
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

USABILITY STUDY OF THE VIRTUAL TEST BED AND DISTRIBUTED SIMULATION

Jeffrey W. Dawson

Department of Industrial Engineering

and Management Systems
University of Central Florida

4000 Central Florida Boulevard
Orlando, Florida 32816 U.S.A.

Ping Chen

Institute for Simulation
and Training

University of Central Florida
3100 Technology Pkwy

Orlando, Florida 32826 U.S.A.

Yanshen Zhu

Department of Electrical and Com-
puter Engineering

University of Central Florida
4000 Central Florida Boulevard

Orlando, Florida 32816 U.S.A.

ABSTRACT

Improving the usability of a Distributed Simulation System
(DSS) test bed is the focus of this paper. An introduction
to the field of usability is given, followed by a discussion
of the characteristics of DSSs. Then the usability of DSSs
is considered. The Virtual Test Bed (VTB), a sample DSS
we have improved the usability of, is described. The
methodology used to improve the VTB’s usability is given.
With the goal of improving usability for end users, proto-
typing of a graphical user interface is discussed; both soft-
ware and paper prototypes are considered. Lessons learned
provide insights into problems we encountered. Research
on important aspects of DSSs that affect usability is re-
flected in a table that summarizes key issues. Our antici-
pated future research in this area is also discussed.

1 INTRODUCTION

This paper discusses the usability of Distributed Simulation
Systems (DSSs). An introduction to the field of usability is
followed by a description of a DSS. Our work towards im-
proving the usability of a sample project—the Virtual Test
Bed (VTB)—is discussed, while elaborating on aspects of
the system that affect usability. The need for user surveys
and task analyses in usability analysis is considered. Fol-
lowing this is a discussion of our experience with graphical
user interface (GUI) prototyping for the VTB. Lessons
learned are reflected in a framework for the usability of
DSSs.

Issues that affect the usability of DSSs for people in-
volved in their design, development, installation, mainte-
nance, operation, and usage involve many challenging ar-
eas of research. Typically, usability focuses on the end
user of a system. Thus, a central focus of our VTB usabil-
ity improvement effort is to create a GUI for the end user.
There are also usability issues that affect everyone else
who works with the system. For instance, software usabil-
ity is important in the design of the DSS infrastructure.

1298
Most end users do not want to write code, though, so the
usability of the infrastructure itself is for a different type of
user—the programmers.

2 USABILITY

Usability is a measure of how easy a system is to use.
Standardized industry measurements are often used when
measuring usability: effectiveness—whether or not tasks
can be successfully performed by users, efficiency—how
fast those tasks are performed, and user satisfaction—how
much users like the system. These three measures are im-
portant, but there are many other considerations in a sys-
tem’s usability. Usability is a multidisciplinary field that
requires knowledge of cognitive psychology, human engi-
neering, anthropology, technical writing, human factors,
computer science, and other disciplines.
 Usability can either be instilled into a design as part of
the design process or evaluated after the design is finished.
When incorporating usability into the design of a software
product, expertise is needed in usability, user interface de-
sign, writing for users, and user interface development.
Focusing on system users early in the design process can
help ensure that a simulation project is successful. When
usability is evaluated for an existing system, recommenda-
tions may lead to improvements, but often these improve-
ments are slated for the next generation of the system.
 At the requirements phase of a project, one develops
user profiles, performs task analyses, and considers tech-
nology constraints and design principles, which are used to
develop usability goals (Mayhew 1994). This process is
followed by iterative design development. The develop-
ment of profiles of users and the analysis of tasks they will
perform are key to incorporating usability in design. While
creating prototypes, heuristics—lists of good usability de-
sign principles—are used as a guide. Experimental obser-
vation using typical users is essential in evaluating proto-
types. Each user is different, reflecting the infinite
variations in human skills, behaviors, attitudes, motiva-

Dawson, Chen, and Zhu

tions, and abilities. Giving users predefined tasks, then
watching them perform them, is the key to improving an
interface.
 When the usability of an existing design is measured,
experts can evaluate the design using a set of usability heu-
ristics, and users can be observed performing a set of tasks
in order to measure the system’s performance. A survey is
often used to measure user satisfaction. A specification
matrix can be used to quantitatively list usability goals and
measurements. The establishment of quantitative usability
goals that are measured as a design evolves can help ensure
that the goals are achieved.

