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ABSTRACT 

In optimizing systems, experimental models are often 
available with different levels of cost and different levels 
of “fidelity” or trustworthiness, a fact that can be exploited.  
For example, a highly detailed model might be made for a 
few possible configurations, supplemented by a large num-
ber of rough models that are less expensive to construct.  
The purpose of this paper is to illustrate the application of 
a recently proposed Multiple Fidelity Sequential Kriging 
Optimization (MFSKO) method to derive the optimal re-
source allocation for disaster preparedness of a hospital.  
The system is evaluated via discrete event simulations of 
two sophistication levels.  The MFSKO method integrates 
multiple fidelity data, including real-world data, in search 
for the global optima with less total evaluation cost.  
Kriging meta-models are generated as by-products of the 
optimization. 

1 INTRODUCTION 

Drills, training exercises, and disaster preparedness help to 
ensure that a hospital can mobilize its resources effectively 
and quickly during a disaster.  Preparations are costly, 
however, as evidenced by the extensive efforts of agencies 
from the Defense Department to local Emergency Man-
agement Agencies to maximize training transfer while 
minimizing associated costs (Bowers 2003 and Brady 
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2003).  They require managerial effort and sap clinical 
staff and resources from regular operations and patient 
care.  The question becomes “How much is enough?” 
when it comes to preparation.  Experimental data, in this 
case derived from discrete event simulation, is also expen-
sive.  Creating a detailed model for each disaster plan 
quickly becomes prohibitively expensive.  Also, real-world 
(highest fidelity) data is thankfully rare.  This paper shows 
that low-fidelity and inexpensive models can supplement 
high-fidelity models to reach a global optimum disaster 
preparation plan. 

For the purpose of analysis, greater preparedness can 
be equated with increased resource response.  As staff be-
comes more educated on disaster response, and the hospital 
organization becomes more efficient and structured in its 
disaster plan, more staff will respond more quickly during 
an event.  The staff that does respond will act more profi-
ciently, further increasing the effective capacity of the sys-
tem.  Similarly, organizational readiness will increase the 
number of beds that can be made available quickly 
throughout the hospital, not just in the Emergency Depart-
ment (ED). 

A non-linear black-box global optimization technique, 
the Multiple Fidelity Sequential Kriging Optimization 
(MFSKO) method, was developed recently (Huang et al. 
2005).  The method, which is an extension of the Efficient 
Global Optimization (EGO) (Jones et al. 1998), aims to 
solve expensive black-box problems in areas such as large-
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scale circuit board design and manufacturing process im-
provement.  A uniqueness of the MFSKO method is that it 
can fully integrate simulations at different levels of sophis-
tications into the optimization.  Less sophisticated and 
therefore less expensive runs can be used in conjunction 
with higher cost runs, resulting in significant reduction in 
total evaluation cost.  Also, there is an additional benefit 
that global meta-models of the simulations are created as 
by-products of the optimization. 

In this research, MFSKO method is applied to solve 
the hospital disaster preparedness optimization problem.  
The goal is to find the optimal resource allocation, consid-
ering both the costs of training, drills, and other prepara-
tions, and the performance under high-consequence event 
scenario.  In addition, we examine the appropriateness of 
the applying the MFSKO approach to discrete event simu-
lation. 

2 DISCRETE EVENT SIMULATION OF 
EMERGENCE DEPARTMENT 

The model used in this study simulates the operations of an 
Emergency Department (ED).  The simulation was based on 
a real Emergency Department, with some minor modifica-
tions, using Rockwell Automation’s Arena® software, 
which is a stochastic discrete event simulation tool based in 
SIMAN.  An ED model was used because during a disaster 
the hospital responds as if it were one large ED.  The model 
was set to run for 10 simulated days of warm-up time under 
normal circumstances followed by a bolus of 500 patients 
arriving within one hour.  This represents the amount of pa-
tients arriving to one of the local hospitals under a single 
high-rise bomb attack, similar to the Oklahoma City bomb-
ing.  The model was designed to run for two more days and 
data was captured as the system recovered from the influx of 
patients.  At the time of the disaster, additional physician 
and nursing staff were made available, as were additional 
beds.  The amounts of these resources made available were 
the decision variables that the MFSKO manipulated and at-
tempted to optimize.  The rationale behind varying levels of 
additional resources is the assumption that additional train-
ing translates into additional responders and more efficient 
use of available resources.  The preparation costs required to 
increase the additional resources responding during a disas-
ter were set at $10,000 per each additional physician, $5,000 
per each additional nurse, and $10,000 per each additional 
bed that the system may make use of.  These additional re-
sources include actual additional responders as well as “ef-
fective” resources, created through increased preparedness 
of system.  The output of the model used as a response vari-
able was the average length of time until the patients were 
seen by a physician (door-to-doc time).  This time was trans-
lated into a cost equaling $1,000,000 per hour per patient, 
representing the increased morbidity and mortality resulting 
from delaying intervention.  Each setting was replicated 10 
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times in order to minimize the Monte Carlo error associated 
with the stochastic nature of the model.   

