
Proceedings of the 2005 Winter Simulation Conference 
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds. 
  
 
 

A SIMULATION ANALYSIS OF THE VARI-METRIC REPAIRABLE INVENTORY 
OPTIMIZATION PROCEDURE FOR THE U.S. COAST GUARD 

 
 

Michael B. Zamperini 
 

Mathematics Department 
27 Mohegan Avenue 

U.S. Coast Guard Academy 
New London, CT  06320, U.S.A . 

 Michael Freimer 
 

Supply Chain and Information Systems Department 
Smeal College of Business Administration 
509N Business Administration Building 

Penn State University 
University Park, PA  16802, U.S.A. 

   
   

  

ABSTRACT 

This paper documents a simulation study undertaken to 
gain insights into the Vari-Metric multi-echelon repairable 
inventory optimization method.  The method was analyzed 
in the context of the Coast Guard’s fleet of fixed and rotary 
wing aircraft, for which operational availability is the key 
performance metric.  Failure rates of parts in this system 
exhibit variance-to-mean ratios higher than one, and we 
outline a procedure for generating a failure arrival process 
described by a negative binomial distribution.  Previous 
studies of the Vari-Metric model examined a single repair-
able part; in this study we analyzed a system comprised of 
three repairable parts.  This allowed us to gain insights into 
how the Vari-Metric procedure selects part stock levels to 
attain a desired level of system availability.  Further analy-
sis of the simulation model allowed us to examine the effi-
cient frontier for this multi-criteria problem (maximizing 
spare part availability rates while minimizing the cost of 
part inventories). 

1 INTRODUCTION 

This research was motivated by the U.S. Coast Guard’s de-
sire to evaluate the Vari-Metric multi-echelon repairable 
inventory optimization method put forth by Sherbrooke 
(1992).  The Vari-Metric procedure calculates the expected 
backorders for a given inventory arrangement, then em-
ploys a greedy algorithm to iteratively add parts where 
they produce the greatest expected reduction in backorders  
per dollar invested until a target system availability level is 
obtained.  The Coast Guard wished to apply this procedure 
to the spare parts inventories for its fleet of fixed and ro-
tary wing aircraft located at different air stations through-
out the country.  We conducted a simulation study to 
evaluate the use of the Vari-Metric procedure in this con-
text.  We used a commercially available software imple-
mentation of Vari-Metric for this study.  Our simulation 
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model comprised 26 units of the same style of aircraft, 
with three repairable parts operating at five geographically 
separated stations, and with a central warehouse and part 
repair facility.  A complete description of this model can 
be found in Zamperini (2005). 

Sherbrooke’s Vari-Metric work was also largely fo-
cused on aircraft spare part inventories, and his studies in-
dicated that it was common for failure data from individual 
aircraft parts (number of failures per time period) to have 
variance to mean ratios (VMRs) greater than one.  This 
suggested that a Poisson model may not adequately de-
scribe the variance in the failure arrival process.  Following 
work commenced by Graves (1985), Sherbrooke improved 
on early versions of his Metric model by employing the 
negative binomial distribution to more accurately reflect 
the variance in part failure processes.  Since the negative 
binomial distribution has two parameters, one can fit both 
the mean and variance of a unimodal data set, although the 
VMR must be greater than one.  The commercial version 
of the Vari-Metric model employed by the Coast Guard as-
sumes a negative binomial distribution for failures, and in 
fact the failure data from our study was well-described by 
this distribution.  In this paper we document the method for 
generating an arrival process from a negative binomial dis-
tribution used in our simulation, and we share some of the 
insights obtained through our simulation experiments. 

2 THE SIMULATION MODEL AND  
FAILURE PROCESS 

We constructed a model of the Coast Guard’s inventory 
system using the Arena® simulation package. 

