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ABSTRACT

We consider importance sampling simulation for estimat-
ing rare event probabilities in the presence of heavy-tailed
distributions that have polynomial-like tails. In particular,
we prove the following negative result: there does not exist
an asymptotically optimal state-independent change-of-
measure for estimating the probability that a random walk
(respectively, queue length for a single server queue) exceeds
a “high” threshold before going below zero (respectively,
becoming empty). Furthermore, we derive explicit bounds
on the best asymptotic variance reduction achieved by im-
portance sampling relative to naïve simulation. We illustrate
through a simple numerical example that a “good" state-
dependent change-of-measure may be developed based on
an approximation of the zero-variance measure.

1 INTRODUCTION

Importance sampling (IS) simulation has proven to be an
extremely successful method in efficiently estimating certain
rare events associated with light-tailed random variables;
see, e.g., Sadowsky (1991) and Heidelberger (1995) for
queueing and reliability applications, and Glasserman (2003)
for applications in financial engineering. (Roughly speaking,
a random variable is said to be light-tailed if the tail of the
distribution decays at least exponentially fast.) The main
idea of IS algorithms is to perform a change-of-measure,
then estimate the rare event in question by generating iid
copies of the underlying random variables according to this
new distribution. A good IS distribution not only assigns
high probability to the most likely paths to the rare events
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but equally importantly it does not significantly reduce the
probability of other less likely paths.

Recently, heavy-tailed distributions have become in-
creasingly important in explaining rare event related phe-
nomena in many fields including data networks and tele-
traffic models (see, e.g., Resnick (1997)), and insurance
and risk management (cf. Embrechts, Klüppelberg, and
Mikosch (1997)). Unlike the light-tailed case, designing
efficient IS simulation techniques in the presence of heavy-
tailed random variables has proven to be quite challenging.
This is mainly due to the fact that the manner in which
rare events occur is quite different than that encountered in
the light-tailed context (see, Asmussen (1998) for further
discussion).

In this paper we highlight a fundamental difficulty in
applying IS techniques in the presence of heavy-tailed ran-
dom variables. For a broad class of such distributions having
polynomial-like tails, we prove that if the constituent random
variables are independent under an IS change-of-measure
then it cannot achieve asymptotic optimality. (Roughly
speaking, a change-of-measure is said to be asymptotically
optimal if it asymptotically achieves zero variance on a
logarithmic scale; a precise definition is given in Section
2.) In particular, we give explicit asymptotic bounds on the
level of improvement that state-independent IS can achieve
vis-a-vis naïve simulation. These results are derived for the
following two rare events.

1) A negative drift random walk (RW) Sn = ∑n
i=1 Xi

exceeding a large threshold before taking on a
negative value (see Theorem 1), as well as max{Sn :
n = 1, 2, . . .} exceeding a large threshold.
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2) A stable GI/GI/1 queue exceeding a large threshold
within a busy cycle (see Theorem 2). This analysis
relies on asymptotes for the maximum of the queue
length process (see Proposition 1).

The above probabilities are particularly important in esti-
mating steady-state performance measures related to waiting
times and queue lengths in single-server queues, when the
regenerative ratio representation is exploited for estima-
tion (see, e.g., Heidelberger (1995)). Our negative results
motivate the development of state-dependent IS techniques
(see, e.g., Kollman, Baggerly, Cox, and Picard (1999), and
Blanchet and Glynn (2005)). In particular, for the prob-
abilities that we consider the zero variance measure has
a straightforward “state-dependent” representation. In the
random walk setting this involves generating each incre-
ment Xi using a distribution that depends on the position
of the RW prior to that, i.e., the distribution of Xi depends
on Si−1 = ∑i−1

j=1 Xj . For a simple example involving a
slotted time queue, we illustrate numerically how one can
exploit approximations to the zero-variance measure (see
Proposition 2) to develop state-dependent IS schemes that
perform reasonably well.

