Proceedings of the 2005 Winter Simulation Conference

M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

EMULATION WITH DSOL

Peter H.M. Jacobs
Alexander Verbraeck

Department Technology, Policy and Management
Delft University of Technology
Delft, THE NETHERLANDS

ABSTRACT

Manufacturing control systems are extremely hard to de-
sign and test. Testing Programmable Logic Controller (PLC)
software in an on-line manufacturing setting can be costly,
dangerous, and inefficient. The availability of a seamless
transition between the real manufacturing process and a
simulated manufacturing process on the one hand, and a
real PLC and a soft PLC on the other hand might help to
solve these problems. Using the Java-based object oriented
simulation library DSOL (Distributed Simulation Object
Library), a case study was conducted for a concrete floor
manufacturer to see whether these problems could be over-
come. The full simulation and hardware-in-the-loop tests
with DSOL, with the Modbus middleware protocol, and
with real and soft PLCs went fine, and showed the added
value of the distributed, service-oriented paradigm on which
DSOL is based.

1 INTRODUCTION

A case study conducted for TBA Nederland is presented in
this paper. TBA is a simulation consulting firm active in the
domain of logistic business process (re)engineering using
simulation and emulation (TBA Nederland 2000). TBA’s
areas of expertise includes (re)design of manufacturing pro-
cesses, airport capacity systems, i.e. luggage and cargo
systems and container terminals.

The case presented in this paper concerns an emu-
lation study conducted for Dycore b.v., a concrete floor
manufacturer. The value of this case mainly results from
the conditions under which it was conducted: the case
study was done as a competition between a team of de-
velopers from TBA and a team from Delft University of
Technology. TBA’s team, which consisted of two senior
engineers, used their de-facto simulation environment, eM-
Plant, while the TU Delft team, which consisted of the
TU Delft authors of this paper, used DSOL. DSOL is an
open source, Java based, multi-formalism simulation suite
(Jacobs, Lang, and Verbraeck 2002). The idea behind this,

1453

William Rengelink

TBA Nederland
Delft, THE NETHERLANDS

real life, real time competition, was for TBA to be able
to assess to what extent DSOL is a serious alternative to
eM-Plant and whether they might wish to use it in the future
for emulation projects.

We introduce the case in section 1.1, then we discuss
the importance of emulation in the design of control systems
in section 1.2, and illustrate the advantages of using DSOL
for emulation projects. We conclude the introduction of
this paper with a requirement analysis.

A conceptual model of the case is presented in section 2.
The emulation bottleneck, i.e. the communication between
the realtime system and the simulation model, forms the
topic of section 2.1. The specification of the model in
DSOL and a comparison with the specification in em-Plant
is presented in section 3. After presenting the experiments
in section 3.4, we conclude this paper with conclusions on
DSOL’s applicability in the domain of emulation. Note,
this paper has been read and its content has been endorsed
by TBA Nederland and Dycore.

1.1 60m? of Concrete Floors on an
Automated Guided Vehicle

Dycore is a concrete floor manufacturer. As such Dycore
produces annually more than 3,000,000m3 of concrete floors
for the Dutch and global markets. Dycore employs more than
500 employees in their combined facilities. All their produc-
tion plants are KOMO certified and comply to the NEN ISO
9001 standards (KOMO is a hall-mark of the SBK founda-
tion (<http://www.komo.nl>) and NEN is the Dutch
institute for normalization (<http://www.nen. n1>)).

The case presented in this paper deals with the pro-
duction of sheet piling floors at the manufacturing plant in
Breda, the Netherlands (see Figure 1).

The production of sheet piling floors is fully automated.
All machines, sensors, conveyors, cranes and vehicles are
controlled by a programmable logic controller, or PLC.
The case deals with a subsystem of this production plant,
called the bewapeningsomloop which is best translated as
the reinforcement gallery. Dycore commissioned TBA to

<http://www.komo.nl>
<http://www.nen.nl>

Jacobs, Verbraeck, and Rengelink

test a newly designed and developed programmable logic
controller. The aim of this commissioning was to debug the
engineered system in the lab - not on the factory floor, for
a number of reasons. The first and most important one is
that this plant works with a 2 shift production that should
not be disturbed. A second reason, which results from the
first reason, is that testing can only be done in a limited
way during night and weekend hours, which are very costly.
Finally the operators should be trained in an environment
that does not disturb the operations.

