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ABSTRACT 

This paper provides empirical and theoretical support for 
the application of coevolutionary dynamics and agent-
based models in organization science.  The support stems 
from the following logical progression: (a) organization 
science theorists have explored, and in many instances, ac-
knowledged the applicability of complexity theory to or-
ganization science research; (b) much of the acceptance for 
complexity science applications follows from the concep-
tualization of an organization as a Complex Adaptive Sys-
tem (CAS); (c) complexity science offers a robust explana-
tion of order in natural and social systems; (d) 
coevolutionary dynamics provide the mechanisms with the 
highest explanatory power for describing order-creation in 
social systems.  This paper provides an overview of the lit-
erature for each element of the preceding logical progres-
sion and concludes with a discussion of the applications of 
agent-based models to instantiate coevolutionary dynam-
ics. 

1 APPLICATIONS OF COMPLEXITY THEORY 
TO ORGANIZATION SCIENCE 

As complexity theory extends the scientific frontiers in 
many other disciplines such as physics, chemistry, biology 
and other natural sciences; the concept of the applicability 
of complexity theory to organization science has recently 
generated much debate.  Specifically, many theorists (for 
example, Anderson (1999), Brown and Eisenhardt (1997), 
Carley and Prietula (1994), Gell-Mann (1994), Gersick 
(1991), Lissack (1999), Mainzer (1997), McKelvey (1997; 
1999b), Stacey (1995), and Thietart and Forgues (1995)) 
have argued convincingly in support of the applicability of 
complexity theory to organization science.  In addition to 
this support for the theoretical efficacy of complexity sci-
ence applications to organization science, other theorists 
(Kauffman and Macready 1995, Carley and Svoboda 1996, 
Carley 1997, Dooley 1997, Levinthal 1997, Sorensen 
1997, Levinthal and Warglien 1999, Siggelkow 2001, 
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McKelvey 2002b, Siggelkow 2002) have detailed the non-
linear adaptive capacity of organizations and the non-linear 
complexity of organizational dynamics (Dooley and Van 
de Ven 1999). 

1.1 An Organization as a CAS 

Central to the research exploring the non-linear adaptive 
capacity of organizations and the non-linear complexity of 
organizational dynamics lays the conceptualization of an 
organization as a Complex Adaptive System (CAS).  Other 
considerations of an organization as a CAS (e.g., Dooley 
(1997) and Anderson (1999)) describe an organization as a 
system: (a) consisting of many interacting components, (b) 
constituting more than the sum of these interacting compo-
nents and (c) possessing some capacity to adapt to its ex-
ternal environment.  To facilitate a more comprehensive 
analysis, the subsequent discussion first describes Hol-
land’s (1995) widely held definition of CAS in greater de-
tail and then identifies the direct correlation between his 
definition and relevant theories in organization science.  

1.2 Holland’s Complex Adaptive System  

Holland (1995) describes a CAS according to what he re-
fers to as the “seven basics” - four properties and three 
mechanisms; when simultaneously occurring, this set of 
seven basics constitutes the necessary and sufficient condi-
tions of all CAS.  The four properties consist of (a) aggre-
gation, (b) nonlinearity, (c) flows, and (d) diversity.  The 
three mechanisms consist of (a) tagging, (b) internal mod-
els, and (c) building blocks.  More than their distinction as 
properties or mechanisms, Holland emphasizes the impor-
tance of the interrelations between the seven basics. 

Aggregation represents both the standard process in 
modeling of focusing on the salient issues and simplifying 
all other aspects of the system, as well as, the behavior of 
CAS: namely, the emergence of large-scale behaviors from 
the aggregate interactions of less complex agents.  Tag-
ging, the mechanism for aggregation and boundary forma-
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tion in CAS, facilitates selective interaction among agents 
which ultimately leads to hierarchical organization.  CAS 
possess nonlinear properties, in that agent interactions 
make the behaviors of the aggregate more complex than 
can be predicted by summing “typical” agent behavior 
(i.e., a linear assumption would hold if system behavior 
was fully deducible from summing or averaging the behav-
ior of the system’s components).  Flows describe CAS as a 
network representation of processing nodes (i.e., agents) 
and connectors (i.e., possible interactions).  Two properties 
of economic flows are important to all CAS: (a) a multipli-
cative effect – if an agent injects additional resources at a 
particular node and (b) a recycling effect – the effect of cy-
cles in the network, especially those that extend the utility 
of resources.   

