t) is the angular heading at time t. Based on these
notations, below we consider two different methods to
update an agent’s position in the cellular space as
illustrated in Figure 1.

The first method, which we refer to as time-based
method, ignores the existence of cells and treats the cellular
space as a continuous space. A time step is defined and the
agent updates its position at the end of each time step.

Hu, Muzy, and Ntaimo
(x’, y’)

x’

y’

LX

LY(x, y)
θ θ

Δx

Δy

(a) time step (b) event step
Figure 1: Model an Agent’s Movement in a Cellular Space

Assuming the time step is Δt and an agent’s speed does not
change during Δt, the agent’s new position can be
calculated based on formulas (3) and (4). After calculating
its new position, an agent sends it to the couplingManager,
which finds the corresponding cell as described in Section
2.1.

 ytyttyxtxttx Δ+=Δ+Δ+=Δ+)()(and)()((3)

)(sin)(and)(cos)(ttryttrx θθ =Δ=Δ (4)

The second method, which we refer to as event-based
method, updates an agent’s position only when the agent
crosses the boundary of a cell. The justification of this
method is that an agent, even though is moving, stays in
the same cell unless it passes the boundary of that cell to
arrive in a new cell. Only at that point, dynamic coupling
change needs to be invoked. In this event-based method,
the time interval for position update is not constant. Let (x′,
y′) denote the relative coordinates of an agent within its
cell, the time interval ta for the next position update can be
computed as follows. Note that the mod function returns
the remainder from division,

(y/LY)yLXxx modand)/mod(=′=′ (5)

⎭
⎬
⎫

⎩
⎨
⎧ ′−′−=

)(sin)(
)(,

)(cos)(
)(min

ttr
yLY

ttr
xLXta

θθ
 (6)

Both of these two methods have their advantages and

disadvantages. The time-based method is straightforward
to be implemented. Furthermore, in this method an agent is
largely decoupled from the cellular space model. Thus an
agent can be designed and tested “independently” from the
cellular space model. But this method is dependent on a
suitable time step. As will be discussed in the next section,
an inappropriate time step may result in bad simulation
performance or even incorrect simulation results. In the
event-based method, an agent is closely coupled to the
cellular space because the computation of ta is dependent
on the dimensions of cells and the agent’s relative
coordinates (x′, y′) in the cell. However, this method
handles time more efficiently because the simulation
250
proceeds based on events that indicate an agent is crossing
from one cell to another. Thus this approach is superior to
the time-based approach for applications, such as the forest
fire application, characterized as temporal and spatial
heterogeneity.

While in the above two methods, an agent can move
freely in the space, there are other methods that treat the
space as a discrete space, i.e., only discrete locations or
discrete directions are allowed for an agent to move. For
example, (Batty and Jiang, 1999) considers eight discrete
directions {0, (1/4)π, (1/2)π, (3/4)π, π, (5/4)π, (3/2)π, and
(7/4)π} along which an agent can move. This approach
needs some approximation functions to be defined for an
agent to find the right direction in each step. (Dijkstra et
al., 2000) considers each cell as a discrete dot thus the
cellular space is essentially defined as a grid. An agent can
move from one point to another point in this grid.

2.3 Different Time Resolution for Simulation

One characteristic of this hybrid agent-cellular space
modeling approach is that agents and cellular models may
operate in different time resolutions. This is true for the
fire spread and suppression application that we consider in
this paper. For example, the speed of a typical fire
spreading could be 1m/s. However, a fire fighting agent,
such as an air-tanker, may move in the speed of 10m/s,
which is 10 times as fast as the speed of fire spread. Thus
during simulation, the time for an agent to move across a
forest cell is one tenth of that for fire spreading. This issue
of multi-resolution time scales is common for many
ecological systems (Ball, et al., 1996).