1.2 The Importance of Emulation in the Design of
Realtime Control

Testing the behavior of a PLC, which controls one
or more devices that are part of a logistic system, is
usually done by connecting the PLC to stand-alone
versions of each individual device, called mock-ups
(Schludermann, Kirchmair, and Vorderwinkler 2000,
Schiess 2001). This approach to device testing is
expensive and the test conditions are hard to repro-
duce. Above all these test are incomplete since the
interaction of a device with other devices is ignored
and the system as such cannot be tested as a whole
(Schludermann, Kirchmair, and Vorderwinkler 2000,
Schiess 2001).

Emulation is a hardware-in-the-loop approach that is
designed to solve this incompleteness. Emulation im-
plies that all inputs and outputs of a controller are con-
nected to simulated devices. This enables better repro-
duction of test conditions and allows the tester to repro-
duce the interaction of various parts of the complete sys-
tem (Schludermann, Kirchmair, and Vorderwinkler 2000).
(Whorter, Baker, and Malan 1997) state that using the same
model for system development, system testing using emu-
lation and staff training, can reduce costs and plant set-up
times.

1.3 Emulation with DSOL

We expected DSOL to perform better than traditional simu-
lation environments for a number of reasons that are given

1454

below. One, DSOL clearly distinguishes a model from a sim-
ulator. This distinction supports the usage of one model for
system development, system testing and training purposes,
as the same model can be deployed for different purposes
and with different simulators, e.g. a wall clock simulator
for real operations and training, a stepwise simulator for
testing, and a paced simulator for demonstrations. Two,
the service oriented, open architecture underlying DSOL
should make the deployment of an emulation model in a
distributed, networked environment more straightforward.
Three, the multi threaded, scalable characteristics of the Java
programming language should make DSOL more effective
in the performance-defiant domain of emulation. Four, the
support for CAD drawings in combination with the inclusion
of Java’s 3D modeling should give DSOL advantage with
respect to the straightforwardness of infrastructure model-
ing.

The value of this case for the validation of DSOL was is
found in the opportunity provided support these claims in a
real time, real life case. A specification of the requirements
for the emulation model is given below.

1.4 Requirement Analysis

To help us understand the requirements for an emulation
model of the reinforcement gallery, we will first briefly
introduce the internal structure of a PLC. The major com-
ponents of a PLC are its CPU, its memory, its power supply,
its inputs and its outputs: where inputs provide a PLC with
the ability to read signals from different input devices, e.g.
sensors and buttons, and outputs provide a way for a PLC
to control output devices, e.g. motors and cranes. Data ex-
change between a PLC and these physical devices is based
on special industrial protocols. This leads to a first require-
ment for our emulation model. The most important two
requirements from Dycore and TBA were the following:

Requirement 1. The emulation model must ensure that
no modification has to be made in the PLC or the PLC
program for testing.

Requirement 2. The emulation model should support
the industrial data exchange protocol used by Dycore’s PLC.
Memory in a PLC can be distinguished into system memory

Jacobs, Verbraeck, and Rengelink

and user memory. System memory is used by a PLC for its
internal process control system. The user memory contains
a user program translated from a ladder diagram to a binary
form. User memory is divided into blocks having special
functions. Some parts of a memory are used for storing input
and output status. The real status of an input is stored either
as "I" or as "0" in a specific memory bit. The combination
of 16 bits is called a word, and each input or output has one
or more corresponding bits in memory. An example of two
lamps is presented in Figure 2 to illustrate how memory is
used to control specific devices. Other parts of memory are
used to store variable contents for variables used in user
program. For example, timer value, or counter value would
be stored in this part of the memory (Matic 2001).

A PLC reads its inputs and sends its outputs on a
regular basis. This time interval is called the period of
the PLC. Since this period defines the accuracy of the
control system and as such of the controlled devices, a
third requirement is that

Requirement 3. The emulation model should meet

the realtime period of the PLC.
To ensure that an emulation model meats
this real time constraint, emulation requires
an underlying real time operating system
(Schludermann, Kirchmair, and Vorderwinkler 2000).