The original model was used as the “high-fidelity” 
model.  It contained 88 nodes.  Details include staff sched-
uling for nurses, registration staff, triage staff, and physi-
cians, patient arrival patterns detailed by hour of day, pro-
cedure times, patient acuity, and others, taken from real-
world observations.  The data for the model was compiled 
over the period of one year, using interviews, staff meet-
ings, and over 72-hours of direct observation.  Every area 
of the ED is modeled, including a low acuity area called 
“Prompt Care”, an observation unit, triage, registration, 
ancillary testing, and the main ED.  One of these areas is 
shown in Figure 1.  The model also includes consultations 
and admissions processes.  The model is able to react to 
changing variables much as the real system would.  Details 
such as utilization, wait times, process times, etc. are 
automatically captured for each setting of the system.   

Stripping down the original model to 31 nodes created 
a “low-fidelity” model.  Details such as data collection, 
registration, lab testing, etc. were aggregated or eliminated 
to reduce the size and increase the speed of this second 
model (see Figure 2). 

 

 
Figure 1:  High Fidelity Model of ED Evaluation Process 

 

 
Figure 2:  Low Fidelity Model of ED Evaluation Process 

3 MULTIPLE FIDELITY SEQUENTIAL KRIGING 
OPTIMIZATION 

3.1 Overview 

When cost-per-evaluation on a system of interest is high, 
one may utilize surrogate systems that provide cheaper but 
lower-fidelity information.  For example, lab and pilot sys-
7
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tems can be used to mimic production systems.  In the con-
text of discrete event simulation, as mentioned above, a sim-
plified simulation model can be a cheaper surrogate for a 
more sophisticated model.  We call these surrogate systems 
“lower-fidelity systems”, where the term “fidelity” relates to 
the extent to which a surrogate system can reproduce the in-
put-output relationships of the system of interest.  The sys-
tem of interest, often a physical experiment or a high-
resolution simulation, is called the “highest fidelity” system 
or the “real” system. Differences in cost for changing the 
model is especially apparent when testing different scenarios 
requires significant rework of the model structure.  In this 
example, differing scenarios were admittedly simple to 
change in both the high-fidelity and low-fidelity models.   

In the Multiple Fidelity Sequential Kriging Optimiza-
tion (MFSKO) method, low-fidelity systems are exploited 
to reduce the total evaluation cost needed for the optimiza-
tion.  The method integrates all data on to build a kriging 
meta-model that provides a global prediction of the objec-
tive function and a measure of prediction uncertainty.  The 
location and fidelity level of the evaluation are selected by 
maximizing a cost-related Expected Improvement (EI) 
function. 

In this paper, a minimal outline the MFSKO method is 
described.  For further details, please refer to Huang 
(2005).  The basic procedure of the optimization method is 
as follows: 

 
1. Step 1: Build the initial kriging meta-model for 

the system of interest using multiple fidelity data. 
2. Step 2: Use a cross validation to make sure the 

kriging prediction and the measure of uncertainty 
are satisfactory.  Appropriate transformations 
such as the logarithm or the inverse may be ap-
plied to the objective function if needed. 

3. Step 3: Find the location and fidelity level of the 
new evaluation that maximize the Expected Im-
provement (EI) function.  If the maximal EI is 
sufficiently small, terminate the optimization 
scheme. 

4. Step 4: Conduct an evaluation where the EI is 
maximized.  Update the kriging meta-model with 
the new data point.  Go to Step 3. 

 
(As of convention, step 1 is also referred to as the “initial 
fit” stage, while Steps 3 and 4 are called the “infill” stage.  
The sequentially added evaluations are also called the “in-
fill” points.) 

3.2 Multiple Fidelity Kriging Meta-Modeling  

Formulations for multiple fidelity kriging models were first 
published by Kennedy et al. (2000).  Suppose there are a 
total of m systems to draw evaluations from, including the 
real and the surrogates.  Denote the output functions of 
9

these systems in increasing order of fidelity by f1(x), f2(x), 
…, fm(x), where x is the input vector.  To build kriging 
meta-models for multiple fidelity systems, an autoregres-
sive model is assumed as follows: 

 
 fl(x) = fl-1(x) + δl(x), (l = 2, 3, …, m) (1) 

 
and 
 
 f1(x) = δ1(x). (2) 

 
We use kriging to model the lowest-fidelity sys-

tem, δ1(x), as well as the difference between systems, δl(x) 
(l = 2, 3, …, m), i.e., we have 
 
 δl(x) = bl(x)T βl + Zl(x) + εl (l = 1, 2, …, m) (3) 

 
where bl and βl are the basis functions and coefficients, re-
spectively, of the linear model.  Zl is the systematic depar-
ture and εl is the random error. 