In discrete time simulation, models’ states are updated
based on a time step. The time-based method to update an
agent’ position (described in the previous section) belongs
to this category. Thus for this method, selecting a suitable
time step is important. If the time step is too small, the
change of an agent’s position will be insignificant in one
time step. This results in unnecessary computation.
However, if the time step is too large, an agent may move
across multiple cells in one time step. This may result in
incorrect simulation, since, for example, the agent may
bypass a fire spot that should be suppressed. Different from
discrete-time simulation, discrete event simulation treats
time in reference to events. In discrete event simulation,
the model only performs calculations when it is ready to
change states. There is no need to select an appropriate
time step as there is an inherent synchronization in this
approach, since each model will automatically be staged
according to the next event time. The event-based method
to update an agent’s position (described in the last section)
belongs to this category. This approach handles time more
efficiently and has the potential to increase simulation
performance.

The potential of efficient time handling and simulation
can be exploited by the design of advanced simulation

Hu, Muzy, and Ntaimo

engines. Since agents and cellular models operate in
different time resolutions, in most simulation steps only a
small subset of models (i.e., the agent models) will change
their states. Thus an advanced simulation engine can be
developed to focus on only those “active” models in every
simulation step. This is the idea behind the work of (Hu
and Zeigler, 2004) where a high performance simulation
engine was developed. This simulation engine exploits
temporal and spatial heterogeneity of the simulation
models and develops a data structure to support efficient
search of the next event time.

3 SYSTEM ARCHITECTURE

3.1 The System Architecture

Figure 2 shows a system architecture that integrates agents
and cellular space models for fire spread and suppression
simulation. Only one agent model is shown in Figure 2.
However, it can be easily expanded to include multiple
agents. The forest is modeled as a two dimensional cellular
space model. But this architecture can be upgraded to
support three dimensional cellular space models for other
ecological problems.

agent couplingManager
update agent position (x,y)

cell

trigger cell state update

update cell state
execute fire fighting actions

fireManager

set fire fighting strategies
Forest Cell Space Model

Figure 2: Architecture for Hybrid Agent and Cellular
Space Simulation

This system architecture is composed from four
loosely coupled components: Forest Cell Space Model,
Agent model, couplingManager model, and fireManager
model.

The Forest Cell Space Model is used to model the
spatial state of the forest. It is defined according to the
conventions of cellular automata modeling. Each cell has 8
adjacent neighboring cells (the Moore neighborhood)
surrounding it. A forest cell has states such as unburned,
burning, and burned. It transits from one state to another
based on external or internal events. For example, an
unburned cell, if ignited, may transit to the burning state,
and then after a period of time may transit to the burned
state. The time for a cell to stay in the burning state can be
computed based on a fire spread algorithm, which takes into
251
account factors such as fuel type, wind speed, and fire
fighting efforts. Fire in one cell may spread to its
neighboring cells. The fire spread speed along a particular
direction can be calculated based on some mathematic fire
spreading models such as Rothermel’s model (Rothermel,
1972). An implementation of a similar cellular space model
in the DEVS formalism can be found in (Ntaimo, et al.,
2004). In this implementation, couplings are added between
a cell and all its surrounding cells. To model fire spread
from one cell to another, messages are sent between cells.
This model is expanded in our architecture in several ways.
For example, a new port, such as the queryState port shown
in Figure 3, is added for each cell. Whenever a cell receives
a message on this port, it sends out a message that contains
its current state. Also, a cell will send out its state whenever
it transitions to a new state. This allows the agents coupled
to this cell to know the current state of the cell.

The Agent model is used to model fire fighters or air-
tankers. An agent can move in the cellular space with a
certain speed. During the movement, it keeps track of its
own position and updates it based on moving speed and
direction (see Section 2.2). Meanwhile, an agent
continuously monitors the condition (state) of its
corresponding cell and, if necessary, takes fire suppression
actions based on some pre-defined rules. To support the
interactions between an agent and the corresponding cell,
couplings are added between them. This allows a cell to
update its state to the agent and the agent to send fire
fighting commands to the cell. When an agent moves in the
cellular space, couplings are dynamically added and
removed as described in Section 2.1.