Diversity describes the many different types of agents 
within a CAS.  Each type of agent is intended to fill a 
unique niche which is defined by the interactions centering 
on that focal agent.  Diversity also arises from the emer-
gence of a new niche to be exploited by adaptations of 
competing agents.  Agents that increase recycling flows 
discover and exploit new niches, which therefore enhances 
diversity and leads to perpetual novelty - the hallmark of 
all CAS. 

Another source of diversity within a CAS stems from 
the idiosyncrasy of agent’s internal models.  Virtually syn-
onymous with Gell-Mann’s (1994) “schema,” internal 
models provide the CAS with a mechanism for anticipa-
tion.  By eliminating details so that selected patterns are 
emphasized, internal models provide an agent with a 
mechanism with which it can detect and then “select pat-
terns in the torrent of input which it receives and then con-
vert those patterns into changes in its internal structure 
(Holland 1995, p. 31).”   

But an agent develops its internal model based only 
upon its unique experience in a “perpetually novel envi-
ronment (p. 34).”  Therefore, an agent reduces the com-
plexity of a given situation by searching for familiar ele-
ments that it is has learned through experience or by 
natural selection to be effective in similar situations.  Hol-
land refers to these familiar elements as building blocks 
and argues that “this use of building blocks to generate in-
ternal models is a pervasive feature of CAS (p. 37).”    

1.3 Holland’s CAS and Relevant Theories of 
Organization Science  

The discussion now briefly addresses the convergence be-
tween Holland’s (1995) CAS and some foundational litera-
ture in organization science research (see Hazy, Tivnan and 
Schwandt (2003) for a comprehensive review of this con-
vergence).  Schwandt’s (1997) definition of an organiza-
tion as a system comprised of subcomponents (e.g., ac-
tions, actors, symbols and processes) correlates directly to 
the aggregation property of a CAS.  Certainly tagging as 
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the mechanism for aggregation and boundary formation in 
a CAS relates closely to the notion of an organizational 
boundary and the Environmental Interface subsystem in 
Schwandt’s Organizational Learning Systems Model 
(OLSM).  The nonlinear characteristics of organizational 
dynamics are well-supported throughout the literature as 
well as organizations as networks of resource-processing 
nodes (Krackhardt and Carley 1998).  The diversity of a 
CAS is directly analogous to the idiosyncratic microstates 
of organizations (McKelvey 1997).  And finally, an agent’s 
internal model and its experiential nature relate very 
closely to the OLSM; where the building blocks of the in-
ternal model correspond to the Sensemaking interchange 
media of the OLSM.    

2 COMPLEXITY SCIENCE AS ORDER 
CREATION SCIENCE 

The research of the pioneers in complexity theory has led 
to the modern understanding of order as an emergent phe-
nomena stemming from complex, seemingly random 
events (Prigogine and Stengers 1984, Kauffman 1993, Hol-
land 1995).  Building on the conceptualization of an or-
ganization as a CAS, several organization scientists 
(Stacey 1993, Mainzer 1997, McKelvey 2001b, McKelvey 
Forthcoming) have explored the emergence of order within 
as well as between organizations.  Most notably, 
McKelvey (2001b, p. 137) argues that complexity theory is 
“really order-creation science” by  first recounting the lit-
erary perspectives and definitions of order and then detail-
ing the recent scientific advances in understanding order 
and its root causes.  The discussion of complexity theory as 
order-creation science continues with a brief summary of 
McKelvey’s (2001b, Forthcoming) analysis.   

Following in the Darwin-Wallace model (Darwin 
1859) of natural selection and its explanation of speciation 
in the biological world, order first came to be understood 
as the emergence of differentiated entities (Durkheim 
1893, Spencer 1898).  More than half of a century later, 
Ashby (1956) extends the understanding of order with his 
concept of requisite variety.   