The first algorithm for efficient simulation in the heavy-
tailed context was given in Asmussen and Binswanger
(1997) using conditional Monte Carlo. BothAsmussen, Bin-
swanger, and Hojgaard (2000) and Juneja and Shahabuddin
(2002) develop successful IS techniques to estimate level
crossing probabilities of the form P(maxn Sn > u), for ran-
dom walks with heavy tails, by relying on the ladder height
representation of this probability. However, the ladder height
representation is useful for a restricted class of random walks
(where each Xi is a difference of a heavy tailed random
variable and an exponentially distributed random variable).
The work in Boots and Shahabuddin (2001) also considers
the level crossing problem and obtains positive results for
IS simulation in the presence of Weibull-tails. They avoid
the inevitable variance build-up by truncating the generated
paths. However, even with truncation they observe poor re-
sults when the associated random variables have polynomial
tails. Recently, Blanchet and Glynn (2005) described an
asymptotically optimal state-dependent change-of-measure
for the probability that the maximum of a negative drift
random walk exceeding a large threshold.

In terms of negative results, Asmussen, Kroese, and
Rubinstein (2005) show that performing a change in param-
eters within the family of Weibull or Pareto distributions
does not result in an asymptotically optimal IS scheme in
the random-walk or in the single server queue example. Our
paper provides further evidence that any state-independent
change-of-measure (not restricted to just parameter changes
in the original distribution) will not lead to efficient IS
simulation algorithms. We also explicitly bound the loss of
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efficiency that results from restricting use to iid IS distri-
butions.

In Section 2, we briefly describe IS and the notion of
asymptotic optimality. Section 3 describes the main results
of the paper. In Section 4 we illustrate empirically the
performance of a state-dependent change-of-measure for a
simple discrete time queue. We conclude in Section 5 with
some general observations related to this paper. All proofs
are collected in Appendix A.

2 IMPORTANCE SAMPLING AND ASYMPTOTIC
OPTIMALITY

2.1 Two rare events

Consider a probability space (�, F, P) and a random walk
Sn = ∑n

m=1 Xm, S0 = 0 where X1, X2, ... are iid copies of
X. We assume that EX < 0, and we denote the cumulative
distribution function of X by F . Define τ to be the time
at which the random walk first goes below zero, i.e.,

τ = inf{n ≥ 1 : Sn < 0}.

Let ζ = Eτ , and Mn = max0≤m≤n Sm. The probability of
interest is either γu = P(Mτ > u) or the probability that
the “all-time-max" of the random walk exceeds level u,
viz., P(M∞ > u). To fix ideas, let us focus on the former
probability. To estimate this probability by naïve simulation,
we generate m iid samples of the function I{Mτ >u} and
average over them to get an unbiased estimate γ̂ m

u . The
relative error of this estimator (defined as the ratio of standard

deviation and mean) is given by
√

(1−γu)
mγu

. Since γu → 0
as u → ∞, the number of simulation runs must increase
without bound in order to have fixed small relative error as
u becomes large.

Consider another probability distribution P̃ on the same
sample space such that the sequence {X1, X2, ...} is iid
under P̃ with marginal distribution F̃ , and F is absolutely
continuous w.r.t. F̃ . Let Tu = inf{n : Sn ≥ u}. Define

Zu = LuI{Mτ >u}, (1)

where

Lu =
min{τ,Tu}∏

i=1

dF(Xi)

dF̃ (Xi)
,

and let Ẽ[·] be the expectation operator under P̃. Then,
using Wald’s likelihood ratio identity (see Siegmund (1985),
Proposition 2.24)), we have that Zu under measure P̃ is an
unbiased estimator of the probability P(Mτ > u). Thus,
we can generate iid samples of Zu under the measure P̃,
the average of these would be an unbiased estimate of γu.
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We refer to P̃ as the IS change-of-measure and Lu as the
likelihood ratio. By choosing the IS change-of-measure
appropriately, we can substantially reduce the variance of
this estimator.

Note that a similar analysis can be carried out to get an
estimator when the sequence {X1, X2, ...} is not iid under
P̃. The likelihood ratio Lu in that case can be expressed as
the Radon-Nikodyn derivative of the original measure w.r.t.
the IS measure restricted to the appropriate stopping time.
(A similar construction with slight modification applies in
the case of the all-time-max problem; we omit details.)