3 DISTRIBUTED SIMULATION SYSTEMS

DSSs involve simulations that are distributed over more
than one computer, which are often geographically dis-
persed. While the rationale for using more than one com-
puter will at times be to take advantage of the power (and
potential cost reduction) distributed computing offers, the
ability to interoperate and reuse a variety of simulation sys-
tems—new and legacy—is also important. Different or-
ganizations and companies sometimes need to interface
their simulation systems in order to solve problems; DSSs
offer an attractive way to do this. Currently, the biggest
users of DSSs are military organizations, who use them for
a variety of purposes, such as war games and training.
 One of the methods for distributed simulation is the
High-Level Architecture Run Time Infrastructure (HLA-
RTI). The US Department of Defense (DoD) approved the
HLA as the standard for all DoD simulations in 1996. The
Object Management Group adopted the HLA as the facility
for distributed simulation in 1998. In 2000 the Institute of
Electrical and Electronic Engineers approved the HLA as
an open standard (Defense Modeling and Simulation Of-
fice 2004). The HLA is an architecture; the RTI is the
software that provides the needed infrastructure for the in-
terlinkage of simulations.

4 USABILITY IN DISTRIBUTED SIMULATION

In looking at DSSs for the military, Ceranowicz et al.
(2003) noted that “Even if we overcome the limitations of
scope and scalability, ease of use will remain a roadblock
to making M&S ubiquitous in the concept of development
process.” The authors mention that it would be preferred if
a user could call up scenarios and run the simulation from
the interface, but that currently the user must coordinate
with several other people at various distributed computers
in order to run the simulation. The goal is for a single user
to be capable of controlling all the computers used in a dis-
tributed simulation, without needing assistance at the re-
mote sites.

Connecting individual simulation models in a distrib-
uted simulation environment is a nontrivial task. Boer and
1299
Verbraeck (2003) noted that "the interoperability in dis-
tributed simulation involves at least the data transfer and
the time synchronization between the simulation models"
(p. 829). They further noted that the data transfer could be
an event or an entity transfer. Also provided in their paper
is a formal theoretical framework for interfacing commer-
cial off-the-shelf simulation models with an architecture,
such as the HLA-RTI or the FAMAS Simulation Backbone
Architecture. For their example they chose FAMAS over
the HLA-RTI, noting that because their system was simple,
the power and complexity of the HLA-RTI was not
needed. Also discussed is the need for a "wrapper" in or-
der to access internal data in programs such as Arena.
Arena is a commercial off-the-shelf product from Rock-
well Software. All types of DSS users must address the
issue of the interconnectivity of individual models, and to a
novice user of a DSS system, it is a key usability issue.

Fowler and Rose (2004) wrote that an “emerging
grand challenge” is “true plug-and-play interoperability of
simulations and supporting software within a specific ap-
plication domain” (p. 474). They mentioned HLA as a par-
tial solution, but noted a number of weaknesses it has,
which leaves its future as a long-term solution an open is-
sue.
 Distributed simulation systems are usually a large
team effort. Each member of the team can be considered a
user in some way. Indeed, from a managerial perspective,
the usability depends on the resources required to maintain
the team who uses the system and how well the team can
work with the system to accomplish stated goals. From a
researcher’s perspective, usability is how easy it is to ob-
tain the desired data and how good the data are. From a
maintainer’s perspective, usability is how easy the system
is to maintain. The usability of a DSS is not simply the us-
ability of its user interfaces.

