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ABSTRACT

In this paper, we propose two samplers for the product-
form solution of basic queueing networks, closed Jackson
networks with multiple servers. Our approach is sampling
via Markov chain, but it is NOT a simulation of behavior
of customers in queueing networks. We propose two of
new ergodic Markov chains both of which have a unique
stationary distribution that is the product form solution of
closed Jackson networks. One of them is for approximate
sampling, and we show it mixes rapidly. To our knowledge,
this is the first approximate polynomial-time sampler for
closed Jackson networks with multiple servers. The other
is for perfect sampling based on monotone CFTP (coupling
from the past) algorithm proposed by Propp and Wilson,and
we show the monotonicity of the chain.

1 INTRODUCTION

A Jackson network is one of the basic and significant models
in queueing network theory. In the model, customers receive
service at nodes each of which has multiple exponential
servers on first-come-first-served (FCFS) basis and move
probabilistically to a next node when service is completed.
Jackson (1957) showed that a Jackson network has a product-
form solution as the steady-state distribution of customers in
the network (Jackson 1963, Gordon and Newell 1967). By
computing the normalizing constant of the product-form
solution, we can obtain important performance measures
like as throughput, rates of utilization of stations, and so
on.

There is well-known Buzen’s algorithm (Buzen 1973),
which computes the normalizing constant of the product-
form solution. However, the running time of Buzen’s algo-
rithm is pseudo-polynomial time depending on the number
of customers in a closed network. Chen and O’Cinneide
(1998) proposed a randomized algorithm based on Markov
chain Monte Carlo (MCMC), but it is weakly polynomial-
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time algorithm in some very special cases. Ozawa (2004)
proposed a perfect sampler for closed Jackson networks
with single servers, however his chain mixes in pseudo-
polynomial time.

In this paper, we are concerned with sampling from
the product-form solution of closed Jackson networks with
multiple servers. Thus, we assume that a given network
is strongly connected, a class of customers is unique, no
customer leaves or enters the network, and each node has
multiple servers. Then, we propose two ergodic Markov
chains both of which have a unique stationary distribution
that is the product-form solution of a closed Jackson network.
Here we note that they are NOT a simulation of networks,
but just have a unique stationary distribution which is the
same as a product-form solution of a network.

Mainly, we discuss the convergence of the chains. We
show that the mixing time of the chain for approximate
sampling is bounded by n(n−1) ln(Kε−1)/2 for an arbitrary
positive ε < 1, where n is the number of nodes and K is
the number of customers. To our knowledge, this is the first
approximate polynomial-time sampler for closed Jackson
networks with multiple servers. A key idea which derives
polynomiality is not to simulate behavior of customers in
a network, while both algorithms of Chen and O’Cinneide
(1998) and Ozawa (2004) simulate behavior of customers.
We show the mixing time by using a technique of path
coupling introduces by Bubley and Dyer (1997). On the
other hand, we show that the other chain is monotone,
and design a perfect sampler based on monotone CFTP
(coupling from the past) algorithm proposed by Propp and
Wilson (1996).

There are two benefits at least, if we have a fast sampler.
One is that we may design a fast randomized algorithms
for computing normalizing constant, and so for throughput.
Actually, we can design a polynomial-time randomized ap-
proximation scheme, though we will not deal with it in this
paper (see Section 5 for more detail). The other is that a
fast sampler finds a state with respect to the steady-state
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distribution of networks, thus we can use it as an initial
state of a simulation of behavior of customers.

2 PRODUCT-FORM SOLUTION

We denote the set of real numbers (non-negative, positive
real numbers) by R (R+, R++), and the set of integers (non-
negative, positive integers) by Z (Z+, Z++), respectively.
In queueing network theory, it is well known that a closed
Jackson network has a product form solution. Let n ∈ Z++
be the number of nodes and K ∈ Z+ be the number of
customers in a closed Jackson network. Let us consider the
set of non-negative integer points

�
def.= {

x = (x1, x2, . . . , xn) ∈ Z
n+ | ∑n

i=1 xi = K
}

in an n − 1 dimensional simplex. Let W be the transition
probability matrix for a closed Jackson network system. Let
θ = (θ1, θ2, . . . , θn) ∈ R

n++ be an eigenvector for W with
corresponding to the eigenvalue 1, i.e., θW = θ . Here we
note that W is ergodic. Given a vector (μ1, μ2, . . . , μn) ∈
R

n++ of the inverse of mean of exponentially distributed
service time on nodes, and a vector (s1, s2, . . . , sn) ∈ Z

n+
of number of servers on nodes, a product form solution of
the closed Jackson network J : � → R++ is