The second rare event studied in this paper is the buffer
overflow during a busy cycle. Consider a GI/GI/1 queue,
and let the inter-arrival and service times have finite means
λ−1 and μ−1, respectively. Let Q(t) represent the queue
length at time t under FCFS (first come first serve) service
discipline. Assume that the busy cycle starts at time t = 0,
i.e, Q(0) = 1, and let τ denote the end of the busy cycle,
namely

τ = inf{t ≥ 0 : Q(t−) > 0, Q(t) = 0}.

Let the cumulative distribution of inter-arrival times and
service times be F and G, respectively. Let Si be the
service time of the ith customer and Ai be the inter-arrival
time for the (i+1)th customer. The probability of interest is
γu = P(max0≤t≤τ Q(t) ≥ u). Again we note that γu → 0
as u → ∞; to estimate this probability efficiently we can
use IS.

Let the number of arrivals until the queue length exceeds
level u be

M = inf

{
n ≥ 1 :

n∑
i=1

Ai <

n−u+2∑
i=1

Si

}
.

Let N(t) represent the number of arrivals up until time
t . Then N(τ) is the number of customers arriving during
a busy period. Let F̃ and G̃ be the cumulative IS dis-
tributions of inter-arrival and service times, respectively.
Then, again using Wald’s likelihood ratio identity, Zu under
the measure P̃ is an unbiased estimator for the probability
P(max0≤t≤τ Q(t) > u), where

Zu = LuI{M≤N(τ)}, (2)

and

Lu =
M∏
i=1

dF(Ai)

dF̃ (Ai)

M−u+2∏
j=1

dG(Sj )

dG̃(Sj )
.
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2.2 Asymptotic Optimality

Consider a sequence of rare-events indexed by a parameter
u. Let Iu be the indicator of this rare event, and suppose
E[Iu] → 0 as u → ∞ (e.g., for the first rare event defined
above, Iu = I{Mτ >u}). Let P̃ be an IS distribution and L be
the corresponding likelihood ratio. Put Zu = LIu.

Definition 1 (asymptotic optimality) A sequence
of IS estimators is said to asymptotically optimal if

log Ẽ[Z2
u]

log Ẽ[Zu]
→ 2 as u → ∞. (3)

Note that Ẽ[Z2
u] ≥ (Ẽ[Zu])2, therefore for any sequence

of IS estimators we have

lim sup
u→∞

log Ẽ[Z2
u]

log Ẽ[Zu]
≤ 2.

(Note that log Ẽ[Zu] < 0.) Thus, loosely speaking, asymp-
totic optimality implies minimal variance on logarithmic
scale.

3 MAIN RESULTS

3.1 Random walk

Consider the random walk defined in Section 2.1. We
assume that the distribution of X satisfies

log P(X > x)

log x
→ −α,

and

log P(X < −x)

log x
→ −β,

(4)

as x → ∞, where α ∈ (1, ∞) and β ∈ (1, ∞]. Further, we
assume that P(X > x) ∼ 1 − B(x) as x → ∞, for some
distribution B on (0, ∞) which is subexponential, that is,
it satisfies

lim sup
x→∞

1 − (B ∗ B)(x)

1 − B(x)
≤ 2,

where ‘∗’ denotes the convolution operator (cf. Embrechts,
Klüppelberg, and Mikosch (1997)). We write f (u) ∼ g(u)

as u → ∞ if f (u)
g(u)

→ 1 as u → ∞. Thus, distributions
with regularly varying tails are a subset of the class of
distributions satisfying our assumptions. (Regularly varying
distributions have 1 − F(x) = L(x)/xα , where α > 1 and
L(x) is slowly varying; for further discussion see Embrechts,
Klüppelberg, and Mikosch (1997), Appendix A.3).) Note
that (4) allows the tail behavior on the negative side to be
lighter than polynomial as β = ∞ is permitted. We denote
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the cumulative distribution function of X by F . From
Asmussen (1998) it follows that

P(Mτ > u) ∼ ζP(X > u) as u → ∞, (5)

where ζ is the expected time at which the random walk goes
below zero. In the case of the all-time-max the counterpart
of (5) is given in Theorem 3 in the appendix.