2.1 Modeling Assumptions 

The model tracked the operability of three parts on each of 
26 aircraft.  Upon failure of a part, we assumed that the 
aircraft was completely inoperable and remained in that 
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state until the appropriate part became available for instal-
lation.  The failed part was immediately sent to the repair 
depot for repair and subsequent reentry into the inventory 
system.  Upon completion of its repair, a part was shipped 
to an air station if any were below their target inventory 
levels.  Otherwise the part was held at the warehouse until 
such an inventory shortfall arose.  Our simulation model 
could also be set up to allow lateral transfers of parts from 
base to base.  Lateral transfer was triggered if one base was 
out of a part, the warehouse did not have that part ready to 
issue, and another base did have the part available.   

We tracked shipping and repair times, but we assumed 
a part installation time of zero once the appropriate part 
was available.  Our key performance metric was opera-
tional availability (Ao).  An aircraft was considered opera-
tionally available if it was not down due to a lack of spare 
parts.  Ao was measured as a fraction of the overall number 
of aircraft: one minus the time-average fraction of aircraft 
waiting for a spare part.  We tracked the system Ao as well 
as availability by location and individual part. 

2.2 The Failure Process 

In addition to the work of Sherbrooke and Graves, other 
research has been conducted on the topic of arrival proc-
esses exhibiting extra-Poisson variability.  Sokhan-Sanj et 
al. (1999) proposed the use of a hyperexponential distribu-
tion to simulate highly variable part movements in a semi-
conductor fabrication setting.  By accurately capturing the 
actual system variability, they were able to eliminate an 
undesirable safety factor that had been commonly used in 
previous simulation studies.  Pichitlamken et al. (2003) 
studied the variability of incoming calls to a call center per 
half hour period.  They described the potential use of the 
negative binomial distribution but selected a method em-
ploying a gamma distribution and inducing correlation be-
tween time periods.  This method significantly outper-
formed a Poisson process with a set of time-dependent 
arrival rate parameters when compared with known system 
characteristics.    
 The Vari-Metric model can also incorporate extra-
Poisson variability in the arrival process.  Although its ba-
sic assumption is that demand is stationary Poisson, this 
can be generalized to allow non-stationary demand with an 
arrival rate that drifts over time.  Sherbrooke (1992) sug-
gests that the negative binomial distribution may be an ap-
propriate representation of demand, however the probabil-
istic structure of the demand process is not made explicit in 
the generalized Vari-Metric model.  Instead the generalized 
model approximates the steady-state distribution of the 
number of outstanding repairs with a negative binomial 
distribution having a VMR matching that of the demand 
process.  Our analysis employed the generalized model. 
 We examined part failure data for several Coast Guard 
aviation parts.  These data described the number of failures 
169
per week over a multi-year period for each part.  Matching 
Sherbrooke’s findings, each of these parts had VMRs 
greater than one, ranging from 1.16 to 2.07.  The number 
of failures per week was well described by a negative bi-
nomial distribution, and the data sets exhibited no appre-
ciable trends or serial correlation.  We therefore created 
part failure processes for our simulation in which the num-
ber of failures each week was negative binomial with mean 
and variance matching the observed parameters.  This was 
as close as we could come to matching the probabilistic as-
sumptions of the generalized Vari-Metric model. 
 We used the following fact to create the arrival proc-
esses: if θ is generated from a gamma distribution with pa-
rameters k and p/(1-p), and if X is generated from a Poisson 
distribution with parameter θ, then X is negative binomial 
with parameters k and p (Bratley et al. 1987).  Let iX  and 
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iS  be the empirical mean and variance of the weekly 

number of failures for the ith part type.  Set 
( ) ( )iiii XSXk −= 22  and 2

iii SXp = .  During the jth 
week of the simulation, draw θij from a gamma distribution 
with parameters ki and pi.  Failures of the ith part during the 
jth week are then generated via a Poisson process with rate 
parameter θij, and the number of failures of part i during 
week j is distributed negative binomial with parameters ki 
and pi (i.e. with mean iX  and variance 2