J (x)
def.= 1

G

n∏
i=1

1∏xi

j=1 min{j, si}
(

θi

μi

)xi

,

where

G
def.=

∑
x∈�

n∏
i=1

1∏xi

j=1 min{j, si}
(

θi

μi

)xi

is the normalizing constant. In the rest of this paper, we
define a function αi : Z+ → R++ as follows,

αi(m)
def.= 1∏m

j=1 min{j, si}
(

θi

μi

)m

≡

⎧⎪⎪⎨
⎪⎪⎩

1

m!
(

θi

μi

)m

(m ≤ si),

1

s
m−si
i si !

(
θi

μi

)m

(m > si),

(1)

for m ∈ Z+, thus the product form slution is described as

J (x) = 1

G

n∏
i=1

αi(xi).
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3 APPROXIMATE SAMPLER

Now we propose a new Markov chain MA with state space
�. A transition of MA from a current state X ∈ � to a next
state X′ is defined as follows. First, we chose a distinct
pair of indices {j1, j2} uniformly at random. Next, let
k = Xj1 +Xj2 , and chose l ∈ {0, 1, . . . , k} with probability

αj1(l)αj2(k − l)∑k
s=0 αj1(s)αj2(k − s)

≡ αj1(l)αj2(k − l)
∏

j �∈{j1,j2} αj (Xj )∑k
s=0 αj1(s)αj2(k − s)

∏
j �∈{j1,j2} αj (Xj )

then set

X′
i =

⎧⎨
⎩

l (for i = j1),

k − l (for i = j2),

Xi (otherwise).

Since αi(x) is a positive function, the Markov chain MA
is irreducible and aperiodic, so ergodic, hence has a unique
stationary distribution. Also, MA satisfies detailed balance
equation

J (x)P (x → y) = J (y)P (y → x)

for any states x, y ∈ �, where P(x → y) denotes the
transition probability from x to y. Thus the stationary
distribution is the product form solution J (x) of closed
Jackson networks (Jackson 1957).

We can obtain a sample w.r.t. the product form solution
J (x) by simulating MA sufficiently many times. Next we
discuss the mixing time (defined in detail below) of MA.

Given a pair of probability distributions ν1 and ν2 on
the finite state space �, the total variation distance between
ν1 and ν2 is defined by

dTV(ν1, ν2)
def.= 1

2

∑
x∈�

|ν1(x) − ν2(x)|.

Given an arbitrary positive real ε, the mixing time of an
ergodic Markov chain is defined by

τ(ε)
def.= max

x∈�
{min{t | ∀s ≥ t, dTV(π, P s

x ) ≤ ε}}

where π is the stationary distribution and P s
x is the prob-

ability distribution of the chain at time period s ≥ 0 with
initial state x (at time period 0). In the rest of this section,
we show the following theorem
63
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Theorem 1 For 0 < ∀ε < 1, the mixing time τ(ε)

of Markov chain MA(K) satisfies

τ(ε) ≤ n(n − 1)

2
ln(Kε−1).

Here, we consider the cumulative distribution function
gk

ij : {0, 1, . . . , k} → R+ defined by

gk
ij (l)

def.=
∑l

s=0 αi(s)αj (k − s)∑k
s=0 αi(s)αj (k − s)

.

We also define gk
ij (−1)

def.= 0, for convenience. We can

simulate the Markov chain MA with the function gk
ij . First,

choose a pair {i, j} of indices with the probability 2/(n(n−
1)). Next, put k = Xi +Xj , generate an uniformly random
real number 
 ∈ [0, 1), choose l satisfying gk

ij (l − 1) ≤

 ≤ gk

ij (l), and set X′
i = l and X′

j = k − l.
The following Lemma is important for our main theo-

rem.
Lemma 2 The each function αi (i ∈ {1, 2, . . . , n})

is a log-concave function, which means

ln αi(m) − ln αi(m − 1) ≥ ln αi(m + 1) − ln αi(m) (2)

for any m ∈ Z++. Then, for any pair of distinct indices (i, j)

(i, j ∈ {1, 2, . . . , n}) and for any k ∈ Z+, the alternating
inequalities

gk+1
ij (l) ≤ gk

ij (l) ≤ gk+1
ij (l + 1) (3)

holds for any l ∈ Z+.
Figure 1 is a figure of alternating inequalities. In

the figure, A
def.= ∑k

s=0 αi(s)αj (k − s) and A′ def.=∑k+1
s=0 αi(s)αj (k + 1 − s) are normalizing constants.