Requirement 4. In situations where an emulation

model is nevertheless deployed on standard, i.e. non
real time, operating systems, e.g. Linux or Microsoft
Windows, the emulation environment should report potential
unacceptable backlog.
Where both requirements focus on the usefulness of
the emulation model, TBA presented a further set of
requirements with respect to the usability of the testing
environment.

Requirement 5. The emulation model should animate
all devices in realtime on top of the CAD layout which
was well known to the controllers of the physical system.

Requirement 6. All simulated devices should be
controllable at runtime through a graphical user interface
provided by the emulation model. This implies clicking on
a simulated device and stopping or resuming its operation,
creating failures, pressing buttons, etc.

2 CONCEPTUALIZATION

According to (Banks 1998) conceptualization implies the
abstraction of a real system using a conceptual model,
i.e. a series of mathematical and logical relations between
objects. This conceptual model underlies both the DSOL
specification presented in section 3 and TBA’s eM-Plant
specification. In this section a clear distinction is made
between the control system and the controlled system. The
control system, i.e. the PLC controls the controlled system,
i.e the simulated devices in the emulation model. We

start in section 2.1 with a conceptual model of the control
system, i.e. the PLC. We continue in section 2.2 with
the conceptual model of the controlled system, i.e. the
DSOL emulation model. In section 2.3 we discuss the
communication between the emulation environment and the
real time PLC, and we conclude this section with conceptual
models of the overall architecture.

2.1 The Conceptual Model of the Control System

To understand how the control system functions, it is nec-
essary to reiterate what we stated in the introduction of
this paper, i.e. that the inner works of a programmable
logic control are based on changing bit values of internal
memory addresses. This is illustrated in Figure 3. The
memory of a PLC is divided in a number of registers, i.e.
data elements containing 16 bits. A clear, but subjective,
distinction is made between that part of the memory in
which write operations take place, and that part which is
read-only for external devices to support the consistency of
the PLC. The registers that are read by external devices are
called Registers, while those registers used for writing are
called InputRegisters.

Some inputs and outputs use more than one bit to read or
write a specific value. For example, consider an automated
guided vehicle the speed of which is presented as a double
value, i.e. a double value in Java. In this specific case,
32-bits are needed to store this speed value, and as such
two InputRegisters are dedicated to the speed of a specific
vehicle.

2.2 The Conceptual Model of the Controlled System

The conceptual model of the DSOL emulation model, i.e.
the controlled system is presented, in this section. We
introduce three types of devices (see Figure 4) to illustrate
the emulation model.

e Input devices which only send data to the pro-
grammable logic controller. Examples of this type
include a sensor, an emergency button and a GPS-
device.

* Qutput devices which only receive data from the
programmable logic control. Examples of this type
include a lamp and a siren.

* Combined devices which both send and receive data
to the programmable logic controller. Examples
include a motor, the operation of which is controlled
(or received), and which might send emergency
events.

A number of remarks must be made with respect to the
conceptual diagram presented in Figure 4. One, the termi-
nology is rather confusing. Although the name Interface

Jacobs, Verbraeck, and Rengelink

A A A
” opy @

Register ‘\ -

(T T TIT]

bit address 5 7

Figure 2: An Example of Controlling Two Lamps

n-16
n
n+16

e register (read only)

n+32

Aol o e[e[o i [i[:[[o]o]o]e]

SUIRIU0D

n+48
n+64
n+80

PLC Memory Registers

16-bit word (= 1 register)

n+96 9 s input register (read and write)

Figure 3: The Memory of a Programmable Logic Controller

might suggest that a Java interface is meant, it represents an
abstract class specifying the interface between a simulated
device and a PLC. Two, a 0. .N associative relation is
presented between an interface and a specific device. This
illustrates the fact that several simulated devices may share
the same interface. Three, we see that combined devices
are associated with both input and output interface. Four,
the interface in Figure 4 is associated with the PLC. Having
introduced conceptual models of the control system and
the controlled system, a more detailed conceptual model
of the communication between the control system and the
controlled system is presented in the following section.