The couplingManager model takes care of coupling
changes when an agent moves in the cellular space. It
receives messages that contain the agent’s (new) positions
(x,y) from the agent. This message triggers the
couplingManager to find the cell where the agent locates.
If the cell ID has changed, couplings between the agent
and the old cell will be removed and couplings between the
agent and the new cell will be added. Furthermore, a
coupling will be added from the couplingManager to the
new cell. This coupling allows the couplingManager to
inform the new cell to send out its current state. Thus
whenever an agent is coupled to a new cell, it will receive
an “initial” message from the cell that contains the cell’s
current state. These couplings that are dynamically
added/removed are represented in dashed lines in Figure 2.
Using the structure change operations developed in (Hu, et
al., 2005), the couplingManager can execute the following
code to remove a coupling from an agent to an old cell and
to add a coupling from the agent to a new cell:

removeCoupling(agent , "ffAction", oldCell,
"inFireFight");
addCoupling(agent , "ffAction", newCell,
"inFireFight");

Hu, Muzy, and Ntaimo
The fourth part of this architecture concerns the
fireManager that is represented in the dotted box in Figure
2. During the process of fire suppression, an agent may
receive high-level commands from the fireManager, whose
role is to allocate fire fighting resources and set fire
fighting strategies from the global point of view. In order
for the fireManager to make timely and optimized
decisions, information about fire spread and fire
suppression will be continuously updated to the
fireManager from cellular models and agents. The
couplings that support this information update are not
shown in Figure 2. Based on this information, the fire
manager assesses the current situation and makes a
decision. To account for the stochastic nature of fire spread
and fire suppression, stochastic programming techniques
such as the stochastic server location problem studied by
(Ntaimo, 2004) may be applied in order to reach an
optimized decision. This fire manager model has not been
implemented in our prototype example described in
Section 4.

3.2 Towards a Formal Specification

It is desirable to provide a formal specification for the
above architecture and all its components. Such a formal
specification would provide a clear definition of the system
and leave out any possible misinterpretations. Towards this
goal, this section presents some previous works from the
specification point of view. We discuss the relationship
between our work and these previous works and suggest
how a complete formal specification may be derived. Our
discussion focuses on the specification of dynamic
structure changes, the specification of cellular space
models, and the specification of agent models. We leave
the specification of fire manager for future research.

Barros (Barros, 1997) provides a formal specification
for dynamic structure DEVS where the ability to initiate
structure changes is supported by a central network
executive. Based on Barros’ structure, (Duboz et al., 2004)
recently proposed a formalization of Multi-Agent Systems
(MASs) using DSDEVS. In this work, a MAS network is
described by a structure >=< χχ M,,Y,XMAS MASMAS .

MASX is the set of MAS input events, MASY is the set of
MAS output events, χ is the name of a special atomic
model called the executive model, and χM is the
executive model. The executive model is a special atomic
model described by:

>Σ< χλχχδχδχδχχγχχχ ,ta,,conf,int,,,ext,*,,S,Y,X .

χX and χY are the input and output sets of the executive

model, χS is the set of states, *S: χχχγ Σ→ is the

structure function, *
χΣ is the set of network structures, and
252
χχχχδ SXQ: b
,ext b →× , χχχδ SS:int, → and

χχχχδ SXS: b
,conf b →× are the executive model’s

external, internal, and confluent transition functions.
)}s(te0,Ss/)e,s{(Q a χχχχχ ≤≤∈= is the total state

set, with e the time elapsed since the last state change.
+ℜ→χχ

S:ta and bYS: χχχλ → are the executive

model’s time advance and output functions. In effect, the
state of the executive model describes the network
structure. Structure changes can occur when the executive
model changes its state. This work of MAS bears a close
relationship to the work presented in this paper. Especially
the executive model is directly corresponding to the
couplingManager in our architecture. Specifications of the
structure change and the couplingManager model in our
architecture can be derived from the ones developed in
DSDEVS and MAS.