Proof: First, we show that the function αi(m) is log-
concave. From the equations (1) of the function αi(m),

ln αi(m)

=
⎧⎨
⎩

m ln
(

θi

μi

)
− ∑m

j=1 ln j (m ≤ si),

m ln
(

θi

μi

)
− (m − si) ln si − ∑si

j=1 ln j (m > si),

hold. Thus ln αi(m) − ln αi(m − 1)

=
⎧⎨
⎩

ln
(

θi

μi

)
− ln m (m ≤ si),

ln
(

θi

μi

)
− ln si (m > si).

From the above, the function αi(m) satisfies (2), thus αi(m)

is log-concave.
Next, we show the latter statement. When k = 0, it is

obvious. When we fix k ∈ Z++, the alternating inequalities
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(3) hold for any l ∈ {0, 1, . . . , k}, if and only if

(∑l
s=0 αi(s)αj (k + 1 − s)

)

·
(∑k

s′=l+1 αi(s
′)αj (k − s′)

)

≤
(∑l

s=0 αi(s)αj (k − s)
)

·
(∑k+1

s′=l+1 αi(s
′)αj (k + 1 − s′)

)
, (4)

and
(∑l

s=0 αi(k + 1 − s)αj (s)
)

·
(∑k

s′=l+1 αi(k − s′)αj (s
′)
)

≤
(∑l

s=0 αi(k − s)αj (s)
)

·
(∑k+1

s′=l+1 αi(k + 1 − s′)αj (s
′)
)

, (5)

hold for any l ∈ {0, 1, . . . , k − 1}. With considering the
expansion of (4), it is enough to show that ∀s, ∀s′ ∈
{0, 1, . . . , k} satisfying 0 ≤ s < s′ ≤ k,

αi(s)αj (k + 1 − s)αi(s
′)αj (k − s′)

≤ αi(s)fj (k − s)αi(s
′)αj (k + 1 − s′). (6)

Since, αj is a log-concave function for any index j ∈
{1, 2, . . . , n}, the inequalities (k − s′) < (k − s′ + 1) ≤
(k − s) < (k − s + 1) imply that

ln αj (k − s′) + ln αj (k − s + 1)

≤ ln αj (k − s′ + 1) + ln αj (k − s)

holds. From the above, the inequality (6) hold ∀s, ∀s′ ∈
{0, 1, . . . , k} satisfying 0 ≤ s < s′ ≤ k. For the inequality
(5), we obtain the claim in the same way as (4) by inter-
changing i and j . �

We will show Theorem 1 by using the path coupling
technique. The following path coupling theorem proposed
by Bubley and Dyer (1997) is useful for bounding the mixing
time.

Theorem 3 (Path coupling Bubley and Dyer
(1997)) Let M be a finite ergodic Markov chain with a state
space �. Let H = (�, E) be a connected undirected graph
with vertex set � and edge set E ⊂ �2. Let the length of all
edges be 1, and let the distance between x and y, denoted
by d(x, y) and/or d(y, x), be the length of a shortest path
between x and y. Suppose that there exists a joint process
(X, Y ) �→ (X′, Y ′) with respect to M satisfying that whose
marginals are a faithful copy of M. If there exists a positive
4
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0 αi(0)αj (k)/A αi(1)αj (k − 1)/A · · · αi(k)αj (0)/A 1

0 αi(0)αj (k + 1)/A′ αi(1)αj (k)/A′ αi(2)αj (k − 1)/A′ · · · αi(k + 1)αj (0)/A′ 1

Figure 1: A figure of alternating inequalities for a pair of indices (i, j) and a non-negative integer k.
real β, exactly less than one, satisfying

E[d(X′, Y ′)] ≤ βd(X, Y )

for any edge {X, Y } ∈ E of H , then the mixing time τ(ε)

of the Markov chain M satisfies

τ(ε) ≤ (1 − β)−1 ln(ε−1D),

where D
def.= max{d(x, y) | ∀x, ∀y ∈ �} is the diameter of

the graph H .
Proof of Theorem 1 Let H = (�, E) be an undirected

simple graph with vertex set � and edge set E defined as
follows. A pair of vertices {x, y} is an edge of H if and
only if (1/2)

∑n
i=1 |xi − yi | = 1. Clearly the graph H is

connected. We define the length of an edge e ∈ E as 1, and
the distance d(x, y) for each pair (x, y) ∈ �2 as the length
of a shortest path between x and y on H . Clearly, the
diameter of H defined by maxx,y∈�{d(x, y)}, is bounded
by K .