The systematic departure from the linear model, Zl, is 
modeled as a zero-mean stationary Gaussian stochastic 
process, with the covariance between two points x = (x1, … 
xd) and x' = (x'1, … x'd): 
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where d is the dimension of input space, 2

,lZσ  is the vari-
ance of the stochastic process, and θl,j is a “roughness” pa-
rameter associated with the dimension j. 

We denote by Y1, Y2… Yn the data drawn from an n-
point design with point locations {x1, x2, … xn} and system 
indexes {l1, l2, …, ln}, respectively.  Note that 1 ≤ l1, l2, …, 
ln ≤ m.  The data may contain random errors, which are as-
sumed to be independent and identically distributed (IID).  
We denote by 2

,lεσ  the variance of the random error asso-
ciated with system l.  To describe the kriging model pre-
dictor, introduce the following notation: 
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where T denotes the transpose, δij = 1 for i = j, and δij = 0 
for i ≠ j.  The best linear predictor (BLP) of fm(x) is: 

 
 )ˆ()(ˆ)()(ˆ 1 βHyVxtβxhx −+= −T

m
T

mmf  (5) 
 

where  
 
 yVHHVHβ 111 )(ˆ −−−= TT . 

 
The hyper-parameters, include: 2

,lZσ , 2
,lεσ , and θl, i, 

for l = 1, 2, …, m, and i = 1, 2, …, d, are obtained by the 
Maximum Likelihood Estimations (MLE). 

Kriging model also has a Bayesian interpretation, 
where the posterior distribution for the function of system 
l, )(xp

lf , has a mean equal to the BLP predictor, )(ˆ xlf .  
And the posterior covariance is 
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3.3 The Expected Improvement Function 

As described in 3.1, the Expected Improvement (EI) func-
tion is the criterion determining the location and fidelity 
level of the subsequent evaluation.  The EI function takes 
the following form: 
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where Cm and Cl are the cost-per-evaluations on system m 
and l, respectively. 

In addition, x* stands for the current “effective best 
solution”, which is determined by maximizing a utility 
function, u(x). 
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The use of u(x) implies a willingness to trade 1 unit of 
the predicted objective function for c unit of the standard 
deviation of prediction uncertainty. 

),(1 lxα  serves as a factor to discount the EI when an 
evaluation from a surrogate system is used.  When l = m, 

),(1 lxα =1.  The term ),(2 lxα  is meaningful only when 
outputs of system l contain random errors.  It accounts for 
the diminishing return of additional replicates as the pre-
diction becomes more accurate.  At last, )(3 lα  represents 
an adjustment to the sampling strategy according to the 
evaluation costs.  A point on lower-fidelity system will be 
favored if everything else is equal. 

As mentioned in Section 3.1, Step 3, the location and 
fidelity level of the next evaluation, xn+1 and ln+1, are se-
lected by maximizing EI, i. e.: 

 
 ),(maxarg),(

,
11 lEIl

l
nn xx

x
=++ . (9) 

 
The optimization scheme stops when the maximal EI 

is sufficiently small.  In this study, we use a stopping crite-
rion that is 0.1% of the active span of the responses. 
 

3.4  The Initial Fit Design 

In the initial fit stage, the kriging model is generated with 
evaluations at locations from a preset experiment design.  
Design problems for kriging models have been studied in a 
wealth of literature in the area of the Design and Analysis 
of Computer Experiments (DACE).  For summaries on this 
area, see Santner et al. (2003). 
9
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For this study, the 26-point initial-fit design used is 
shown in Figure 3.  Twenty of them are on the low-fidelity 
simulation, and six of them are on the high-fidelity simula-
tion.  The low-fidelity points form a Latin Hypercube de-
sign with maximal minimum distance between points 
(Stein 1987); and the high-fidelity points are a subset of the 
low-fidelity points, and form another Latin Hypercube de-
sign. 
 