A DSS has multiple users at several levels of system
interaction. Activities include researching, analyzing, and
studying; starting and coordinating models; inputting data
and updates; constructing models; performing training ex-
ercises; and selecting simulation modules to incorporate
into the distributed system. Users include researchers, sys-
tem operators, domain experts, programmers, trainees,
trainers, and experimental subjects. The overall usability
of a DSS reflects the needs of all these types of users. This
concept goes beyond an analysis of traditional GUI usabil-
ity, taking a holistic view of usability. However, if one
considers the usability measures of efficiency, effective-
ness and user satisfaction, interactions of the system with
each type of user affects the usability of the DSS.

5 VIRTUAL TEST BED USABILITY STUDY

We undertook a project to improve the usability of the Vir-
tual Test Bed (VTB), a DSS developed to simulate NASA
spaceport and related systems. This system is constructed

Dawson, Chen, and Zhu

using individual simulation models, some of which use ad-
vanced modeling techniques. The VTB is a prototypical
system used to test and develop concepts for distributed
simulation for NASA.

5.1 The Virtual Test Bed

The VTB consists of five HLA-RTI federates configured to
simulate a virtual spaceport: the Virtual Range, Launch
Pad, Control Room, Monte Carlo, and Weather Expert
System (WES). Four of the federates are programmed in
Arena and interface with the RTI through an adapter that
was developed by the National Institute of Standards and
Technology (NIST). The NIST-developed distributed
manufacturing adapter, written in C++, was developed to
allow commercial software packages to interface with the
HLA-RTI (McLean and Riddick 2000). WES is a simula-
tion-supporting live participant rather than a simulation in
itself; its adapter is written in Java.
 The five federates operate as follows. The Launch Pad
model simulates the flow of the space shuttle as it arrives
at Kennedy Space Center, is processed through the Orbital
Processing Facility and the Vehicle Assembly Building,
and its flow to the launch pad. Upon arrival at the pad, a
message is sent to the Control Room informing it that the
shuttle is ready for launch. If conditions are good for a
launch, authorization is given, after which the Launch Pad
shows the shuttle circling the earth and eventually landing,
if the flight is successful. The Control Room checks for
failures in four systems and queries the Weather Expert
System. If conditions are good, it sends the go ahead to the
Launch Pad. The Weather Expert System collects weather
information from several Web sites and uses it to deter-
mine if conditions are good for a launch. When a launch
occurs, the Monte Carlo model determines if a failure oc-
curs causing a disaster. If a failure occurs, the Virtual
Range model determines the location of the accident in
space and the amount of contaminants released into the
atmosphere. A CALPUFF air quality model uses the
Weather Expert System-provided weather information to
determine contaminant concentrations around the accident
site. Then ArcView is used to create a map showing where
contaminant concentrations exceed safe limits. Spatial-
Analyst shows the population exposed on the ArcView-
generated map, obtaining the population data from Land-
Scan. The Virtual Range displays the number of people
exposed on a map of the affected area.
 At present, modifications are being made to the VTB
that will enhance its current capabilities and provide new
functionality. The VTB is a good research vehicle for us-
ability, particularly because the system is prototypical, so
that the design is not frozen and can be modified as re-
quired.
130
5.2 Usability Improvement

Our team’s goal was to improve the usability of the VTB.
Without a control GUI, however, there is no end-user us-
ability, so we began an interaction design project to de-
velop a control GUI for the system. Several other impor-
tant tasks emerged as a result: the need to obtain more
detailed system configuration information, the need to im-
prove system documentation, the need to change the design
concept to allow evolution of the system (which required
reprogramming some aspects of the models), and the need
to stabilize a system that had shown some signs of instabil-
ity.
 The first tasks we accomplished were a literature sur-
vey of distributed simulation systems and usability. This
was followed by an assessment of the current system,
which consisted of initial documentation of the system and
development of Unified Modeling Language (UML) dia-
grams of some key software classes (particularly those that
show interactions). This was followed by an assessment of
possible current and future uses of the system and the tasks
that would be performed by end users, and interviewing
potential end users.