Ashby (1956) does not define order as the emergence 
of entities but in terms of the connections between those 
entities.  He describes his “law of requisite variety” in 
terms of the connection between two entities (e.g., A and 
B).  Order exists between A and B, if and only if, the con-
nection between A and B is “conditioned” by a third entity, 
C, which is external to the connection between A and B.  
Therefore, an entity can only adapt effectively when the 
variety of its internal order matches the variety of its envi-
ronmental constraints (Ashby 1956).  Of particular note, 
Ashby’s description of order as a function of environ-
mental context fits with Prigogine’s (1955) research and 
the work of other physicists to be described below.  
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But as McKelvey (2001b, Forthcoming) highlights, 
Ashby (1956) describes the phenomenon of order but says 
nothing about what causes order to emerge.  McKelvey 
(Forthcoming, p. 3) describes mature science, “Ortho-
doxy,” as being founded on the equilibrium principle at the 
core of the 1st Law of Thermodynamics.  The 1st Law states 
that energy itself cannot be created nor destroyed; though 
its forms may change, the sum of all energy remains fixed 
(Chaisson 2001).  McKelvey (Forthcoming) asserts that 
since “normal science [or Orthodoxy] accepts order as a 
given in the universe…this leaves the thermodynamics of 
order translation as the defining dynamic of science (p. 3).”  
However, the Nobel-Laureate, Ilya Prigogine, has shown 
that the 1st and 2nd Laws of Thermodynamics differ on the 
aspect of reversibility (Prigogine 1955, Prigogine and 
Stengers 1984). 

Prigogine demonstrated that the 1st Law is time-
reversible (i.e., the Newtonian processes of classical phys-
ics are bi-directional and thus reversible), while also dem-
onstrating the irreversibility of the 2nd Law.  The 2nd Law 
states that any system not in a state of equilibrium will ex-
pend energy in an attempt to move toward equilibrium and 
this loss of energy is called entropy production (Bar-Yam 
1997).  Prigogine along with his colleagues (1984, 1989; 
1997) argues that entropy production is an irreversible 
process.  The foundation of Prigogine’s argument rests on 
Eddington’s (1930) “arrow of time”  - that nowhere in the 
Universe can we observe randomness dissipate into order; 
whereas, we frequently observe order dissipate into ran-
domness.     

3 COEVOLUTION AS THE MECHANISM OF 
ORDER-CREATION 

As the concept of coevolution continues to draw more and 
more attention from organization scientists as evidenced by 
a dedicated issue in Organization Science (Lewin and Vol-
berda 1999), several leading researchers consider coevolu-
tion as a principal mechanism of order-creation in organ-
izational ecology (e.g., Baum and Singh (1994), Lewin and 
Volberda (1999), and McKelvey (1997, 1999a, 2002b)).  
This discussion of coevolution as the mechanism for order-
creation in organizations continues with a description of 
the properties, types and damping mechanisms of coevolu-
tion.   

3.1 Essential Properties of Coevolution 

While arguing for coevolution as a unifying framework for 
research in strategy and organization science, Lewin and 
Volberda (1999) list the essential properties of coevolution 
as: (a) multi-levelness / embeddedness, (b) multi-
directional causality, (c) nonlinearity, (d) positive feed-
back, (e) path and history dependence.  A brief summary of 
these properties follows. 
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McKelvey (1997, 1999a, 2002b) asserts that coevolu-
tionary dynamics occur at multiple levels of analysis; 
within an organization (i.e., microcoevolution) and be-
tween organizations and their respective environments 
(i.e., macrocoevolution) which is similar to Granovetter’s 
(1985) notion of embeddedness.  McKelvey (2002b, p. 3) 
asserts that an organization’s ability to macrocoevolve with 
its competitors depends on its microcoevolutionary proc-
esses.  An excellent example of this multi-level nature is 
March’s (1991) study of environmental turbulence and the 
corresponding adaptation at the levels of the organization 
and the organizational microstate.    