Specifications for the cellular space model can be
achieved through (Wainer and Giambiasi, 2001) or (Muzy,
et al., 2004). These works are based on DEVS.
Furthermore, the cellular space model that we employ is
derived from an existing model developed in (Ntaimo, et
al., 2004). Formal specification of this model has been
developed in (Ntaimo and Zeigler, 2004). A specification
of our cellular space model can be derived from this formal
specification by expanding it to account for the interactions
with agents that move in the cellular space.

Several works have been developed that are related to
the specification of mobile agents for fire suppression. For
example, a specification of fire suppression was developed
in (Ameghino et al., 2001) using the Cell-DEVS
formalism. Recently, a DEVS specification of an atomic
fire fighting model was developed in (Ntaimo and Zeigler,
2005). Unlike a mobile agent, this atomic model is coupled
to a single cell and can not move in the cellular space. In
(Duboz et al., 2004), mobile agents are specified as
dynamic structure networks. These specifications can be
described through the level of Coupled System
specification of the System Specification Hierarchy
discussed in (Zeigler, et al., 2000). Considering that we are
still at an initial stage to define agents and their interactions
with the cellular models, we choose to specify an agent at a
more abstract level, the I/O Behavior level. The I/O
Behavior specification defines a system’s behavior from
the input/output (blackbox) point of view. This leaves
spaces for different low-level specifications and detailed
implementations (the example presented in the next section
shows one implementation). After we understand more
about the nature of these agents, a formal specification at
the Coupled System level will be developed.

To specify an agent at the I/O Behavior level, we can
define an agent’s behavior using a set of rules. For
demonstration purpose, below we (informally) show a set
of sample rules that an agent may follow. These rules are

Hu, Muzy, and Ntaimo
partially derived from (Andrews 1986) and (Rothermel and
Rinehard 1983). The inputs of the agent model are forest
cell’s state (cell_state), fireline intensity or flame length
(fln). The outputs of the agent model are fire fighting
actions (ffc = {null, direct attack, indirect attack}) and
movement (move). With these inputs and outputs, the rules
are presented below.

1. If cell_state is “burning” or “burning_wet” and fln

< 2.4 meters, agent stops move and carries out fire
fighting action using direct attack method

2. If cell_state is “burning” or “burning_wet” and fln
≥ 2.4 meters, agent stops move and carries out fire
fighting action using indirect attack method.

3. If cell_state is not “burning” and “burning_wet”
(meaning the cell is not burnable or already
burned out), agent’s fire fighting action is null and
it moves with a pre-defined speed and direction.

4 A PROTOTYPE FIRE SPREAD AND
SUPPRESSION EXAMPLE

Based on the architecture presented in Section 3, we have
implemented a prototype fire spread and suppression
example. This example is implemented in the DEVSJAVA
modeling and simulation environment (Zeigler and
Sarjoughian, 2003). Figure 3 shows the model of this
prototype system with the agent locating at Cell_0_0. In
this system, there is one agent, one couplingManager, and
900 (30×30) cell models. Note that for simplicity, Figure 3
displays only two cell models: Cell_0_0, and Cell_1_0.
The fire manager model is not implemented. Furthermore,
since this example is only for demonstration purpose,
implementation of the fireFightingAgent model is very
primitive. However, this implementation can be extended
to account for more complex simulations.

Figure 3: System Model of the Fire Spread and
Suppression Example
253
4.1 The Cellular Space Model