iS ). 
We generated interarrival times for failures of part i 

during week j from an exponential distribution with mean 
1/θij.  Since θij was only used to draw interarrival times 
within week j, if any random draw resulted in an arrival 
time after the end of week j, we made another draw for the 
beginning of week j+1 using 1/θi,j+1.  If the resulting draw 
was greater than one week, we made yet another draw us-
ing 1/θi,j+2.  We continued in this way until a random draw 
of less than one week was obtained, say in week j+k.  Then 
the final interarrival time was the time remaining in week j, 
plus k-1 weeks and the value of the random draw for week 
j+k.  The purpose of this procedure was to ensure that the 
distribution of the number of failures in any week j condi-
tioned on θij was Poisson with parameter θij, so the uncon-
ditioned distribution was negative binomial with parame-
ters ki and pi.  The procedure also reflects Sherbrooke's 
notion of a failure process that is locally Poisson but whose 
arrival rate drifts randomly.  We tested the effect on our 
model of using this arrival process as compared with a 
Poisson process; the results are described in Section 3.4. 
 The method described in the preceding paragraphs is 
an unusual procedure for generating non-stationary arri-
vals.  A more common approach is to generate arrivals 
from a non-homogeneous Poisson process via thinning 
(Law and Kelton 2000).  However our purpose was to en-
sure that the number of arrivals each week had a negative 
binomial distribution, which is not the case for a non-
homogeneous Poisson process. 
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3 SIMULATION RESULTS 

In this section we summarize our experiments with the 
Vari-Metric software and our Arena® simulation model.  
Coast Guard analysts had expressed concern about the ap-
propriateness of Vari-Metric recommendations under sev-
eral scenarios.  Based on these concerns, the first set of ex-
periments used Vari-Metric to generate spare part stock 
policies for a target Ao under a variety of conditions, then 
checked the performance of these policies using our simu-
lation model.  (A policy consists of target stock levels for 
each of the three parts at the five stations and the central 
warehouse.)  The results of this analysis led us to a second 
experiment in which we used the simulation model to ex-
amine the efficient frontier with respect to inventory cost 
and target Ao.  A third set of experiments was designed to 
test the effects of three assumptions made by the Vari-
Metric procedure: negative binomial failures, infinite re-
pair capacity, and deterministic repair times.  Finally, we 
used the simulation to investigate the interaction of failure 
VMR and part price.  By examining how individual parts 
contributed to the overall system Ao, we gained valuable 
insight which led to a new method for dealing with high 
VMR parts in the Vari-Metric procedure. 

3.1 Exercising Vari-Metric 

We investigated the performance of the Vari-Metric rec-
ommended policies under eight scenarios generated from 
three variables with two settings each.  We chose part fail-
ure VMR, part price, and part failure rate as the three con-
trol variables based on concerns expressed by the Coast 
Guard analysts.  While it makes sense to maintain larger 
stock levels for parts with high variability and to provide 
cheap insurance by buying large numbers of the less ex-
pensive parts, some analysts hypothesized that Vari-Metric 
“overbought” high VMR and low price parts.  Failure rate 
was chosen as the third control variable as the typical re-
pairable part is slow moving as well as expensive. 
 We increased the VMR and failure rate from their 
nominal levels and decreased part price, so the -+- case re-
flected our actual part data.  As described in the previous 
section, the simulation model tracked the availability of 
three part types for each aircraft.  In these experiments, 
each control variable was altered for a single part type 
only.  VMR was changed for part 1 only, while price was 
altered for part 3, and failure rate was changed for part 2.  
The high and low levels for each control variable and their 
associated parts are shown in Table 1. 
 In each of the eight scenarios we used Vari-Metric to 
generate a stock policy with a target Ao of 85%.  (We also 
performed an analysis in which the target policy was 95%; 
the data are not shown here.)  Table 2 reports the Ao pre-
dicted by the Vari-Metric procedure, as well as the steady-
state  Ao  estimated with  the simulation model.   For each  
169
Table 1:  Control Variables 
Variable Level Symbol Part Number / 