5.3 User Survey and Task Analysis

Several potential users of distributed simulation were sur-
veyed at Kennedy Space Center (KSC). Both expert and
novice users expressed their desire to continue using or
adopt the use of simulation in their work areas. These data
were used as a partial basis for task analysis and future
planning.
 It was determined that all of the participants were be-
yond the beginner level of computer expertise, which indi-
cates that some level of familiarity with standard computer
interfaces can be assumed for the typical user. In addition,
none was an expert in simulation, which indicates little or
no familiarity with simulation should be assumed in the
end-user interface. The survey provided not only demo-
graphic information but also many comments about what
the potential users would like to see in and possible uses
for a DSS. This type of information is useful in determin-
ing what features are important to users of DSSs.

5.4 Graphical User Interface Design Approach

The main objective of this project was to improve the us-
ability of the VTB. After looking at user requirements and
characteristics, the technology available, what other re-
searchers have done, and the existing system, we embarked
on an interaction design project to create a control GUI for
the VTB.
 A review of the literature shows that a number of re-
searchers have constructed control GUIs for the HLA-RTI.
For example, Adelanto and Deman (2002) created a con-
0

Dawson, Chen, and Zhu

trol GUI for an airport simulation (also see Adelanto
2004). This GUI allows “the user to capture the current
situation (weather conditions, sensors located on the airport
layout, expected aircraft schedule, etc.). Representation of
the current situation is saved into a set of files that will be
loaded by the corresponding federates participating in the
HLA airport federation” (p. 107). The approach taken by
Adelanto and Deman involves six federates running on
separate computers, five for simulation and one for the
RTI, plus a Java GUI. Each federate model is programmed
in C++, which allows more flexibility than using a proprie-
tary simulation package that does not allow access to pro-
gramming code. Once all parameters are selected, the
simulation is started by pressing a button in the GUI. A
notable design aspect of this approach is that the GUI itself
is not part of the RTI, but remains outside of it. Another
interesting aspect is that a separate animator federate exists
to show simulation activity.

In order to begin making a GUI for the VTB, the team
was divided up into subteams to approach the problem.
The subteams were: (1) user experience/software architec-
ture design, (2) software design, (3) help system design.
 In order to design a DSS GUI, first there is the concep-
tualization of the user experience, which depends on the
type of user logged into the system and the tasks to be per-
formed. (We determined that when a user first logs into
the system, it will detect the type of user and adjust the op-
tions accordingly.) Then there are issues of how the dis-
play is to be designed, taking into account good usability
practices. Although a large body of decades of human-
computer interaction research can be drawn upon to assist
in development, a DSS presents unique interface design
challenges, particularly with respect to the presentation of
a conceptual model of the DSS to the user. As noted by
Law and Kelton (2000), there are many pitfalls that can be-
fall a simulation study, one of which is to treat it as “pri-
marily an exercise in computer programming” (p. 92). The
primary goal is to provide a tool for end users to make de-
cisions and solve problems. The rationale for having us-
ability be a key component of development is to ensure
user goals are always in mind. The technology to accom-
plish those goals is secondary.
 Although creating an interface that serves several
types of users (end users, system administrators, program-
mers) is envisioned, the focus of the initial design was on
the end user performing basic tasks. The basic user ex-
perience design concept is that of a user sitting down to the
interface, logging in, selecting models, and running a simu-
lation.

Several preliminary tasks analyses were performed by
team members. After enough task scenarios were created,
the next step in the user experience design process was to
create low-fidelity prototypes for testing, using the task
scenarios as guidance. Advantages of low-fidelity proto-
typing include low cost, speed of development, and the
1301
ability to make changes quickly and inexpensively. Paper
prototyping was selected as an avenue of design explora-
tion for this project. Paper prototyping is a tool often used
by software vendors and Web site designers (Snyder
2003). Because the software development of an interface
for the VTB (or any DSS) is technically complex and time
consuming, paper prototypes allow the ability to explore
design concepts which not could not be explored with real
prototypes. While paper prototyping may sound simple,
one is actually designing the software architecture and the
user experience; many questions arise at each step of the
way. In addition, in a complete prototype there may be
hundreds of different screen components, which must be
organized effectively.