Consider the IS probability distribution P̃ such that
the sequence {X1, X2, ...} is iid under P̃ with marginal
distribution F̃ , and F is absolutely continuous w.r.t. F̃ . Let
P be the collection of all such probability distributions on
the sample space (�, F). Let Zu be the estimator defined
in (1). Thus, Ẽ[Zu] is an unbiased estimator of P(Mτ > u).
We then have the following result.

Theorem 1 For any P̃ ∈ P

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
≤ 2 − min(α, β)

α(1 + min(α, β))
,

where α and β are defined in (4).
The proof follows by contradiction. We consider two

disjoint subsets B and C of the “rare set" A = {ω : Mτ > u}
and use the fact that Ẽ[L2

uI{A}] ≥ Ẽ[L2
uI{B}] + Ẽ[L2

uI{C}].
The two sets are as follows.

1) The subset B consists of sample paths where the
first random variable is “large" and causes the
random walk to immediately exceed level u.

2) The subset C which consists of sample paths where
the Xi’s are of order uγ for i = 2, . . . , 	u1−γ 

followed by one “big" jump.

Assuming that the limit in the above theorem is violated,
we consider the sample paths in set B to obtain a lower
bound on the probability that X exceeds u under the IS
distribution F̃ . The above, in turn, restricts the mass that
can be allocated below level u. We then consider the subset
C, and by selecting the parameter γ and the value of X1
judiciously, we show that the second moment on the set C
is infinite. (See Bassamboo, Juneja, and Zeevi (2005) for
details of the rigorous proof.)

The non-asymptotic optimality of the state independent
change-of-measure can be analogously seen for the all-time-
max problem. Again, we note that if the performance of
the proposed importance sampling algorithm is close to
asymptotically optimal, it must assign significant probability
to the set {X > u} (this can be seen by considering the
contribution of {X1 > u} to the second moment). This
provides an upper bound on the probability mass assigned
to the set X ∈ (− log u, uγ ), for any γ < 1. Now consider
a set of paths where the first jump is negative, taking values
of order −uβ for β > 1, the remaining uβ−γ increments
take values between (− log u, uγ ), and the last increment
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ensures that the threshold u is crossed. Along these paths an
upper bound on efficiency improvement may be constructed
by appropriately selecting β and γ .

3.2 Queue length process

Consider a GI/GI/1 queue described in Section 2.1 with
service times being iid copies of S and inter-arrival times
being iid copies of A. Put 
(x) := − log P(S > x) =
− log (1 − G(x)). Assume that


(x)

log x
→ α as x → ∞, (6)

where α ∈ (1, ∞), and (S −A) has a subexponential distri-
bution. We then have the following logarithmic asymptotics
for the buffer overflow probability in a busy cycle.

Proposition 1 Let assumption (6) hold. Then,

lim
u→∞

log P(max0≤t≤τ Q(t) > u)

log u
= −α.

Recall that F̃ and G̃ are the cumulative IS distribution
of inter-arrival and service times, respectively, and an unbi-
ased estimator for the probability P(max0≤t≤τ Q(t) > u) is
Ẽ[Zu] where Zu is as defined in (2). Let P̃ be the product
measure generated by (F̃ , G̃), and let D be the collection
of all such measures.

Theorem 2 For any P̃ ∈ D

lim sup
u→∞

log Ẽ[Z2
u]

−α log u
≤ 2 − 1

1 + α
.

The proof of the above theorem is similar to proof of
Theorem 1. We again consider two sets and arrive at a
contradiction. The sets in this case are given as follows.

1) The first set of sample paths are those for which
{S1(ω) > 2uλ−1} and {∑u

i=1 Ai < 2uλ−1}.
2) The second set of sample paths are defined as

follows.

(a) The first service time S1 ∈
[2u1−γ λ−1, 3u1−γ λ−1].