Value 
VMR High + Part 1 VMR = 3 
 Nominal – Part 1 VMR       

= 1.45 
Price Nominal + Part 3 price        

= $158,716 
 Low – Part 3 price        

= $150 
Failure Rate High + Part 2 failure rate 

= 12 per week 
 Nominal – Part 2 failure rate 

= 0.156 per week 
 
scenario we performed 100 independent simulation replica-
tions of 200,000 days with a warm-up period of 20,000 
days. 
 Our analysis indicates that under the assumptions of 
our failure process, the Vari-Metric recommendations may 
be conservative.  In each scenario the Ao predicted by 
Vari-Metric was lower than the value estimated by the 
simulation; in the base case the difference was more than 
five percentage points.  (We observed a similar effect when 
the target Ao was 95%, although the deviations were 
smaller.)  We speculate that the reason for this discrepancy 
lies with Vari-Metric’s assumption that the number of out-
standing repairs has a negative binomial distribution with a 
VMR matching the arrival process.  This may overstate the 
variance of outstanding repairs somewhat, causing the rec-
ommended stock levels, which are based on the distribu-
tion of backorders, to be conservative. 
 We also performed an analysis of variance (ANOVA) 
on the mean deviation between the predicted and simulated 
Ao in each scenario.  Effects close to zero were lumped to-
gether to create an error term.  We found four effects to be 
significant at α = 0.05: VMR, followed by the VMR/price 
interaction and the effects of price and failure rate.  Ex-
periments with a 95% target Ao revealed less information 
since the availabilities were close to the 100% limit.  Some 
care should be taken with the interpretation of these results.  
Since the ANOVA is based on the output of a simulation 
model, each of the factors can eventually be made signifi-
cant given enough replications.  However our results do 
indicate the importance of the factors relative to one an-
other. 
 Although we do not display the results here, in subse-
quent analyses we also included the availability of lateral 
re-supply for all three parts as a factor.  The results showed 
that lateral re-supply improved the achieved Ao in every 
scenario.  However, the absolute difference in Ao deter-
mined by the simulation was lower than that suggested by 
Vari-Metric, perhaps because the Ao predicted by Vari-
Metric without lateral re-supply is conservative. 
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Table 2:  System Ao for Different Levels of Control Variables 
 High VMR (+) Nominal VMR (–) 
 Nominal Price (+) Low Price (–) Nominal Price (+) Low Price (–) 
 V-Metric Sim V-Metric Sim V-Metric Sim V-Metric Sim 
High Failure 
Rate (+) 

+ + + 
85.21% 

+ + + 
92.49% 
± 0.10 

+ – + 
85.06% 

+ – + 
93.18% 
± 0.08 

– + + 
85.13% 

 

– + + 
90.99% 
± 0.11 

– – + 
85.64% 

– – + 
91.52% 
± 0.07 

Nominal Fail-
ure Rate (–) 

+ + – 
85.32% 

+ + – 
92.50% 
± 0.10 

+ – – 
85.35% 

+ – – 
93.31% 
± 0.07 

– + – 
85.29% 

– + – 
90.97% 
± 0.12 

– – – 
86.06% 

– – – 
91.60% 
± 0.07 

Table 3:  Comparison of Policies Generated by Vari-Metric and Optquest® 
  Base 1 Base 2 Base 3 Base 4 Base 5 Depot 

V-Metric 4 4 9 3 6 73 Part 1 
Optquest® 4 4 9 4 7 69 
V-Metric 1 1 2 1 2 7 Part 2 
Optquest® 1 1 2 1 2 7 
V-Metric 1 1 3 1 2 32 Part 3 
Optquest® 1 1 3 1 2 28 
3.2 The Efficient Frontier 