We define a joint process (X, Y ) �→ (X′, Y ′) for any pair
{X, Y } ∈ E . Pick a distinct pair of indices {i1, i2} uniformly
at random. Then put kX = Xi1 + Xi2 and kY = Yi1 + Yi2 ,
generate an uniform random number 
 ∈ [0, 1), chose
lX ∈ {0, 1, . . . , kX} and lY ∈ {0, 1, . . . , kY } which satisfy
g

kX

i1i2
(lX − 1) ≤ 
 < g

kX

i1i2
(lX) and g

kY

i1i2
(lY − 1) ≤ 
 <

g
kY

i1i2
(lY ), and set X′

i1
= lX, X′

i2
= kX − lX, Y ′

i1
= lY and

Y ′
i2

= kY − lY .
Now we show that

β = 1 − 2

n(n − 1)

satisfies

E[d(Y ′, Y ′)] ≤ βd(X, Y )

for any pair {X, Y } ∈ E . Here we suppose that X, Y ∈ E
satisfies |Xj −Xj | = 1 for j ∈ {j1, j2}, and |Xj −Xj | = 0
for j �∈ {j1, j2}.

Case 1: In case that the neither of indices j1 nor j2 are
chosen, i.e., {i1, i2}∩ {j1, j2} = ∅. Put k = Xi1 +Xi2 , then
it is easy to see that Pr(X′

i1
= l) = Pr(Y ′

i1
= l) for any

l ∈ {0, . . . , k} since Yi1 + Yi2 = k. By setting X′
i1

= Y ′
i1

and X′
i2

= Y ′
i2

, we have d(X′, Y ′) = d(X, Y ).
8

Case 2: In case that the both of indices j1 and j2 are
chosen, i.e., {i1, i2} = {j1, j2}. In the same way as Case 1,
we can set X′

i1
= Y ′

i1
and X′

i2
= Y ′

i2
. Hence d(X′, Y ′) = 0.

Case 3: In case that exactly one of j1 and j2 is chosen,
i.e., |{i1, i2} ∩ {j1, j2}| = 1. Without loss of generality, we
can assume that i1 = j1 and that Xi1 + 1 = Yi1 . Let k =
Xi1 + Xi2 . Then Yi1 + Yi2 = k + 1 obviously. We consider
the joint process as a random number 
 ∈ [0, 1) is given.
Let l ∈ {0, 1, . . . , k} satisfies gk

i1i2
(l − 1) ≤ 
 < gk

i1i2
(l),

then alternating inequalities imply that gk+1
i1i2

(l − 1) ≤ 
 <

gk+1
i1i2

(l + 1). Therefore, if X′
i1

= l then Y ′
i1

should be in
{l, l + 1} by the joint process. Thus we always obtain that
[X′

i1
= Y ′

i1
and X′

i2
+ 1 = Y ′

i2
] or [X′

i1
+ 1 = Y ′

i1
and

X′
i2

= Y ′
i2

]. Hence d(X′, Y ′) = d(X, Y ).

With considering that Case 2 occurs with probability
2/(n(n − 1)), we obtain that

E[d(X′, Y ′)] ≤
(

1 − 2

n(n − 1)

)
d(X, Y ).

Since the diameter of H is bounded by K , Theorem 3
(Path Coupling Theorem) implies that the mixing time τ(ε)

satisfies

τ(ε) ≤ n(n − 1)

2
ln(Kε−1).

�

4 PERFECT SAMPLER

4.1 Monotone Markov Chain

In this section we propose new Markov chain MP. The
transition rule of MP is defined by the following update
function φ : � × [1, n) → �. For a current state X ∈ �,
the next state X′ = φ(X, λ) ∈ � with respect to a random
number λ ∈ [1, n) is defined by

X′
i =

⎧⎨
⎩

l (for i = �λ�),
k − l (for i = �λ� + 1),

Xi (otherwise),

where k = X�λ� + X�λ�+1 and l ∈ {0, 1, . . . , k} satisfies

gk
�λ�(�λ�+1)(l − 1) < λ − �λ� ≤ gk

�λ�(�λ�+1)(l).
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Our chain MP is a modification of MA, obtained by restrict-
ing to choose only a consecutive pair of indices. Clearly,
MP is ergodic. The chain has a unique stationary distribu-
tion J (x) defined in Section 2.