(b) The sum of the first 	u1−γ 
 inter-arrival times

is less than 2u1−γ λ−1, i.e.,
∑	u1−γ 


i=1 Ai ≤
2u1−γ λ−1. This ensures that by the end of
service of the first customer at least 	u1−γ 

customers are in the queue.

(c) The next 	u1−γ 
 − 1 services lie in the inter-
val [0, 0.5uγ λ−1]. This ensures that at most
0.5uλ−1 time has elapsed before the beginning
of service of customer 	u1−γ 
.



Bassamboo, Juneja, and Zeevi
(d) The service time for customer 	u1−γ 
 exceeds
2uλ−1.

(e) The next 	0.6u
 arrivals are such that

0.5uλ−1 ≤ ∑	u1−γ 
+	0.6u

i=	u1−γ 
+1

Ai ≤ 0.75uλ−1.
This ensures that the buffer does not overflow
before the beginning of service of customer
	u1−γ 
.

(f) The next 	0.4u
 arrivals are such that

0.3uλ−1 ≤ ∑	u1−γ 
+	u

i=	u1−γ 
+	0.6u
 Ai ≤ 0.75uλ−1.

This ensures that the buffer overflows during
the service of customer 	u1−γ 
.

(Here γ is a constant chosen appropriately.) First set of
sample paths are used to lower bound the probability al-
located to tails of service time distribution. This results
in the fact that the services in condition 2(c) are assigned
sufficiently low probability under the new measure and thus
the second moment of the estimator builds up along such
realizations. The remaining conditions for the set defined
in 2) ensure that the buffer overflows for the paths in this
set. (See Bassamboo, Juneja, and Zeevi (2005) for details
of the rigorous proof.)

4 STATE DEPENDENT CHANGE-OF-MEASURE

In this section we outline a general principle that can guide
the construction of “good" state-dependent changes of mea-
sure, and illustrate it via a simple example. The main idea
is to use a suitable approximation for the zero variance
measure. In particular, for probabilities involving random
walks hitting a rare set, as is the case for the probabilities
studied in this paper, the zero variance measure has a simple
Markovian representation.

Consider a discrete time queuing system where the
probability of interest is buffer overflow during a busy
cycle. Specifically, the time axis is divided into fixed-
length time intervals called slots and each service requires
one slot. During time slot n, Xn customers arrive where
{Xn : n ≥ 1} is a sequence of iid random variables with
E[X1] < 1. Let Qn represent the number of customers in
the system at the beginning of time slot n. We then have
the following recursion

Qn = max{Qn−1 − 1, 0} + Xn.

Let Q0 = 1, τ0 = inf{m > 0 : Qm = 0} and τu = inf{m >

0 : Qm ≥ u}. The rare event of interest is {τu < τ0}
when u is large. We assume that X1 is a regularly varying
distribution with parameter α, i.e.,

1 − F(x) = P(X1 > x) = L(x)/xα,
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for all x, where α ∈ (1, ∞), L(x) is slowly varying, and
F(·) is the cumulative density function of X. Using results
from Section 3, we know that any state-independent change
to the distribution of the Xi’s cannot yield an asymptotically
optimal IS estimator. We also know that there always exists
a change-of-measure (which may be state-dependent) that
has zero variance, (cf. Ahamed, Borkar, and Juneja (2005))
and in this setting this change-of-measure has a Markovian
structure. In particular, let Jy(u) = P(τu < τ0|Q(0) = y)

for all y = {0, 1, . . .}. Then, under the zero variance
measure Xn has distribution

P̃(Xn = x|Qn−1 = y) = P(Xn = x)Jx+y−1(u)

Jy(u)
(7)

for all x ∈ {0, 1, . . .} and n = 1, 2, . . .. We shall now
develop asymptotics for Jy(u) and use them to construct a
“good" state-dependent IS change-of-measure.

Proposition 2 For all β ∈ (0, 1)

J	βu
(u) ∼ E[N ]
[∫ u

x=(1−β)u

(1 − F(x))dx

]
, (8)

as u → ∞ where N is the number of arrivals during a
busy period.

As is evident from the proof given in the Appendix,
the above proposition may be extended to continuous state
space under mild regularity conditions.