2.3 The Model-PLC Interface

The emulation model must conform to the PLCs industrial
Modbus communication protocol to ensure that no modifi-
cation has to be made on the PLC. Modbus is an application
layer messaging protocol, positioned at level 7 of the OSI
model, that provides client/server communication between
devices connected on different types of buses or networks
(Modicon 1996). Modbus can furthermore be accessed over
a reserved system port 502 on the TCP/IP stack.

Modbus offers services specified by function codes,
which are elements of request/reply protocol data units
(Modicon 1996). A Master-Slave concept is applied in the
field of programmable logic controllers to govern the lower
level communication behavior on a network using a shared
signal cable (Modicon 1996).

A number of basic public functions have been developed
in the Modbus protocol for exchanging data that is typical
for the field of automation. These functions are presented
in Table 1.

1456

Any TCP/IP based implementation of the protocol
should extend the protocol data units with an IP specific
header. As we will show in the next section, a detailed,
reliable and above all high performance implementation of
this protocol is crucial for using emulation for PLC testing
purposes successfully.

The conceptual architecture for the emulation model
is presented in Figure 5. On the left, the programmable
logic controller (PLC) is attached to the TCP/IP network.
On the server side of the network a Java implementation of
the Modbus protocol ensures adequate communication with
the PLC. To minimize the amount of communication over
the network, this communication library is connected to a
shadow memory of the PLC which is part of the emulation
model. The shadow memory limits communication in the
following ways.

e Although all registers are read periodically from
the PLC, the shadow memory will only fire value
change events whenever input values, i.e. values
to be written into the memory of the PLC, are
actually changed.

e The shadow memory only sends changed input
registers values to the PLC.

Emulated components either write to this shadow mem-
ory, and thus to the PLC, or are asynchronously subscribed
to changes on the memory addresses which control their
behavior. A sensor is an example of such writing, i.e. of an
input, component, while a crane is an example of a read-
ing, i.e. of an output, component. The behavior of, and
interaction between, components in the emulation model is
time dependent and this requires a simulator.

Jacobs, Verbraeck, and Rengelink

Flow meter Lamp

0..N 0..N

1.1 1.1 1.1 1.1

InputlInterface OutputInterface
- register extends extends [jnputRegister
- bitRange - bitRange
+ write(value) + read (): value
\ 4
<<Interface>>
- plc

Figure 4: A Conceptual Model of Devices

Table 1: Basic Modbus Functions

Name Type Access Visual representation
discrete input single bit read-only —— ——
: 1J>§/
. /TN ®
discrete output, i.e. coil | single bit | read-write
1] 5] [[51]
input register 16-bit word | read-only
EEEEODCOCCOOO
1] 5] [[E1]
output register 16-bit word | read-write

TCP/IP

network

PLC (client)

Modbus .
Implementation | ¢
B

PLC shadow
memory

Java based emulation model

Figure 5: The Emulation Architecture

3 SPECIFICATION

The next activity in the design of the emulation model was
to specify the model in DSOL. We begin in section 3.1 with
the specification of the Modbus-DSOL communication. We
continue with the specification of the simulated devices in
DSOL in section 3.2.

1457

3.1 Modbus Communication with DSOL

As argued in the introduction of this paper, great emphasis is
placed on the usefulness of the simulation suite based on the
ease with which developers can integrate or communicate
with external libraries and services.

Although Modbus communication is required for this
case to be successful, a Java implementation is clearly not
considered among the tasks for a general purpose simulation

Jacobs, Verbraeck, and Rengelink

suite. A Google search on "java Modbus" presented an
open source implementation of this protocol named Jamod.
While the development of a dedicated eM-Plant-Modbus
library took several (= 3) weeks, the availability of this
verified, validated and documented library allowed us to
achieve DSOL-Modbus communication within hours. This
we consider to be a scientific validation of the value of
service oriented computing applied to a simulation suite.

The seamless integration between DSOL and Jamod is
presented in Figure 6. The class diagram illustrates how
the shadow memory, the input registry and DSOL’s event
library provide the communication between the PLC and
the emulated devices.