Because organizations coevolve with each other and 
with a perpetually altering environment (Holland 1995, 
Kauffman 1995, McKelvey 1997), the distinction between 
dependent and independent variables becomes problematic 
since variables are sensitive to endogenous effects (i.e., 
multi-directional causality).  Consistent with Holland’s 
(1995) description of the nonlinear properties of CAS, 
Lewin and Volberda (1999) describe the nonlinear proper-
ties of coevolution as producing counter-intuitive changes 
in one variable from presumably insignificant changes in 
another variable.  Similar to Weick’s (1979) concept of en-
actment, an organization influences its environment and is 
influenced by its environment; these recursive interactions 
and the resulting interdependency are summarized as posi-
tive feedback.  Unlike the population ecologists (e.g., Han-
nan and Freeman (1984)) who point to variations in the en-
vironment, coevolutionary theorists (e.g., McKelvey 
(2002b) and Lewin and Volberda (1999)) point to an initial 
heterogeneity between the organizations to explain the 
varying effectiveness of organizational adaptability (i.e., 
path dependence). 

3.2 Types of Coevolution 

After describing the similar properties of all coevolution-
ary processes, the discussion now briefly shifts to a de-
scription of the kinds of coevolutionary dynamics. Maru-
yama (1963) described four kinds; namely, (a) mutation 
rate and the environment, (b) predator / prey, (c) super-
normal, and (d) inbreeding and population size.   
McKelvey (2002b) offers another kind of coevolution: 
symbiotic. 

The coevolution of mutation rate and the environment 
addresses the interdependence between the rates of change 
of an organism and its environment.  Similarly, predator / 
prey coevolution describes the respective rates of change 
of competing populations.  Supernormal coevolution de-
scribes the “snowballing” (i.e., nonlinear) effect of a fa-
vored characteristic as a tag governing the interaction of 
agents within a population (e.g., McKelvey (2002b) relates 
this to the propensity for good-looking, intelligent people 
to attract other good-looking, intelligent people and pro-
duce still more good-looking, intelligent people).  Inbreed-
5
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ing within a small population rapidly leads to the isolation 
of the small population from other populations (i.e., dimin-
ished embeddedness and few, if any, structural holes); the 
more isolated the population, the more likely inbreeding 
will occur and lead to further differentiation.  Symbiotic 
coevolution describes the cooperative and mutually benefi-
cial interdependence of two dissimilar agents. 

The type of coevolution that offers the most relevance 
to organization science research is the coevolution of muta-
tion rate and the environment.  All the more applicable in 
high-velocity environments (Eisenhardt 1989) and hyper-
competitive contexts (D'Aveni 1994), what an organization 
has learned (Schwandt and Marquardt 1999) and the rate at 
which it learns (McKelvey 2002b) offer the organization 
its best source of sustainable, competitive advantage 
(McKelvey 2001a).  That is, an organization must learn 
faster and more effectively than its competitors to establish 
an initial competitive advantage, and then that same or-
ganization must continue to learn faster still if it is to sus-
tain its competitive advantage.  This dynamic is known as 
an “arms race” or the “Red Queen effect”, adopted from 
Carroll’s (1946) Red Queen when she says to Alice, “[i]t 
takes all the running you can do, to keep in the same 
place.” 

3.3 Boiled Frogs and Damping Mechanisms 

With a better understanding of the properties and types of 
coevolution, this section of the paper concludes with a 
brief discussion of the “boiled-frog effect” and damping 
mechanisms.  The “boiled-frog effect” stems from the find-
ing that a frog placed in a pot of cold water will not at-
tempt to escape if you slowly bring the pot to a boil, but a 
frog will instantly leap from a pot of already boiling water.  
This relates to the notion that an initiating event stimulates 
the onset of coevolutionary dynamics and how significant 
the event needs to be. 

Some complexity scientists (e.g., Prigogine (1997) and  
Mainzer (1997)) require a significant initiating event; 
whereas, other complexity scientists believe the initiating 
event can be almost trivial (Bak 1996, Brunk 2000).  
McKelvey (2002b) asserts that if the latter was true and 
trivial events stimulate effective organizational adaptation 
then virtually no failing organizations would exist, but fail-
ing organizations are commonplace (Meyer and Zucker 
1989).  Conversely, the nonlinear aspects of coevolution 
could lead to unexpectedly significant outcomes from 
indiscernibly small events (Kauffman 1995, Lewin and 
Volberda 1999).  McKelvey (2002b) offers another expla-
nation for when coevolution occurs and when it does not: 
damping mechanisms. 