5.5 Graphical User Interface Software Design

Ultimately, a user interface is needed offering control and
monitoring capability for an HLA-RTI federation, visuali-
zation of data in real-time and also after the simulation
stops, the ability to change parameters in remote federate
simulations, and other functionalities. Recent software de-
velopments involving distributed computing capabilities
using technology such as the XML data format and Java
applications suggest that an evolution in distributed simu-
lation interfaces will occur, which could offer the end-user
and system operators large increases in usability and pro-
ductivity. Developing distributed simulation capabilities in
a manner that addresses user needs and allows the user to
easily achieve those needs without technical support while
using the system is important.
 The VTB was designed so that each model, running
locally, gives local prompts that the user must enter to al-
low the system to continue. These local prompts were re-
moved in order to allow complete control from a control
GUI. Some software development aspects of the control
GUI follow.
 The Arena models communicate with the HLA-RTI
though the NIST-developed manufacturing adapter, written
in C++. The adapter provides a limited set of classes that
can be accessed via the RTI. In order to start and stop
Arena remotely, however, WebLogic server was chosen.
WebLogic server runs alongside the RTI and can commu-
nicate with Arena through Arena’s built-in Visual Basic for
Applications (VBA) interface. Java code in WebLogic
server was written to start and stop Arena models via the
GUI.
 Federates written in Java do not require an adapter and
can be started in a similar fashion via WebLogic server.
Monitoring of the federation during simulation takes place
via the RTI, taking advantage of messages that are avail-
able in the adapter for proprietary simulations and also
through Java for other simulations and real-time partici-
pants. (Real-time participants include anything from a

Dawson, Chen, and Zhu

spreadsheet used in calculations, to special-purpose soft-
ware, to data pulled from Web sites.)
 The two above-mentioned approaches, a Web server
control layer and monitoring information via the RTI, were
combined into a single GUI. In addition to control and
monitoring, other functionality is needed, such as the abil-
ity to send parameters to simulation models and data visu-
alization capability.

Java was chosen as the programming language for the
GUI because it offers operating system platform independ-
ence. In addition to reusable and easily-modifiable object-
oriented code, Java offers flexibility in using and con-
structing software modules that may be used for multiple
projects. The control federate is able to send and receive
messages to any federate, both before the simulation starts
and while the simulation is running via the RTI.
 An important part of any computer system is the com-
ponent that provides help to the user. The help frame-
work was implemented using the Sun Microsystems Java-
Help framework, which uses Java Swing classes. This is a
flexible, modular approach that can be used to provide help
in a variety of formats, such as on-line search, context-
sensitive menus, and either client-side or Web browser-
enabled windows.
 The language used to communicate with users via help
systems is an important usability component. The language
needs to be written in a way that is easy to understand.
Professional writers often prepare the messages. Given a
software framework with which to provide help, develop-
ment of the content is the most time consuming part. As in
other aspects of usability, ideally this help content would
be tested with users to iteratively develop and improve it.
 Figure 1 below shows the GUI design approach. The
five federates connect to both the HLA-RTI and WebLogic
Server. The GUI communicates with the federation mod-
els through WebLogic Server and also contains a control
federate that communicates with the federation via the
RTI. A help module provides help and explanatory infor-
mation to the user.