The previous analysis shows that Vari-Metric recom-
mended stock levels may overshoot the target Ao.  How-
ever we did find evidence to suggest that the Vari-Metric 
solutions are on the efficient frontier for the multi-criteria 
optimization problem of minimizing cost and maximizing 
Ao.  Under the conditions of the base case with 85% target 
Ao, we used Arena’s Optquest® optimization tool to 
search for a cheaper policy with the same estimated per-
formance as the Vari-Metric policy.  Optquest® employs a 
Taboo and scatter search method.  Using the Vari-Metric 
stock levels as a starting point for the search, Optquest® 
analyzed 106 alternative solutions, but it did not find a less 
expensive solution with the same Ao. 
 We then used Optquest® to search for the least expen-
sive solution that achieved an Ao greater than the original 
target of 85%.  After considering 45 alternatives, Optquest 
found a stock arrangement that delivered an 86.65% Ao at 
a capital spares investment price of $13,573,000.  This rep-
resented a $795,000 or 5.5% savings over the $14,368,000 
cost proposed by Vari-Metric.  The conclusion is that one 
may be able to achieve the target Ao with a lower inven-
tory than that proposed by Vari-Metric, but such a policy 
would sacrifice a cushion over the target Ao.  Table 3 dis-
plays the solution proposed by Optquest®, which is very 
similar to the Vari-Metric policy, effectively lowering cost 
and sacrificing some Ao by trimming the depot stock lev-
els for parts 1 and 3.  This solution reduced the part 1 depot 
level by four, but added one part to the base 4 and 5 stock 
levels, for a net decrease of two for part 1. 
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3.3 Further Analysis of VMR and Part Interactions 

The analysis described in Section 3.1 indicated that VMR 
was the most significant of the three factors, so we per-
formed further experiments in which we modified the 85% 
target Ao base case, varying the levels of VMR for part 1.  
Beginning with a VMR of 1.45 (the nominal value), we in-
creased the VMR to twenty, as shown in Table 4.  (We  
also show the results of generating part 1 failures using a 
standard Poisson process, which has a VMR of one.)  As 
before we used Vari-Metric to obtain stock policies then 
simulated these policies to estimate actual system Ao. 
 The estimated Ao grew with increasing VMR, indicat-
ing that Vari-Metric was indeed overcompensating for the 
effects of the higher variability of part 1.  Surprisingly, the 
growth in the overall Ao could be attributed more to 
growth in the availability of part 3 than part 1, which was 
relatively stable.  We should note here that part 3 is the 
most expensive part, and it had the most opportunity to in-
crease its availability.  It is clear from Table 4 that while 
part 1’s availability grew slightly with higher levels of 
VMR, part 3’s availability grew at a much faster pace and 
had a larger impact on the overall Ao. 
 Table 5 shows the growth in the target stock levels of 
parts 1 and 3 (summed across locations) recommended by 
Vari-Metric for increasing levels of part 1’s VMR.  The 
overall target stock level for part 1 grew by 78% as part 1 
VMR increased from 1.45 to 20, while the targets for parts 
2 and 3 grew by 29% and 23% respectively.  The rapid 
growth of the stock level for part 1 maintained a relatively 
stable availability for part 1 while the slower growth in of 
the stock level for part 3 caused a significant growth in part 
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Table 4:  System Ao for Vari-Metric Policies under Different Part 1 VMRs 
 Part 1 VMR 