A damping mechanism provides a method for influ-
encing the rate of coevolution (McKelvey 2002b).  The 
practical implications of damping mechanisms lie in the 
realization that managers will likely desire to weaken 
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damping mechanisms when coevolution is leading to effec-
tive adaptation or to strengthen them when coevolution 
leads to dysfunction.  

Three of McKelvey’s (2002b) damping mechanisms 
have particular relevance to organization science research: 
(a) loss of agent heterogeneity, (b) loss of weak-ties, and 
(c) failing human capital.  Fundamental to Ashby’s (1956) 
Law of Requisite Variety, agent heterogeneity needs to 
constantly be increased so as to provide an organization 
with flexibility and responsiveness (i.e., Law of Excess 
Diversity (Allen 2001)).  Loss of weak-ties occurs when 
strong cliques emerge to diminish the innovation and en-
trepreneurship that results from information sharing and 
interaction among heterogeneous agents.  Failing human 
capital occurs when agents decrease their absorptive capac-
ity (Cohen and Levinthal 1990) and thus diminish their 
ability to learn and adapt.     

This discussion of damping mechanisms concludes the 
argument supporting the coevolutionary assumption under-
lying this research.  Damping mechanisms both bring the 
subject of coevolution to the practical implications for 
managers as well as tie directly into the following discus-
sion of the two overarching constructs.  Human and social 
capital (i.e., the connectedness of the agents (Burt 1992, 
1997)) as well as agent heterogeneity relate strongly to or-
ganizational learning and interorganizational collaboration 
as the subsequent discussion demonstrates. 

4 SIMULATION AS METHOD IN 
ORGANIZATION SCIENCE 

To explore complex dynamics such as those of coevolu-
tion, simulation often represents the method of choice for 
organization scientists (e.g., Carley and Svoboda (1996), 
Epstein and Axtell (1996), Levinthal (1997), March (1991) 
and McKelvey (1999a, 1999c) among others).  The subse-
quent discussion of simulation as method begins with a 
general overview and then briefly describes some land-
mark, simulation-based studies that influential to organiza-
tion science research.  This discussion continues with the 
call for a specific class of simulation for organization sci-
ence research, namely simulation with agent-based models 
(McKelvey 1999a, 1999c, 2002c) followed by a brief de-
scription of some influential agent-based models in organi-
zation science.  This section concludes with a brief episte-
mological discussion of a model-centered, organization 
science with agent-based models at its core.  

4.1 Overview of Simulation in Organization Science 

While simulation research in organization science first oc-
curred as much as forty years ago (e.g., Cyert and March 
(1963)), only recently has it begun to generate a broader 
acceptance (Dooley 2002).  Not only special issues but en-
tire journals are now dedicated to simulation and its appli-
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cation to organization science (e.g., Carley (1995), Lissack 
(1999) and Gilbert (1998)).  This acceptance stems from 
two critical aspects of simulation research: (a) simulation 
allows researchers to explore the inherent complex dynam-
ics of organizations (Dooley and Van de Ven 1999, Dooley 
2002), hence (b) simulation research allows for the conduct 
of experiments that would typically be impossible or im-
practical in the physical world (Gilbert and Troitzsch 
1999).    

Stressing the value of simulations for theorizing 
(Weick 1995), Axelrod (1997, p. 23-24) believes that 
simulation offers a new vehicle for conducting scientific 
research that differs from induction (i.e., the “discovery of 
patterns in empirical data”) and deduction (i.e., “specifying 
a set of axioms and proving consequences that can be de-
rived from those assumptions”).  On the one hand, simula-
tion research resembles deduction in that simulations start 
with a set of assumptions.  On the other hand, the simula-
tion generates data to be inductively analyzed.  Axelrod 
(1997, p. 24) refers to simulation research as “thought ex-
periments” since the assumptions might seem simple but 
the results are often counter-intuitive (i.e., the nonlinear, 
macro-level effects of interacting agents known as emer-
gent properties).  