In the following, we show the monotonicity of MP.
Here we introduce a partial order “�” on �. For any
state x ∈ �, we introduce cumulative sum vector cx =
(cx(0), cx(1), . . . , cx(n)) ∈ Z

n+1+ defined by

cx(i)
def.=

{
0 (for i = 0),∑i

j=1 xj (for i ∈ {1, 2, . . . , n}).

For any pair of states x, y ∈ �, we say x � y if and only if
cx ≥ cy . Next, we define two special states xU, xL ∈ �(K)

by xU
def.= (K, 0, · · · , 0) and xL

def.= (0, . . . , 0, K). Then we
can see easily that ∀x ∈ �(K), xU � x � xL.

Theorem 4 Markov chain MP is monotone on the
partially ordered set (�(K), �), i.e., ∀λ ∈ [1, n), ∀X, ∀Y ∈
�(K), X � Y ⇒ φ(X, λ) � φ(Y, λ).

Proof: We say that a state X ∈ � covers Y ∈ � (at
j ), denoted by X ·� Y (or X ·�j Y ), when

Xi − Yi =
⎧⎨
⎩

+1 (for i = j),

−1 (for i = j + 1),

0 (otherwise).

We show that if a pair of states X, Y ∈ � satisfies X ·�j Y ,
then ∀λ ∈ [1, n), φ(X, λ) � φ(Y, λ). We denote φ(X, λ) by
X′ and φ(Y, λ) by Y ′ for simplicity. For any index i �= �λ�,
it is easy to see that cX(i) = cX′(i) and cY (i) = cY ′(i),
and so cX′(i) − cY ′(i) = cX(i) − cY (i) ≥ 0 since X � Y .
In the following, we show that cX′(�λ�) ≥ cY ′(�λ�).
Case 1: If �λ� �= j − 1 and �λ� �= j + 1. Let k =
X�λ� +X�λ�+1, then it is easy to see that Y�λ� +Y�λ�+1 = k.
Accordingly X′�λ� = Y ′�λ� = l where l satisfies

gk
�λ�(�λ�+1)(l − 1) ≤ λ − �λ� < gk

�λ�(�λ�+1)(l),

hence cX′(�λ�) = cY ′(�λ�).
Case 2: Consider the case that �λ� = j − 1. Let k + 1 =
Xj−1 + Xj , then Yj−1 + Yj = k, since X ·�j Y . From the
definition of cumulative sum vector,

cX′(�λ�) − cY ′(�λ�)
= cX′(j − 1) − cY ′(j − 1)

= cX′(j − 2) + X′
j−1 − cY ′(j − 2) − Y ′

j−1

= cX(j − 2) + X′
j−1 − cY (j − 2) − Y ′

j−1

= X′
j−1 − Y ′

j−1.

Thus, it is enough to show that X′
j−1 ≥ Y ′

j−1. Now

suppose that l ∈ {0, 1, . . . , k} satisfies gk
(j−1)j (l − 1) ≤
8

λ−�λ� < gk
(j−1)j (l) for λ. Then gk+1

(j−1)j (l−1) ≤ λ−�λ� <

gk+1
(j−1)j (l + 1), since the alternating inequalities imply that

gk+1
(j−1)j (l − 1) ≤ gk

(j−1)j (l − 1) < gk+1
(j−1)j (l) ≤ gk+1

(j−1)j (l +
1). Thus we have that if Y ′

j−1 = l then X′
j−1 is equal to l

or l + 1. In other words,

(
X′

j−1

Y ′
j−1

)
∈

{(
0

0

)
,

(
1

0

)
,

(
1

1

)
, . . . ,

(
k

k

)
,

(
k

k + 1

)}

and X′
j−1 ≥ Y ′

j−1 holds in all cases. Accordingly, we have
that cX′(�λ�) ≥ cY ′(�λ�).
Case 3: Consider the case that �λ� = j + 1. We can show
cX′(�λ�) ≥ cY ′(�λ�) in a similar way to Case 2.

For any pair of states X, Y satisfying X � Y , it is easy to
see that there exists a sequence of states Z1, Z2, . . . , Zr with
appropriate length satisfying X = Z1 ·� Z2 ·� · · · ·� Zr =
Y . Then applying the above claim repeatedly, we obtain
that φ(X, λ) = φ(Z1, λ) � φ(Z2, λ) � · · · � φ(Zr, λ) =
φ(Y, λ). �

Since MP is a monotone chain, we can design a perfect
sampler based on monotone CFTP, which we will introduce
in the next subsection. Here we note that we could also
employ Wilson’s read once algorithm (Wilson 2000) and
Fill’s interruptible algorithm (Fill 1998, Fill et al. 2000),
each of which also gives a perfect sampler.