The ModbusMemoryImage class specifies our imple-
mentation of the shadow memory. It implements Jamod’s
ProcessImageImplementation interface which em-
bodies a set of operations for resolving and installing
the basic functions presented in Table 1. The inter-
face is implemented by our ModbusInputRegister
class, which extends DSOL’s EventProducer class.
The ModbusMemoryImage further implements DSOL’s
EventListener interface and is asynchronously notified
whenever the bit value of an input register is changed. The
ModbusOutputRegister follows the same structure,
but is, because of readability, not presented in this Figure.

3.2 The Specification of Emulation Components

A class diagram of one of the simulated devices is presented
in Figure 7. For reasons of readability only this simple
component, i.e. the sensor, is presented. All other input
and output devices are specified in a similar manner.

The Sensor class extends the Device class. The
fact that a sensor has no embedded knowledge of any
communication protocol is illustrated in Figure 7. Since
only semantic operations, e.g. the isState () operation,
are implemented, this simulated device class could well be
included in a more general purpose simulation library.

Specific bitwise Modbus memory updates are accom-
plished by the SensorInterface class. This class is
asynchronously subscribed to state changes of the sensor to
ensure a loosely coupled, efficient communication protocol.
The principle of inheritance is applied with the creation of
the AbstractInterface class. This abstract class uses
the ModbusInput shown in Figure 6.

We expected a more elegant simulation model due to
our ability to use Java’s 3D library. Instead of defining hard
coded relations which would inevitably result in emulated
objects moving over predefined tracks, the DSOL model uses
3-dimensional bounds to see whether objects intersect. To
illustrate this functionality, we present the detect method
of a Sensor in Figure 8:

The current view, i.e. the volume representing the
range of sight, of the potentially moving sensor is com-

1458

puted in line 235. This view is an instance of Bounds,
which defines a convex, closed volume that is used for
various intersection and culling operations. In line 240
the intersects method is invoked on this view. The
targets, e.g. pallets or cars, are provided as an argument;
these targets are resolved from a context.

3.3 The Specification of the DSOL-PLC Communication

(Schludermann, Kirchmair, and Vorderwinkler 2000) dis-
cuss time constraints in an emulation model. These con-
straints impose great challenges on the simulation environ-
ment and on the underlying operation system. To under-
stand these challenges we illustrate the activity sequence of
DSOL’s simulator, i.e. the realtime clock.

Every time period the simulator sends the input part of
the shadow memory to the PLC over the Modbus protocol.
Then the simulator reads the output memory from the PLC
and notifies subscribed listeners, i.e. Modbus outputs, in
case the values have changed. These Modbus outputs block
the simulator thread while they invoke mapped semantic op-
erations on the device they control, e.g. crane.stop().
After completing this notification, the simulator fires an
update animation event, and the CAD based graphical user
interface will be redrawn.

The reinforcement welding equipment at Dycore re-
quires a maximum time period of 30 - 10~ seconds. For
the emulation to succeed, DSOL’s emulation framework
must guarantee the above sequence is completed within this
period. The DSOL emulation model therefore was designed
with two high-priority threads, i.e. the simulator thread and
the communication thread, and one low priority animation
thread. The loosely coupled relation between component
behavior and animation furthermore ensured that while the
refresh rate of the model was related to the period of the
PLC (= 35 Hz), the refresh rate of the animation could be
slower (= 5 Hz). The value of this distinction is that the
increased priority of the communication thread allowed the
required period of the emulation model to be reached (see
Figure 9). Although the values presented in Figure 9 show
that DSOL was in general well able to communicate every
30103 seconds with the PLC, there were occasions when
a positive backlog occurred.

Because of Java’s ability to spread tasks over multiple
threads and to differentiate their priorities, DSOL outper-
formed eM-Plant by a wide margin in this task. Although we
have not been given detailed information on the performance
of TBA’s eM-Plant model, the claim of DSOL substantially
outperforming eM-Plant has been made by TBA’s engineers.
This achievement supports the value of interface based de-
sign. The openness of the simulation suite invited us to
design a specific, performance aware RealTimeClock
class which implements the SimulatorInterface.