Axelrod (1997) provides further support for simulation 
as an alternative to the rational actor / choice assumptions.  
Because the rational actor / choice assumption allows for 
deduction, researchers are willing to overlook the bound-
edly rational limitations of their actors (Simon 1976).  The 
primary alternative to the rational actor / choice assump-
tion lies in some form of adaptive behavior.  Due to the 
complex effects of social interactions, Axelrod (1997) as-
serts that simulation offers the only vehicle to study sets of 
actors who possess an adaptive capacity. 

Recognizing these inherent strengths of simulation, 
James March proved to be one of the earliest pioneers of 
simulation in organization science and consequently has 
produced some of the most influential research in the field.  
As one of the first simulation-based studies in organization 
science, Cyert and March (1963) advance the organiza-
tional theories of Barnard (1938) and Simon (1955) to 
demonstrate that managers are rational in their pursuit of 
their personal goals while attempting to satisfy various 
stakeholders and avoid uncertainty.  Cohen, March and Ol-
sen’s (1972) Garbage Can Model demonstrated the path 
dependent nature of organizational issues and structure as 
well as their effect on organizational performance.  As de-
scribed earlier as being particularly relevant to organiza-
tion science research, March’s (1991) multi-level research 
linking individual learning and adaptation in the organiza-
tion code supports the assertion that microcoevolutionary 
order within an organization emerges in the context of 
macrocoevolutionary selection and competitive pressure 
(McKelvey 1997, p. 361).  As two of the first studies in or-
ganization science to use an agent-based model, Cohen, 
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March and Olsen’s (1972) and March’s (1991) studies 
proved to be watershed events for simulation-based re-
search.   

4.2 A Call for Agents in Organization Science   

With the growing acceptance of simulation in organization 
science due in no small part to March’s research, several 
leading scholars have called for the formal use of agent-
based models (e.g., Anderson (1999), Axelrod(1997), Doo-
ley (2002) and McKelvey (1999a, 1999b, 1999c)).  As the 
primary tool of complexity theorists, agent-based models 
assume that agents behave in a stochastic, nonlinear man-
ner and that agents possess a nonlinear capacity to adapt 
over time.   

This stochastic, nonlinear behavior of agents is consis-
tent with the stochastic, idiosyncratic microstates of or-
ganizations.  That is, despite institutional influences 
(Zucker 1988, Scott 1995), strong forces remain to idio-
syncratically steer both the behaviors of organizational 
members and the conduct of organizational processes 
(McKelvey 1997).  Among others, such forces might in-
clude unique organizational cultures, the unique set of or-
ganizational suppliers and customers (i.e., organizations 
are each embedded within a unique social network) and the 
unique interaction network of different individuals each 
with his/her own personal history in different contexts.  
Therefore, agent activity in an agent-based model can offer 
an excellent representation of the adaptive and idiosyn-
cratic behavior of an organization and that of its members. 

4.3 Noteworthy Agent-Based Models in Organization 
Science 

Some of the most commonly occurring agent-based models 
in organization science research include cellular automata 
(Toffoli and Margolus 1987), the NK model (Kauffman 
1993), simulated annealing (Aarts and Korst 1989), and 
genetic algorithms (Holland 1995).  Cellular automata con-
sist of identical cells, usually arranged in a grid pattern, 
that interact locally according to some homogeneous rules 
(see Epstein and Axtell’s (1996) extension of the cellular 
automata model to explore the emergence of social net-
works, markets, and cultural differentiation).  The NK 
model uses the concept of rugged landscapes where rug-
gedness is determined by the number of components in a 
system, N, and the interdependence between those compo-
nents, K (see Levinthal (1997, 1999), McKelvey (1999a, 
1999c), Rivkin (2000),  and Sorensen (1997) for applica-
tions of the NK model).  Analogous to the physical process 
of annealing a solid, simulated annealing provides a heuris-
tic solution to combinatorial, optimization problems (see 
Carley and Svoboda’s (1996) microcoevolution study link-
ing agent learning and organizational adaptation).  Analo-
gous to evolutionary theory and natural selection, genetic 
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algorithms consider the fitness of each agent in a popula-
tion and ‘breed’ the agents with the highest fitness (see 
Axelrod’s (1997) seminal research on cooperation in the 
Prisoner’s Dilemma).  