For the purpose of our numerical study, we consider an
M/GI/1 queue whose arrival stream is Poisson with rate λ and
service times are iid copies of S having Pareto distribution
with parameter α ∈ (1, ∞), i.e.,

P(S ≥ x) =
{

x−α if x ≥ 1
1 otherwise.

The embedded Markov chain in this system evolves as

the discrete-time queue described above where X1
d=

Poisson(λS). The (state-dependent) IS distribution we
propose is

P̃(Xn = x|Qn−1 = y) = g(x, y)∑∞
x=0 g(x, y)

,

where

g(x, y) = P(X1 = x)

⎡⎣ u+1∑
x′=u−x−y+2

P(X1 ≥ x′)

⎤⎦ .

We obtain the above change-of-measure by substituting the
asymptotes from Proposition 2 in the zero variance measure
given in (7). Note that it is easy to compute g(x, y) in this
simple setting, and it can be expressed as a product of a
function of x and a function of x + y. We simulate the
results for the following cases: buffer levels u = 100 and
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Table 1: Performance of the State-dependent IS Estimator for Buffer Overflow Probability in a Busy Cycle: Simulation
Results for Buffer Levels 100 and 1000, using 500, 000 Simulation Runs. 95% Confidence Intervals are Provided.
The Number in the Square Parenthesis Represents the Ratio Defined in (3). † The Actual Probability Lies Outside
the 95% Confidence Interval.

u α ρ = 0.3 ρ = 0.5 ρ = 0.8

2 3.31 × 10−6 ± 0.019% [1.97] 2.43 × 10−5 ± 0.050% [1.86] 1.00 × 10−4 ± 0.837% [1.26]
100 9 1.57 × 10−23 ± 0.051% [1.97] 1.52 × 10−20 ± 0.119% [1.93] 5.12 × 10−19 ± 2.409% [1.79]†

19 4.70 × 10−48 ± 0.080% [1.98] 5.30 × 10−42 ± 0.543% [1.94]† 4.58 × 10−39 ± 4.182% [1.89]†

2 3.19 × 10−8 ± 0.006% [1.99] 2.25 × 10−7 ± 0.015% [1.98] 8.16 × 10−7 ± 0.079% [1.84]
1000 9 1.02 × 10−32 ± 0.007% [2.00] 9.21 × 10−30 ± 0.032% [1.99] 2.49 × 10−28 ± 0.103% [1.96]

19 7.22 × 10−68 ± 0.022% [2.00] 6.72 × 10−62 ± 0.041% [2.00] 3.30 × 10−59 ± 0.403% [1.96]
1000; tail parameter values α = 2, 9 and 19; and traffic
intensities ρ = 0.3, 0.5 and 0.8. (The traffic intensity ρ

equals λα/(α − 1).) The number of simulation runs in all
cases is taken to be 500, 000. To test the accuracy of the
simulation results, we also calculate the buffer overflow
probabilities using first step analysis.

Results in Table 1 illustrate the following points. First,
the accuracy of the proposed IS method decreases as the
traffic intensity increases, and/or the tail becomes “lighter."
Second, accuracy for the problem involving buffer level
1000 is better than the case of buffer level 100, in ac-
cordance with the fact that we are using a “large buffer"
asymptotic approximation to the zero variance measure. Fi-
nally, the relative error on logarithmic scale is quite close
to the best possible value of 2, hence we anticipate that
our proposed IS scheme might be asymptotically optimal.
The rigorous derivations of such results and their general-
izations to continuous state space is left for future work.
In a recent work, Ahamed, Borkar, and Juneja (2005) pro-
pose stochastic-approximation based adaptive IS techniques
for discrete time Markov chains. Applying the adaptive
algorithm in Ahamed, Borkar, and Juneja (2005) to our
slotted-time queuing system our main observation is the
following. Using the state-dependent change of measure
described in Section 4 as an initial condition for stochastic-
approximation algorithm leads to very quick convergence of
the adaptive algorithm to accurate estimates even for cases
where the proposed state-dependent change-of-measure is
not effective as stand-alone method for IS.