Jacobs, Verbraeck, and Rengelink

® ModbusInputRegister

& REGISTER_CHANGE_EVENT: EventType
<« reference: int
o value: BitSet

& ModbusInputRegister(reference)

@ getBitValue(bitIndex): boolean
getReference(): int
getValue(bitIndex, length): BitSet
getValue(): int

isValid(): boolean
setBitValue(bitIndex, value): boolean
setValue(arg0)

setValue(value)

Lo I I I S]

[
|

V

—(>| @ nl.tudelft.simulation.event.EventProducer I

«interface»
& nl.tudelft.simulation.event.EventListenerInterface

& notify(event)

«interface»
& net.wimpi.modbus.procimg.InputRegister

i

@ getValue(): int
o’“ isValid(): boolean

|
A |

«interface»

& net.wimpi.modbus.procimg.ProcessImageImplementation

I
|
|
|
|

addDigitalIn(digitalln)
addDigitalOut(digitalout)
addInputRegister(inputRegister)
addRegister(register)
removeDigitalIn(digitalIn)
removeDigitalOut(digitalOut)
removelnputRegister(inputRegister)
removeRegister(register)
setDigitalIn(address, digitalIn)
setDigitalOut(address, digitalOut)
setInputRegister(address, inputRegister)
setRegister(address, register)

o) o) 0) 0) o) o) 0) 0) o) o) 0) 0)

® ModbusMemoryImage

% changedInputCoils: SortedMap

< changedInputRegisters: SortedMap
4 inputCoils: SortedMap

% inputRegisters: SortedMap

% offset: int

4 outputDiscretes: SortedMap

< outputRegisters: SortedMap

& ModbusMemoryImage()
& ModbusMemoryImage(properties)

Figure 6: DSOL-Jamod Interdependence

@ AbstractSensor

of STATE_CHANGED_EVENT: EventType

& AbstractSensor(name, targets, inverted)
@ isAlwaysOff(): boolean

@ isState(): boolean

@ notify(event)

@ setAlwaysOff(alwaysOff)

@ Sensor

o bounds: Bounds
o location: DirectedPoint

& Sensor(name, targets, inverted)
& Sensor(name, targets)

@ nl.tba.dycore.emulation.interfaces.SensorInterface

% STATE_SIGNAL: String
o bitSet: BitSet
o sensor: AbstractSensor

& SensorInterface(sensor)

<» getValue(signalName): BitSet
@ notify(event)

< setValue(signalName, value)

& Device

< name: String
< simulator: DEVDESSSimulatorInterface

& Device(name)
@ getName(): String

@ nl.tba.modbus.ModbusInput |

«use»

& nl.tba.dycore.emulation.interfaces.AbstractInterface

% excelParser: ExcelParser
< modbusInputs: Map

& AbstractInterface()

< addModbusInput(deviceName, signalName)
<» addModbusOutput(deviceName, signalName)
s getValue(signalName): BitSet

@ notify(event)

& setValue(signalName, value)

Figure 7: The Sensor Emulation Component

1459

Jacobs, Verbraeck, and Rengelink

225 /**

226 * detects a locatable object

227 *

228 * @return whether the sensor has detected a Locatable

229 */

230 private boolean detect ()

231 {

232 try

233 {

234 //We compute the space we can currently oversee.

235 Bounds view = BoundsUtil.transform(this.getBounds (), this
236 .getLocation()) ;

237 for (Iterator i = his.targets().iterator(); 1i.hasNext();)
238 {

239 LocatableInterface locatable = (LocatableInterface) i.next();
240 if (view.intersect (BoundsUtil.transform(locatable.getBounds(),
241 locatable.getLocation())))

242 {

243 //0ur view intersects with this target.

244 return true;

245 }

246 }

247 } catch (Exception exception)

248 {

249 Logger.warning (this, "detect", exception);

250 }

251 //Nothing detected

252 return false;

253 1}

Figure 8: The Detect () Method

Tally: Backlog of ModbusConnectionThread
N=8840 MAX=305.0 MIN=-35.0 AVG=-29.9495475113 STD=16.00013964397

Figure 9: The Measured Backlog (milliseconds) in the DSOL-PLC Communication

3.4 Experimentation

We present the graphical user interface of the Dycore emu-
lation model in Figure 10. In this user interface the underly-
ing Autocad files are rendered by an external, open source,
geographical information system service named Gisbeans
(Jacobs and Jacobs 2004). We consider the ease of using
this external service, which is in no way related to the domain
of simulation, to again act as a validation for the service
oriented paradigm. The popup screen titled H2031 illus-
trates how devices can be individually and independently
controlled.