The cellular space model is expanded from the cellular
DEVS fire spread model developed in (Ntaimo et al.,
2004). In this model, the actual forest is modeled as a cell-
space and is divided into forest cells. Each cell is coupled
to its eight neighbors. Figure 3 shows the couplings
between Cell_0_0 and Cell_1_0. Fire spread is abstracted
and modeled within a forest cell as follows. First, a one-
dimensional maximum rate of fire spread and direction is
computed using Rothermel’s mathematical model for fire
spread. This model is valid under the assumption of
uniform conditions within the forest cell and takes in as
input the forest cell fuel properties, topography, wind
speed and direction. After the maximum rate of spread and
direction are determined, a decomposition algorithm is
applied to calculate two-dimensional fire spread in the
eight major directions: N, NE, E, SE, S, SW, W, NW. Fire
spread is modeled as spreading from the center of an
ignited cell towards the neighbor cells. A cell is ignited
when it receives a message from a neighbor cell and its
fireline intensity is greater than a given threshold for the
forest cell fuel model to catch fire. A cell is burned out if
the fire spreading on all eight directions reaches its
neighboring cell centers.

Following the same approach of (Ntaimo and Zeigler,
2005), we model an agent’s fire suppression effort using a
random duration. This duration is determined by the agent
and is passed on to the cell model. The cell model transitions
to appropriate states based on the fire spreading speed and
fire suppression durations. More description about this
approach can be found at (Ntaimo and Zeigler, 2005).

4.2 The Agent Model

The agent model controls the agent to move in the cellular
space and to take fire fighting actions if the corresponding
cell is burning. In this implementation, we model the agent
model, fireFightingAgent, as a DEVS coupled model that
has two atomic model components: agent_fireFighting and
agent_Moving. The agent_fireFighting model is
responsible for fire fighting and the agent_Moving model
is responsible for the agent’s movement. Figure 4 shows
this agent model.

Figure 4: The Agent Model

Hu, Muzy, and Ntaimo
In our implementation, the agent_Moving model
employs a time-based method to update its position. A time
step of 1s is chosen and the agent’s speed is set to 2m/s.
Note that these values are arbitrarily chosen only for
demonstration purpose. The time-based method to update
the agent’s position will be replaced by an event-based
method later. Such a replacement will only affect the
agent_Moving model and should not affect the
agent_fireFighting model.

 Model agent_fireFighting follows after (Ntaimo and
Zeigler, 2005) and employs the three rules described in
Section 3.2 for fire suppression. Based on these rules, this
simple agent_fireFighting model consists of three basic
states: passive, direct-attack, and indirect-attack. The
model is initialized in the passive state. It transitions to
direct-attack state if rule 1 and rule 2 are satisfied. It
transitions to indirect-attack state if rule 3 is satisfied. For
both of these two states, a random duration is used to
represent the time to perform the suppression effort. The
agent_fireFighting model can control the agent’s
movement by sending a speed parameter message to the
agent_Moving model. In our implementation, it sets the
moving speed to 0 when it transits to state direct-attack or
indirect-attack. Otherwise, it sets the moving speed to a
predefined value with a random angular direction.

4.3 The couplingManager Model

The couplingManager model is responsible to change the
couplings between the agent and corresponding cells. As
described in previous sections, it takes the position
information from the agent and computes the
corresponding cell. If this cell is different from the old cell,
couplings related to the old cell will be removed and new
couplings related to the new cell will be added. The
external transition function of coouplingManager that
contains the pseudo code for dynamic coupling change is
given in Figure 5.

public void deltext(double e,message x){

if (somethingOnPort(x, "agentPos")) {
newPos = Get agent’s new position();
newCellID = Find corresponding cell (newPos);
if(newCellID != oldCellID){

removeCoupling(oldCell, “stateOut", agent, "cellState");
removeCoupling(agent , "ffAction", oldCell, "inFireFight");
removeCoupling(this,"query", oldCell, "queryState");
oldCellID = newCellID;
addCoupling(newCell, “stateOut", agent, "cellState");
addCoupling(agent , "ffAction", newCell, "inFireFight");
addCoupling(this,"query", newCell, "queryState");
holdIn("Query", 0);