4.4 Current Research to Model Coevolutionary 
Dynamics in Organization Science 

At present, the author is developing an agent-based model 
to explore the coevolutionary dynamics between firms col-
laborating and competing within the same resource niche 
(Tivnan 2004).  This research extends the model of bound-
ary-spanning activity of a single organization (Hazy, Tiv-
nan, and Schwandt 2003) to a model that will permit the 
exploration of the collaborative efforts of organizations in 
a competitive, coevolutionary context; namely, the emer-
gence of strategic networks.  This new model is called the 
Coevolutionary model of Boundary-spanning Agents and 
Strategic Networks (C-BASN; pronounced “Sea Basin”).  
C-BASN incorporates the previously described type of co-
evolution deemed most relevant to organization science re-
search; namely, the coevolution of organizational mutation 
rate and its environment.   

4.5 A Model-Centered, Organization Science 

Inspired by the merits of agent-based models to capture the 
stochastic idiosyncrasy of organizations, McKelvey 
(1999b, 2002c) calls for a model-centered, organization 
science.  That is, he supports the use of stylized models to 
further organization science by adhering to the semantic 
conception for scientific inquiry. 

The semantic conception, first introduced by Beth 
(1961) and later advanced by Suppe (1989), is a normal 
science, post-positivist epistemology.  It contends that 
“scientific theories relate to models of idealized systems, 
not the complexity of real-world phenomena and not nec-
essarily to self-evidently true, root axioms (McKelvey 
1999b, p. 12).”  Fundamental to the semantic conception is 
a model-centered view of science which uses models as an 
intermediary between theory and phenomena to both repre-
sent theoretical relationships and predict fundamental, 
phenomenonological behavior.  This model-centered view 
provides “a useful bridge between scientific realism and 
the use of computational experiments as a basis of truth-
tests of complexity theory–rooted explanations in organiza-
tion science” (McKelvey 1999b, p. 13).  

Critical to this model-centered view, these tests of 
verisimilitude (i.e., “truth-tests”) bifurcate all scientific in-
quiry into two related activities, analytical and ontological 
adequacy (McKelvey 2002c).  Tests of analytical adequacy 
focus on the THEORY-MODEL link and encompass the 
coevolution of the THEORY and the MODEL until the 
MODEL produces the applicable effects predicted by and 
within the scope of the THEORY.  Tests of ontological 
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adequacy focus on the MODEL-PHENOMENA link and 
encompass the evolution of the MODEL and its substruc-
tures.  Model-Substructures are “the components of a 
model that represent a usually causal element of complex 
real-world phenomena” (McKelvey 2002a, p. 893).  Tests 
of ontological adequacy continue until each Model-
Substructure sufficiently depicts its corresponding behav-
ioral effect in the PHENOMENA. 

McKelvey (2002c) identifies Contractor et al. (2000) 
as an exemplar of this model-centered approach to organi-
zation science.  Using Giddens’ (1984) structuration theory 
to predict self-organizing networks, Contractor et al. de-
scribe 10 Model Substructures and compare the results 
from their computational experiment with those from their 
quasi-experimental field research.  Although not all Model 
Substructures are supported by their field research, 
McKelvey (2002c) recognizes the Contractor et al. re-
search for its avoidance of making the “direct predictive 
leap from structuration-based hypotheses to real-world 
phenomena” (p. 766, his italics). 

5 CONCLUSION 

Extending the research on CAS and organizational adap-
tive capacity, many scholars now point to emergent order 
and coevolutionary dynamics as fundamental tenets for ad-
vancing organization science (Lewin and Volberda 1999, 
McKelvey 1999c, 2002b).  Indicative of emergent order, 
the largely-uncoordinated microstate activities of boundary 
spanning give rise to macrostate properties of enhance-
ments to the adaptive capacity of the focal organization 
(Hazy, Tivnan and Schwandt 2003) and, in some instances, 
strategic networks between collaborating organizations 
(Tivnan 2004).  Indicative of coevolution, the emergence 
of strategic networks represents the adaptation activities of 
a focal organization and the subsequent adaptation activi-
ties undertaken by cooperating and competing organiza-
tions in the external environment of that focal organization.  
Agent-based models provide a promising research platform 
to explore these coevolutionary dynamics and therefore 
contribute to advancing this critical area of organization 
science research. 
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