Figure 1: Virtual Test Bed GUI Design Approach

Launch
Pad

Virtual
Range

Control
 Room

Weather
Expert

Monte
Carlo

HLA-RTI WebLogic Server

Control and Monitoring GUI Help Module
Control Federate
1302
5.6 Lessons Learned

Often the design and implementation of DSSs are difficult,
yet a system is eventually delivered that succeeds in fulfill-
ing the customer’s requirements. The day-to-day opera-
tions of large scale DSSs may be left to contractors or
company technicians, so that the end user only uses the
system when support personnel are working to keep the
system up and running. Although it would be interesting
to read about usability problems for all types of users in
DSSs, large and small, reporting usability problems is a
delicate matter. Even when usability problems are uncov-
ered in a study, organizations are loath to have them pub-
licly (and sometimes even privately) reported. When per-
forming a usability study, a rule is to always report good
news to the client first, then to soften the negatives. But
the usability problems encountered and recommendations
for eliminating them are the key to improvements. Rec-
ommendations to improve the usability of a system lower
the cost of system use and improve user satisfaction, but
are often not implemented until the next iteration or gen-
eration of the system.
 In setting out to evaluate and improve the VTB's us-
ability, the team learned some lessons. Space does not
permit a full discussion of the details of the lessons
learned, but three problems we encountered are discussed
below.
 Documentation of the technical aspects of system con-
structions was lacking. Many people worked on various
models, and they left little documentation either as com-
ments in code or in text. Most programmers do not make
much effort in documenting their code; it must be empha-
sized and tracked by management. Thus, a major unex-
pected task for the usability team was to create documenta-
tion for the system. The first step of this was to create
UML Diagrams. Class and sequence diagrams are particu-
larly helpful. Creating documentation required time-
intensive exploration of the systems code on its several
computers. Lesson: Documentation is crucial to follow-on
development and team efficiency.
 The VTB was designed as a research project and the
professional programmers and students who wrote the code
generally did not plan for others to take their places and
continue the project. This is a major stumbling block to
new programmers. Lesson: Plan for continuation and for
new programmers to join the project by emphasizing the
need for usability for programmers in the design.
 The HLA-RTI, interfaces between the RTI and legacy
systems, and other technical aspects of DSSs are especially
challenging, due to a lack of standardized interfaces. Les-
son: The simulation community needs to work towards
designing standardized programming interfaces for simula-
tion programs to interact in a distributed environment.

Dawson, Chen, and Zhu

 Our team tackled solving the first two problems. The
third problem needs to be addressed by the simulation
community on a global basis.

6 FRAMEWORK FOR USABILITY OF
DISTRIBUTED SIMULATION SYSTEMS

The focus of this project has been mainly on the typical
end user. Assessing the overall usability of a DSS, we can
expand our focus to include not just the end users but other
people who interact with the system. A large number of
issues are involved with the usability issues associated with
this expanded list of users. Software usability is a factor,
which includes the usability of individual programming
languages, the infrastructure on which the distributed simu-
lation runs, the programming and technical aspects of how
legacy simulation software—both proprietary and open
source—interact, and the effectiveness and ease of team
communication (for both local and distributed teams). In
addition to the technical software aspects, there are mana-
gerial issues about how to facilitate the process. The most
important managerial issue, from the standpoint of effi-
ciency and productivity, is documentation—of all aspects
of the DSS project. Documentation needs include secure
archives of all software code written (with backups in dif-
ferent locations), as well as documentation of all code
changes, all computer setup and installation information,
the network layer, the goals and objectives of the project,
and the clients’ needs and desires. This last point—the cli-
ents’ needs and desires—should be reviewed periodically
to make sure the project is on the right track.
 Many issues have been identified in this study. One
approach taken was that a team exercise was conducted
wherein each team member independently suggested a list
of items he or she thought necessary to include in a graphi-
cal user interface (GUI) for DSSs. In addition to the
teamwork exercise, studying other DSSs, surveying the lit-
erature, and talking to designers of systems has yielded
numerous ways to improve DSS usability. Table 1 below
lists twenty-nine issues that have been identified as being
important to the usability of DSSs. A number of these is-
sues concern the need for a control federate. Some of the
entries are specific to DSSs, but some, such as the need for
data visualization, are also true for simulation systems in
general. The distributed nature of the system increases the
possibilities, however. For example, data visualization on
a locally-contained simulation would be restricted to what
that computer was accessing. In a distributed environment,
with globally-distributed simulation engines and live par-
ticipants, data visualization is potentially more powerful.
This framework is also a checklist for DSS designers.