}
}

}
Figure 5: Pseudo Code for Dynamic Coupling Change
254
5 CONCLUSION

This paper presented the feasibility of a DEVS-based
hybrid agent-cellular space modeling approach for fire
spread and suppression simulation. Several design
considerations of this hybrid approach are discussed. A
system architecture is presented and a prototype example is
implemented. As compared to the general approach of
forest fire simulation where fire suppression activities are
incorporated into each forest cell, this alternative approach
explicitly separates the concerns of fire spread from fire
suppression. It represents a more intuitive and faithful way
by modeling the behaviors of fire fighters and air-tankers
as mobile agents. The advantages of this hybrid approach
become important as fire spread behaviors and fire
suppression rules becomes more and more complex. One
concern of this approach is that the simulation may become
“slower” because couplings are dynamically added and
removed between agents and cells. However, since the
number of agents is typically much smaller than the
number of cells, this influence in simulation performance
is tolerable in most cases.

Future work of this research includes extending this
initial work and applying it to more complex simulations.
To improve simulation performance, we will design
advanced simulation engines to exploit the spatial and
temporal heterogeneity of this hybrid model. Meanwhile,
we will research stochastic optimization techniques and
integrate it into the system (such as the fire manager
model). This integration of discrete event simulation and
stochastic programming promises a powerful tool for fire
management prediction and decision making. We note that
while this paper focuses on the forest fire application, the
hybrid agent-cellular space approach also has the potential
to be applied to other complex spatial systems. Integration
of this kind of systems will necessitate a sound formal
description of agents. Special attentions will be paid to the
modeling of agents’ behavior and perception. To achieve
this purpose (Duboz et al., 2004) can be used as a starting
point.

REFERENCES

Ameghino, J., A. Troccoli, G. Wainer. 2001. Models of
complex physical systems using Cell-DEVS, in
Proceedings of Annual Simulation Symposium, Seattle,
WA. 266-273.

Andrews, P. L. 1986. BEHAVE: Fire behavior predictions
and fuel modeling system-BURN subsystem part 1.
General Tech. Rep. INT-194, U.S. Department of
Agriculture, Forest Service, Intermountain Forest and
Range Experiment Station, Ogden, UT.

Ball, G.L., B.P. Zeigler, R. Schlichting, M. Marefat and
D.P. Guertin. 1996. Problems of multi-resolution
integration in dynamic simulation, Third International

Hu, Muzy, and Ntaimo
Conference/Workshop on Integrating GIS and
Environmental Modeling.

Barros, F. J. 1997. "Modeling Formalisms for Dynamic
Structure Systems", ACM Transactions on Modeling
and Computer Simulation, 7: 501-515.

Barros, F. J., and M. T. Mendes, 1997. "Forest fire
modeling and simulation in the DELTA environment",
Simulation Practice and Theory, 5: 185-197.

Batty, M. and B. Jiang. 1999. Multi-agent simulation: new
approaches to exploring space-time dynamics in GIS.
CASA Working Papers, no.10. Centre for Advanced
Spatial Analysis (UCL), London, UK.

Dijkstra, J., A.J. Jessurun, and H.J.P. Timmermans. 2000.
A multi-agent cellular automata system for visualising
simulated pedestrian activity. In S. Bandini, and T.
Worsch, ed.. Theoretical and Practical Issues on
Cellular Automata, Proceedings of the Fourth
International Conference on Cellular Automata for
Research and Industry.

Duboz, R., E. Ramat, and G. Quesnel. 2004. Multi-agent
systems and theory of modeling and simulation: an
oprational analogy (In French), presented at
Douzièmes Journées Francophones sur les Systèmes
Multi-Agents (JFSMA) - Systèmes multi-agents défis
scientifiques et nouveaux usages, Paris, 49-68.

Hu, X., B. P. Zeigler, and S. Mittal, 2005. Variable
structure in DEVS component-based modeling and
simulation”, Simulation. 81 (2): 91-102.

Hu, X., B. P. Zeigler: 2004. A high performance
simulation engine for large-scale cellular DEVS
models”, High Performance Computing Symposium
Advanced Simulation Technologies Conference.

Muzy, A., G. Wainer, E. Innocenti, A. and Aiello, J.F.
Santucci. 2002. Comparing simulation methods for
fire spreading across a fuel bed, in Proceedings of
AIS'2002, Lisbon, Portugal, 219-224.