4 RESULTS AND DISCUSSIONS 

For this analysis, the ratio of additional nurses to doctors 
responding was fixed at 1:1.  Therefore the only settings 
are the number of beds and the number of staff.  This al-
lows us to show the results in two-dimensional contour 
plots.  It took the MFSKO method 50 low-fidelity evalua-
tions and 16 high-fidelity evaluations to reach the stopping 
criterion.  The optimal setting found by MFSKO for the 
test problem is 19 additional doctors, 19 additional nurses, 
and 108 additional beds, and the minimum of the cost 
function is 301.9k.  Figure 3 shows all evaluated points and 
history of the infill points.  Note that, by maximizing the 
Expected Improvement (EI) function, the search pattern 
displays a balance between local and global search.  Many 
points concentrate near the global optimal setting, while 
other scattered around to reduce uncertainties about the un-
explored areas.  In addition, for the infill points, most of 
the “exploring” (global search) are done with low-fidelity 
evaluations, while the high-fidelity evaluations are mostly 
utilized to “refine” the optimal setting (local search).  This 
pattern seems to agree with our intuitions.  At last, the best 
solution was found by point 62, but the algorithm contin-
ues to evaluate four more points before the Expected Im-
provement (EI) in the entire domain is sufficiently small.  
Table 1 shows that the MFSKO approach did at least as 
well as a scatter taboo search using only a single fidelity 
approach, given the same experimental costs. 

As mentioned previously, an additional benefit of the 
MFSKO method is that kriging meta-models are generated 
at the end of the optimization scheme.  Figure 4 shows the 

 
Table 1:  Method Comparison Using Equal Evaluation 
Costs 
Method # 

Runs 
#Docs 
# RNs 

# 
Beds 

Objective 
value 

MFSKO 66 19 108 276.5 
High-fidelity 
Taboo Scatter 

34 15 128 282.8 

Low-fidelity 
Taboo Scatter 

96 17 108 277.4 

Global 
Optimum 

N/A 16 112 274.7 
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contour maps of the kriging models for both the low-
fidelity and high-fidelity simulations.  In general, the two 
produce similar trends.  However, the low-fidelity model 
seems to slightly overestimate the cost.  In addition, the 
high fidelity model appears to be bumpier and have multi-
ple local optima.  This illustrates an additional potential 
benefit of using a multi-level approach:  the high-fidelity 
model gives the meta-model detail and accuracy, while the 
low-fidelity model gives smoothness and added points at 
reduced cost. 

The kriging model also gives the prediction uncer-
tainty in terms of Mean Square Errors.  Figure 5 displays 
the prediction uncertainty on the high-fidelity simulation.  
Note that the uncertainty is smaller in areas near the op-
tima, where more evaluations have been allocated. 

 

 
Figure 3: Evaluation Points (□—low-fidelity  initial-fit 
design points; □—high-fidelity initial-fit design 
points; ○—low -fidelity infill points; ○—high -fidelity 
infill points; and the numbers indicate the sequence of 
the infill points.) 
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a) 

 
b) 

Figure 4.  Meta-Models Generated by MFSKO a) 
Low-Fidelity Simulation b) High-Fidelity Simula-
tion 

5 CONCLUSIONS 

In this research, a hospital disaster preparedness opti-
mization problem was solved using the Multiple Fidelity 
Sequential Kriging Optimization (MFSKO) method.  The 
area under study was a hospital Emergency Department 
(ED), since a hospital responds as a large ED during a dis-
aster.  Considering both the costs under regular operations 
9

 
Figure 5.  Kriging Prediction Uncertainty (Mean Squared 
Errors) of the High-Fidelity Simulation 
 
and the performance under high-consequence event sce-
nario, the optimal setting is 19 doctors, 19 nurses, with 108 
beds.   

The MFSKO method is a convenient and robust global 
optimization tool for this problem.  Simulations of two lev-
els of sophistications were fully integrated in algorithm, 
which presumably reduced the total evaluation costs.  In 
addition, meta-models of the simulations are generated as 
by-products of the optimization, which help visualize and 
interpret of the problem. 

One limitation of the present design is that the algo-
rithm uses a continuous decision space.  Further genera-
tions of the MFSKO method can be developed to handle 
discrete data.  An option is to simply limit the Expected 
Improvement maximization problem to the integer space, 
and use appropriate integer programming techniques, such 
as the Genetic Algorithms, to solve it.  Note that such  
adaptation may affect the overhead cost of the MFSKO 
method. 

This method could be easily augmented to include 
more complex variables, such as changes to the actual dis-
aster response procedures under different disasters, and the 
use of new technology.  This would require that the actual 
structure of the model be changed for each set of inputs, 
increasing the cost savings of this approach.  Secondly, in-
tegrated distributed simulations, such as the one described 
by Jain and McLean (2003), could replace the ED model 
used in this analysis.  Future work is needed to apply 
MFSKO to categorical or non-sequential data, such as al-
ternative disaster management structures. 
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