4 DISCUSSION AND CONCLUSIONS

The most important question yet to be answered is to what
extent this case supports our hypothesis that a service based
simulation suite provides more effective emulation support.

1460

To answer this question we need to clarify the differences
between the two specifications.

The first appearance of the service oriented paradigm
underlying DSOL is the seamless integration of several off
the shelf libraries and services. Poi was used to read/write
Microsoft Excel files, Gisbeans was used to render CAD
files and Jamod was used to communicate over the Modbus
protocol. This is in clear contrast with the eM-Plant imple-
mentation developed by TBA. Requirements in eM-Plant are
either natively supported or require dedicated, proprietary
engineering.

The openness of the DSOL platform proven to be crucial
for meeting the performance constraints of the case. The
fact that tasks can easily be dispersed over several threads,
each with a specific priority meant that the performance of
DSOL’s realtime clock outperforms eM-Plant substantially.

The loosely coupled relation between component be-
havior and animation ensured that while the refresh rate of
the model was related to the period of the PLC (= 35 Hz),

Jacobs, Verbraeck, and Rengelink

REE

toject: Dycore Syste
| &, zoomin H 4, zoomOut H < PanlLeft H % PanRight H 4 panup H + PanDown H ShowGrid H 2 Home |
:

‘ world(x=22,641.326 ;y=6,773.489) screeni=66 ;ana)\

4 H2031
Propertyd | +

Walue

action |+ ||
bitvaans |+ [Lnl.tha.dycore.emulation Eitvaan;@11479d6 7|
boltFailure | + || v

i
_+ |Bounding box: Lower=-500.0 -1500.0-250.0 Upper=500.0 1500
+ el .tha. lation.Hondj

I+ b B P 3 Time:82,072 milliseconds

Reptl/2)Treatt11)

Figure 10: The Graphical User Interface

the refresh rate of the animation could be slower (= 5 Hz).
These measurements are conducted on a 1Ghz Pentium III,
512MB RAM system with DSOL 1.6 on JRE 1.4.2. The
value of this distinction is that through the increased prior-
ity of the communication thread, the required period of the
emulation model could be reached (see Figure 9). Although
the values presented in Figure 9 show that DSOL was in
general well able to communicate every 30 - 1073 seconds
with the PLC, there were occasions were a positive backlog
occurred. This justifies further research on the applicability
of DSOL on a real-time operating system.

The inclusion of Java’s 3D model resulted in a track-less
infrastructure model. The sensors, conveyors and cranes can
actually scan their neighborhood for pallets to be moved or
lifted. Such a three-dimensional library is not available in the
eM-Plant specification, which results in more constraining,
dedicated relations between infrastructural objects if eM-
Plant is used.

As these differences show, the service oriented paradigm
underlying DSOL especially seems to show its added value
whenever models require sophisticated domain specific chal-
lenges. In the comparison between the two projects several
advantages of DSOL can be seen. For a large number of
cases the currently used software still meets most of the re-
quirements. But where traditional simulation environments
are designed for a one purpose, one formalism and one
target audience, this case clearly shows the added value to
be gained from an interacting, open simulation suite.

5 OBTAINING THE SOFTWARE

DSOL is published under the General Public License.
More information on the license can be found at
<http://www.gnu.org/copyleft/gpl.html>.
The DSOL project description can be found at
<http://www.simulation.tudelft.nl>

and the software can be downloaded from
<http://sourceforge.net/projects/dsol/>.

REFERENCES

Banks, J. 1998. Principles of simulation. In Handbook of
Simulation: Principles, Methodology, Advances, Appli-
cations, and Practice, ed. J. Banks, 3-31. New York:
NY, USA: Wiley-Interscience.

Jacobs, J., and P. Jacobs. 2004. Gisbeans: a Java library
for geographical information systems. Available via
<http://gisbeans.sourceforge.net> [ac-
cesed October 21, 2004].