13
Table 1: Usability Issues in Distributed Simulation Sys-
tems

Category # Issue
User needs 1 Are the goals and tasks of the end

users fully explored, and is the sys-
tem designed to meet those needs?

User interface
design

2 A central control and monitoring
federate is needed.

 3 There is a need to allow users to
play with the system; the system
needs to be fun to use.

 4 The system needs to be designed so
that the interface and its accompany-
ing documentation and help files
help the users develop a viable men-
tal model of the system.

 5 Timing over the communication net-
work. End users do not want to wait
for responses. This will vary, how-
ever, for simulations that are known
to take an extended period of time to
execute.

 6 The ability to change parameters of
individual federates from a control
federate is needed.

 7 The ability to start, stop, and pause
federates from a control federate is
needed.

 8 The user should be able to deter-
mine who is logged into the system
and to communicate with them.

 9 Multiuser capability
Data visuali-
zation and
analysis

10 The control federate needs to have a
display that shows the relevant fac-
tors in other simulations running si-
multaneously that are affecting the
model that is currently running.

 11 Ability to view several scenario’s
data simultaneously

 12 Ability to save and analyze statistics
 13 Ability to save scenarios, recall

them, and temporally examine
events

 14 Data visualization capability (real-
time during simulation and after the
simulation stops)

Programming,
configuration
and installa-
tion

15 Ease of configuration/installation

 16 Exception handling is a major prob-
lem. In DSSs, when a federate gets
stuck, there is often no way for the
users to know.
03

Dawson, Chen, and Zhu

Table 1 (Continued): Usability Issues in Distributed Simu-
lation Systems

Category # Issue
 17 Ease of interconnectivity of individ-

ual models
 18 Good documentation of program-

ming code and system configuration
is especially important.

 19 Usability, from a programming and
project management viewpoint, of
the software construction, methods,
platforms and programming lan-
guage(s) used to create the simula-
tion system/models.

 20 Ease of interconnectivity of the net-
work infrastructure(s) required to
run the simulation

 21 Ease of integrating legacy systems
 22 Plan ahead for local models to be

used in a distributed simulation
(e.g., plan for needed program
modifications to do such things as
allow local GUI interaction prompts
and data entry to be remotely exe-
cuted).

 23 Troubleshooting support for when
things go wrong

Training 24 Ease of training for those who use
and support the system

 25 Skill levels of personnel needed to
operate and maintain the system.
Changing the skill level of a person
involved in a task requires a re-
evaluation of the usability for that
task.

Infrastructure 26 Reliability/self healing
 27 Availability (percentage uptime)
 28 Longevity and continuity: As tech-

nology in software and hardware
evolve, can we transition and main-
tain the capability?

 29 Ease of upgrading the hardware

 A wide variety of usability issues is present in the
above list. For example, issue 15 concerns ease of configu-
ration and installation for installers. This relates to how
easy it is to install a system and get it operational and
would depend on the overall design of the system, the skill
level needed to perform the task, and the available docu-
mentation. Issue 14, data visualization capability, is a mat-
ter of data presentation and manipulation, human cognition
and perception, and how best to design the capability to as-
sist in problem solving. These examples hint at the broad
130
areas covered in this holistic usability framework for
DSSs.

7 CONCLUSION

The success of distributed simulation systems depends on
their usability. The above framework for the usability of
DSSs can be used to evaluate existing DSSs or as an aid in
developing new ones. Future work with the VTB will in-
volve developing data visualization and more extensive
control capabilities in its control GUI. User input will also
be used to refine the VTB and work towards its implemen-
tation in a workplace environment.