The algorithm described in Ahamed, Borkar, and Juneja
(2005) adaptively learns the function Jy(u). Using results
from Proposition 2, we initialize the proposed algorithm
with

J (0)
y (u) = 1

1 − ρ

⎡⎣ u+1∑
x=u−x−y+2

P(X1 ≥ x)

⎤⎦ .

Then, we execute the adaptive algorithm to get an “im-
proved" approximation for the function Jy(u). To construct
confidence intervals, we use the approximations of Jy(u) to
construct the approximate zero-variance measure for IS as
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in Section 4. To study, the effectiveness of this approach,
we apply this to the parameters values on our numerical
example where the proposed state-dependent IS change-of-
measure does not perform well; see table 1 where these
values are marked with ‘†’. The number of iterations for
the adaptive algorithm is taken to be 200, 000 and the sim-
ulation runs for the resulting IS estimator is taken to be
300, 000. (Thus, the computational effort is at par with the
earlier experiments.) The results are displayed in table 2.
We observe that the aforementioned approach improves the
accuracy of the estimator by an order of magnitude.

Table 2: Performance of the State-
dependence IS Estimator of Buffer Overflow
Probability Using the Adaptive Algorithm.
The Buffer Level is 100, and the Number
in Square Parenthesis Represents the Ratio
Defined in (3).

(α, ρ) Probability estimate
(10, 0.8) 7.5156 × 10−19 ± 7.6%[1.83]
(20, 0.5) 1.5951 × 10−41 ± 3.2%[1.93]
(20, 0.8) 1.0252 × 10−19 ± 4.9%[1.85]

5 CONCLUDING REMARKS

Theorems 1 and 2 imply that for our class of heavy-tailed
distributions no state-independent change-of-measure can
be asymptotically optimal, since by Definition 1 such a
distribution must satisfy

lim inf
u→∞

log Ẽ[Z2
u]

−α log u
≥ 2.

Theorems 1 and 2 can be seen to hold even when the IS
distribution is allowed to depend on u, and Theorem 2
continues to hold when the inter-arrival time distribution is
changed in a state-dependent manner.

The bounds given in Theorems 1 and 2 indicate that the
efficiency loss corresponding to the “best" state-independent
IS distribution is more severe the heavier the tails of the
underlying distributions are. As these tails become lighter,
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a state-independent IS distribution may potentially achieve
near-optimal asymptotic variance reduction.

As noted earlier, in both cases covered in Theorems 1
and 2 there exists a zero-variance IS distribution that has a
“Markovian structure." This suggests that an implementable
good approximation to this measure may be feasible and
may serve as an effective state-dependent IS distribution.
We provided an illustration of this idea in Section 4 through
a simple numerical example. Recently, Blanchet and Glynn
(2005) proved asymptotic optimality of such a change-of-
measure for estimating the probability that all-time-max of
a negative drift random walk exceeds a large threshold.
They use a refinement of the asymptote given in Theorem
3 of the appendix to develop an approximate zero variance
importance sampling measure.

The results given in Section 4 suggest that when the
original asymptotes are not accurate (and when the refine-
ments are not available), one can “learn" them adaptively to
devise a good state-dependent IS measure. The extension
of the work in Ahamed, Borkar, and Juneja (2005) to cover
general state-space is pursued in separate work.

A PROOFS

Proof of Proposition 1. Let Wi be the waiting time of the
ith arrival, and let Mn = max1≤m≤n Wm. Thus, MN(τ) is
the maximum waiting time during the busy cycle. Consider
the following inequalities

P

(
max

0≤t≤τ
Q(t) > u

)
≥ P

(
max

0≤t≤τ
Q(t) > u, MN(τ) > 2λ−1u

)
= P

(
MN(τ) > 2λ−1u

)
×

P

(
max

0≤t≤τ
Q(t) > u|MN(τ) > 2λ−1u

)
.