Jacobs, P, N. Lang, and A. Verbraeck. 2002. A distributed
Java based discrete event simulation architecture. In
Proceedings of the 2002 Winter Simulation Confer-
ence, ed. E. Yucesan, C.-H. Chen, J. Snowdon, and
J. Charnes, 793-800. San Diego, CA, USA: Institute
of Electrical and Electronics Engineers: ACM Press.
Available via <http://www.informs-cs.org/
wsc02papers/102.pdf> [accesed October 21,
2004].

Matic, N. 2001. Introduction to plc controllers. Bel-
grade, Serbia: mikroElektronika. Available via
<http://www.mikroelektronika.co.yu/

http://www.gnu.org/copyleft/gpl.html
http://www.simulation.tudelft.nl
http://sourceforge.net/projects/dsol/
http://gisbeans.sourceforge.net
http://www.informs-cs.org/wsc02papers/102.pdf
http://www.informs-cs.org/wsc02papers/102.pdf
http://www.mikroelektronika.co.yu/english/product/books/PLCbook/plcbook.htm

Jacobs, Verbraeck, and Rengelink

english/product/books/PLCbook/
plcbook.htm> [Accesed October 28, 2004].

Modicon 1996. Modbus protocol reference guide. Technical
Report PI-MBUS-300, Modbus-IDA. Rev. J.

Schiess, C. 2001. Emulation: debug it in the lab — not
on the floor. In Proceedings of the 33rd conference on
Winter simulation, ed. M. Rohrer, D. Medeiros, and
M. Grabau, 1463—1465. Arlington: VA, USA: Institute
of Electrical and Electronics Engineers: ACM Press.

Schludermann, H., T. Kirchmair, and M. Vorderwin-
kler. 2000. Soft-commissioning: hardware-in-the-loop-
based verification of controller software. In Proceed-
ings of the 32nd conference on Winter simulation, ed.
P. Fishwick, K. Kang, J. Joines, and R. Barton, 893—
899. Orlando: FL, USA: Institute of Electrical and
Electronics Engineers: ACM Press.

TBA Nederland 2000. Tba nederland specialised
in simulation of factories, harbours, air-
ports and railsystems. Accesed via <http://

www . tbanederland.nl/default.asp>
cesed October 21,2004].

Whorter, S., B. Baker, and G. Malan. 1997. Simulation
system for control software validation. In Proceedings
of the 1997 SCS Simulation Multiconference. Atlanta:
GA, USA.

[ac-

AUTHOR BIOGRAPHIES

PETER H.M. JACOBS is a PhD. student at Delft Uni-
versity of Technology. His research focuses on the design
of simulation and decision support services for the web-
enabled era. His working experience within the iForce
Ready Center, Sun Microsystems (Menlo Park, CA), and
engineering education at Delft University of Technology
founded his interest for this research. His e-mail address
is <p.h.m.jacobs@tbm. tudelft.nl>.

ALEXANDER VERBRAECK is an associate professor in
the Systems Engineering Group of the Faculty of Technol-
ogy, Policy and Management of Delft University of Technol-
ogy, and a part-time full professor in supply chain manage-
ment at the R.H. Smith School of Business of the University
of Maryland. He is a specialist in discrete event simula-
tion for real-time control of complex transportation systems
and for modeling business systems. His current research
focus is on development of open and generic libraries of
object oriented simulation building blocks in Java. Contact
information: <a.verbraeck@tbm.tudelft.nl>.

WILLIAM RENGELINK (M.Sc. in Aerospace Engineer-
ing) is a senior consultant at TBA Nederland , a leading
simulation consultancy company in the Netherlands and
active for ports, airports and factories all over Europe.
TBA is involved in a number of state-of-the- art automation

1462

projects concerning baggage handling at Amsterdam Airport
Schiphol and the testing of the Control System in the Port
of Rotterdam.His work is in the fields of simulation and
emulation for logistic systems within airports and factories.
He is involved in various international projects. His email
address is <william@tba.nl>.

http://www.mikroelektronika.co.yu/english/product/books/PLCbook/plcbook.htm
http://www.mikroelektronika.co.yu/english/product/books/PLCbook/plcbook.htm
http://www.tbanederland.nl/default.asp
http://www.tbanederland.nl/default.asp

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