4.2 Coupling from the Past

Suppose that we have an ergodic Markov chain M with a
finite state space � and a transition matrix P . The transition
rule of the Markov chain X �→ X′ can be described by
a deterministic function φ : � × [0, 1) → �, called
update function, as follows. Given a random number 


uniformly distributed over [0, 1), update function φ satisfies
that Pr(φ(x, 
) = y) = P(x, y) for any x, y ∈ �. We can
realize the Markov chain by setting X′ = φ(X, 
). Clearly,
update functions corresponding to the given transition matrix
P are not unique. The result of transitions of the chain from
the time t1 to t2 (t1 < t2) with a sequence of random numbers
λ = (λ[t1], λ[t1 + 1], . . . , λ[t2 − 1]) ∈ [0, 1)t2−t1 is denoted

by �
t2
t1
(x, λ) : � × [0, 1)t2−t1 → � where �

t2
t1
(x, λ)

def.=
φ(φ(· · · (φ(x, λ[t1]), . . . , λ[t2 −2]), λ[t2 −1]). We say that
a sequence λ ∈ [0, 1)|T | satisfies the coalescence condition,
when ∃y ∈ �, ∀x ∈ �, y = �0

T (x, λ).
Suppose that there exists a partial order “�” on the set

of states �. A transition rule expressed by a deterministic
update function φ is called monotone (with respect to “�”)
if ∀λ ∈ [0, 1), ∀x, ∀y ∈ �, x � y ⇒ φ(x, λ) � φ(y, λ).
We also say that a chain is monotone if the chain has a
monotone update function. Here we suppose that there
exists a unique pair of states (xU, xL) in partially ordered
set (�, �), satisfying xU � x � xL, ∀x ∈ �.
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With these preparations, a standard monotone Coupling
From The Past algorithm is expressed as follows.

Algorithm 1 (monotone CFTP (Propp and Wilson
1996))

Step 1: Set the starting time period T := −1 to go back,
and set λ be the empty sequence.

Step 2: Generate random real numbers λ[T ], λ[T +
1], . . . , λ[�T/2� − 1] ∈ [0, 1), and insert them to the head
of λ in order, i.e., put λ := (λ[T ], λ[T + 1], . . . , λ[−1]).
Step 3: Start two chains from xU and xL, respectively, at
time period T , and run each chain to time period 0 according
to the update function φ with the sequence of numbers in λ.
(Here we note that every chain uses the common sequence
λ.)

Step 4: [ Coalescence check ] The state obtained at time

period 0 is denoted by �0
T (x, λ).

(a) If ∃y ∈ �, y = �0
T (xU, λ) = �0

T (xL, λ), then return
y and stop.

(b) Else, update the starting time period T := 2T , and
go to Step 2.

Theorem 5 (CFTP Theorem Propp and Wilson
(1996)) Let M be an ergodic finite Markov chain with state
space �, defined by an update function φ : �×[0, 1) → �.
If the CFTP algorithm (Algorithm 1) terminates with proba-
bility 1, then the obtained value is a realization of a random
variable exactly distributed according to the stationary dis-
tribution.

Theorem 5 gives a (probabilistically) finite time algo-
rithm for infinite time simulation.

5 CONCLUDING REMARKS

We propose two samplers based on Markov chain which
produce a sample of the product form solution of closed
Jackson networks. We show that the chain for approximate
sampling mixes in O(n2 ln K) time. By using this result,
we can design a polynomial-time randomized approximation
scheme for computing normalizing constant and throughput,
by combining with Monte Carlo method, it is so called
MCMC (Markov chain Monte Carlo). The approximation
scheme can be designed in standard method (see (Jerrum and
Sinclair 1996)), but many discussion points are remained.

Though we did not discussed the mixing time of Markov
chain MP for perfect sampling, we can show that MP rapidly
mixes in O(n3 ln K) in some cases, which includes closed
Jackson networks with single servers (i.e., si = 1, ∀i) and
with infinite servers. (i.e., si = +∞, ∀i). It is, however,
open if the Markov chain MP mixes in polynomial time
of n and ln K when the numbers of servers (s1, s2, . . . , sn)

are arbitrary positive integers.
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Major remaining problem is to extend to more general-
ized models, for example, with multiple classes of customers
model or BCMP networks (Baskett et al. 1975) and so on.
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