ACKNOWLEDGMENTS

This research was conducted by the University of Central
Florida under NASA contract NAS 1003006. Team mem-
bers Alvaro Cantillo, Ping Chen, Serge Sala-Diakanda,
Fred Gruber, Ethling Hernandez, Mario Marin, and Yan-
shen Zhu contributed to this research.

REFERENCES

Adelantado, Martin. 2004. Rapid prototying of airport ad-
vanced operational systems and procedures through
distributed simulation. Simulation 80 (1):5-20.

Adelantado, Martin, and Thibault Deman. 2002. A-CMSI:
an airport-common modeling and simulation infra-
structure using High-Level Architecture. Simulation
73 (2).

Boer, Csaba Attila, and Alexander Verbraeck. 2003. Dis-
tributed simulation with COTS simulation packages.
In Proceedings of the 2003 Winter Simulation Confer-
ence, eds. S. Chick, P. J. Sanchez, D. Ferrin, D. J.
Morrice, 829-837.

Defense Modeling and Simulation Office. High Level Ar-
chitecture 2004. Available via
<https://www.dmso.mil/public/transit
ion/hla/>

Ceranowicz, A., R. Dehncke, and T. Cerri. 2003. Moving
toward a distributed continuous experimentation envi-
ronment. In Proceedings of the 2003 Interser-
vice/Industry Training, Simulation, and Education
Conference, 1-11.

Law, Averill M., and W. David Kelton. 2000. Simulation
modeling and analysis. Boston: McGraw Hill.

Fowler, John W., and Oliver Rose. 2004. Grand challenges
in modeling and simulation of complex manufacturing
systems. Simulation 80 (9):469-476.

Mayhew, Deborah J. 1999. The usability engineering life-
cycle, a practitioner's guide for user interface design.
first ed. San Diego, CA: Academic Press.

McLean, C. and Riddick, F. 2000. The IMS mission ar-
chitecture for distributed manufacturing simulation. In
4

https://www.dmso.mil/public/transition/hla/
https://www.dmso.mil/public/transition/hla/

Dawson, Chen, and Zhu

Proceedings of the Winter Simulation Conference, eds.
J. A. Joines, R. R. Barton, K. Kang, and P. A. Fish-
wick, 1539-1548.

Snyder, Carolyn. 2003. Paper prototyping. San Francisco,
California: Morgan Kaufmann Publishers.

AUTHOR BIOGRAPHIES

JEFFREY W. DAWSON is currently a doctoral candidate
in the University of Central Florida department of Indus-
trial Engineering and Management Systems. He has a
bachelor of science degree in industrial engineering from
the University of Tennessee, and master of business ad-
ministration and master of science in industrial engineering
degrees from the University of Central Florida. He has
worked in the nuclear and aerospace industries performing
reliability, system safety, design, and cost analyses. His
recent research areas include augmented reality, usability,
ergonomics, and simulation. His email address is
<jeffrey@geomix.com>.

PING CHEN is currently a Ph.D. student in the University
of Central Florida, Institute for Simulation and Training.
He has a bachelor of science degree in applied mechanics
from the Changsha Institute of Technology, China, and a
master of science degree in manufacturing technology
from the Minnesota State University, Mankato. He has
worked in the areas of computer software development,
software performance testing and modeling, manufacturing
automation, computer aided testing, and system engineer-
ing. His email address is
<chenping@bellsouth.net>.

YANSHEN ZHU is currently a PhD student in the Uni-
versity of Central Florida department of Electrical & Com-
puter Engineering. He has a bachelor of science degree in
biochemistry from the Wuhan University, China and mas-
ter of science in computer engineering from the University
of Central Florida. His recent research areas include us-
ability, simulation, and optimization. His email address is
<yanshen_zhu@hotmail.com>.

1305

mailto:%3cjeffrey@geomix.com%3e
mailto:%3cchenping@bellsouth.net%3e
mailto:yanshen_zhu@hotmail.com

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