Muzy, A., E. Innocenti, D. R. C. Hill, A. Aïello, J. F.
Santucci, and P. A. Santoni, 2004. Dynamic structure
cellular automata in a fire spreading application,
presented at First International Conference on
Informatics in Control, Automation and Robotics,
Setubal, Portugal, 143-151.

Muzy, A., E. Innocenti, G. Wainer, A. Aïello, and J. F.
Santucci, 2005. Specification of discrete event models
for fire spreading, Simulation. 81: 103-117.

Ntaimo, L., B. Khargharia, B. P. Zeigler and M. J.
Vasconcelos. 2004. Forest fire spread and suppression
in DEVS, Simulaiton, 80 (10): 479-500.

Ntaimo, L. 2004. Decomposition Algorithms for Stochastic
Combinatorial Optimization: Computational
Experiments and Extensions, Ph.D. Dissertation,
University of Arizona.

Ntaimo, L., and B. P. Zeigler. 2004. Expression of a forest
cell model in parallel DEVS and Timed Cell-DEVS
formalisms, Proceedings of the 2004 Summer
Computer Simulation Conference, San Jose, CA.
255
Ntaimo, L., and B.P. Zeigler. 2005. Integrating fire
suppression into a DEVS cellular forest fire spread
model, Proceedings of the Spring Computer
Simulation Conference, San Diego, CA.

Rothermel, R. 1972. A mathematical model for predicting
fire spread in wildland fuels, Research Paper INT-115.
Ogden, UT: U.S. Department of Agriculture, Forest
Service, Intermountain Forest and Range Experiment
Station.

Rothermel, R. C., and G. C. Rinehard. 1983. Field
procedures for verification and adjustment of fire
behavior predictions. General Tech. Rep. INT-142,
U.S. Department of Agriculture, Forest Service,
Intermountain Forest and Range Experiment Station.

Wainer, G., N. Giambiasi, 2001. Application of the Cell-
DEVS paradigm for cell spaces modeling and
simulation", Simulation, 76: 22-39.

Zeigler B. P., H. Praehofer, and T. G. Kim. 2000. Theory
of modeling and simulation. 2nd ed. NewYork:
Academic Press.

Zeigler, B.P. and H.S. Sarjoughian. 2003. Introduction to
DEVS Modeling & Simulation with JAVA:
Developing Component-based Simulation Models,
Technical Document, University of Arizona.

Zeigler, B.P. 2003. Discrete event abstraction: an
emerging paradigm for modeling complex adaptive
systems, advances in adaptive complex systems, edited
by L. Booker, Santa Fe Institute/Oxford Press, Oxford.

AUTHOR BIOGRAPHIES

XIAOLIN HU is an assistant professor in the Department
of Computer Science at Georgia State University. His
research interests include discrete event system modeling
and simulation, software engineering, and their application
to robotic systems, agent systems, and ecological systems.
His e-mail address is xhu@cs.gsu.edu.

ALEXANDRE MUZY received a Ph.D. degree (2004)
from the University of Corsica. He is currently working at
the CNRS research laboratory UMR 6134 of the University
of Corsica. His current research interests relate to the
modeling and simulation of agents and cellular models
using the Dynamic Structure Discrete EVent System
Specification (DSDEVS) formalism. His e-mail address is
a.muzy@univ-corse.fr.

LEWIS NTAIMO is an assistant professor in the
Department of Industrial Engineering at Texas A&M
University. His research interests include discrete event
modeling and simulation and decomposition algorithms for
stochastic mixed-integer programming. His application
areas of interest include forest fire spread and containment,
telecommunications, stochastic facility location, and
stochastic supply chain planning. His e-mail address is
ntaimo@tamu.edu.

mailto:xhu@cs.gsu.edu
mailto:a.muzy@univ-corse.fr
mailto:ntaimo@tamu.edu

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