Now consider the second term on right-hand-side and the
set of paths where the arrivals during the “large" waiting
time causes the buffer to overflow. That is, conditioned
on the event that there exists a customer that experience
a large waiting time, we consider the arrivals which take
place while this customers waits. A sufficient condition for
overflow is that the sum of the next u inter-arrival times is
less than the waiting time MN(τ). Since inter-arrival times
are iid we have,

P

(
max

0≤t≤τ
Q(t) > u|MN(τ) > 2λ−1u

)

≥ P

⎛⎝ 	u
∑
i=1

Ai ≤ 2λ−1u

⎞⎠ ,
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where {Ai, i = 1, 2, . . .} is the sequence of inter-arrival
time r.v.’s. In Asmussen (1998), exact asymptotes for the
probability that a random walk hits a large level before it
goes below zero are developed. From the asymptote, it can
be seen that

log P
(
MN(τ) > 2λu

)
∼ −α log u.

Using the strong law of large numbers, we also have

P

⎛⎝ 	u
∑
i=1

Ai ≤ 2λ−1u

⎞⎠ → 1 as u → ∞.

Thus, we have

lim inf
u→∞

log P(max0≤t≤τ Q(t) > u)

log u
≥ −α.

Now, consider the following bounds

P

(
MN(τ) > 0.5μ−1u

)
(A-1)

≥ P

(
max

0≤t≤τ
Q(t) > u, MN(τ) > 0.5μ−1u

)
(A-2)

= P

(
max

0≤t≤τ
Q(t) > u

)
× (A-3)

P

(
MN(τ) > 0.5μ−1u| max

0≤t≤τ
Q(t) > u

)

≥ P

(
max

0≤t≤τ
Q(t) > u

)
P

⎛⎝ 	u
∑
i=1

Si > 0.5μ−1u

⎞⎠ ,

where {Si, i = 1, 2, . . .} represent the service times r.v.’s.
The last inequality follows from the fact that a sufficient
condition for the maximum waiting time to exceed 0.5μ−1u

is that the sum of service times for customers in the queue
exceeds 0.5μ−1u. By the strong law of large numbers, we
have

P

⎛⎝ 	u
∑
i=1

Si > 0.5μ−1u

⎞⎠ → 1 as u → ∞.

Thus, using (5) and the random walk representation of the
waiting time, we have

lim sup
u→∞

log P
(
max0≤t≤τ Q(t) > u

)
log u

≤ −α.

This completes the proof.
Proof of Proposition 2. Consider the random walk

Sn = Sn−1 − 1 + Xn,
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so Sn has a negative drift given by EX1 − 1, and let
τ̃0 = inf{m : Sm ≤ 0} and τ̃u = inf{m : Sm ≥ u}. Note
that Jy(u) = P(̃τ0 > τ̃u|S0 = y) for y ∈ [0, u]. Let
J̄y(u) = P(̃τu < ∞|S0 = y) for y ∈ [0, u]. Fix β ∈ (0, 1).
Since the random walk decreases by at most one unit at
any time, we have Sτ̃0 = 0. Thus

J̄βu(u) = Jβu(u) + [1 − Jβu(u)]J̄0(u),

and rearranging terms we get

Jβu(u) = J̄βu(u) − J̄0(u)

1 − J̄0(u)
.

Also, we have J̄βu(u) = J̄0(u(1 − β)). Next we appeal to
the following theorem from Asmussen (1987) which gives
an asymptotic for J̄0(u).

Theorem 3 (Theorem 9.1, Asmussen (1987))
Consider a random walk Sn = ∑n

i=1 Yi such that
ν = EY1 < 0 and Y1 has a cumulative distribution F

which is sub-exponential. Let M = maxi Si , then

P(M > x) ∼ 1

|ν|
∫ ∞

x

(1 − F(y))dy.

Using the asymptote above and Karamata’s Theorem
(cf. Embrechts, Klüppelberg, and Mikosch (1997)) we get

J̄0(u)

J̄0(u(1 − β))
→ (1−β)α−1 and J̄0(u) → 0 as u → ∞.

Also, we have E[N ] = 1/|E[X1] − 1|. The result follows
using the fact that if au ∼ bu, cu ∼ du and au/cu →
K ∈ (0, 1) as u → ∞ then (au − cu) ∼ (bu − du). This
completes the proof.
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