 1  
Poisson 1.45 2 3 4 5 6 8 10 15 20 

Ao 90.22% 
± 0.11 

90.97% 
± 0.12 

92.06% 
± 0.10 

92.50% 
± 0.10 

92.81% 
± 0.10 

93.52% 
± 0.09 

94.12% 
± 0.08 

94.41% 
± 0.08 

94.84% 
± 0.07 

96.12% 
± 0.07 

96.69% 
± 0.07 

Part 1 
Avail 

97.70% 
± 0.03 

97.51% 
± 0.03 

97.81% 
± 0.04 

97.45% 
± 0.05 

97.79% 
± 0.04 

97.90% 
± 0.05 

97.94% 
± 0.05 

98.19% 
± 0.04 

98.20% 
± 0.04 

98.22% 
± 0.05 

98.44% 
± 0.05 

Part 2 
Avail 

99.95% 
± 0.00 

99.95% 
± 0.00 

99.96% 
± 0.00 

99.96% 
± 0.00 

99.95% 
± 0.00 

99.95% 
± 0.00 

99.95% 
± 0.00 

99.97% 
± 0.00 

99.97% 
± 0.00 

99.98% 
± 0.00 

99.99% 
± 0.00 

Part 3 
Avail 

92.57% 
± 0.11 

93.51% 
± 0.12 

94.29% 
± 0.10 

95.09% 
± 0.10 

95.07% 
± 0.09 

95.67% 
± 0.09 

96.24% 
± 0.07 

96.26% 
± 0.07 

96.68% 
± 0.06 

97.92% 
± 0.05 

98.25% 
± 0.04 

Table 5:  Target Stock Levels for Vari-Metric Policies under Different Part 1 VMRs 
 Part 1 VMR 

 1  
Poisson 1.45 2 3 4 5 6 8 10 15 20 

Part 1 
Target 97 99 103 107 113 117 112 122 140 157 176 

Part 2 
Target 14 14 14 14 14 14 14 15 15 16 18 

Part 3 
Target 39 40 41 42 42 43 44 44 45 48 49 
 
 
3’s availability as well as the overall Ao.  The resulting Ao 

was substantially higher than the 85% target. 
 Evidently the stock levels recommended by Vari-
Metric for high VMR parts are appropriate, but the proce-
dure seems to buy more of other parts to compensate for 
perceived lower availabilities in the high VMR parts.  The 
overall effect is a net growth in system availability,  above 
and beyond the target.  For this reason the Coast Guard 
analysts were inclined to enforce a cap on VMR, but as the 
Ao grows steadily with increasing VMR, it is difficult to 
choose an appropriate cap.  Since Vari-Metric appears to 
handle the stock levels for high VMR parts rather well, we 
suggest the following simple heuristic.  Perform two runs 
of Vari-Metric, one with the high VMR parts set with 
lower variances, and one with their actual variances.  Use 
the stock levels from the first run for the low VMR parts, 
and the stock levels from the second run for those with 
high VMR.  The intuition for this heuristic is to allow Vari-
Metric to set higher stock levels for the high VMR parts 
while preventing the upward growth in system Ao ob-
served in Table 4 by holding the other parts to lower stock 
levels.   
 Table 6 displays the performance of various policies 
given an 85% target Ao and high VMR for part 1.  (This 
was the ++- case from Table 1.)  The table includes the 
Vari-Metric policy, a policy generated by Optquest® using 
the Vari-Metric policy as a starting point (minimizing cost 
subject to maintaining an Ao of greater than the Vari-
Metric baseline), and a policy generated by our simple heu-
ristic.   For  comparison  we also show the performance of 
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the Vari-Metric policy for the 85% target Ao base case    
(-+-). 
 In moving from the -+- to the ++- case, Vari-Metric 
raised the overall Ao roughly 1.5 percentage points by pur-
chasing more of the higher VMR part 1 to hold that part’s 
availability nearly stable, and by investing more in part 3 
to increase that part’s availability.  Optquest® achieved a 
solution nearly as good as the -+- case in terms of Ao while 
saving $558,000 in parts expenditures.  To do so, Op-
tquest®  invested more in part 1 to account  for  the  higher 
VMR, but not as much as the ++- Vari-Metric solution.  
Optquest® also held the part 2 and 3 levels the same as the 
original -+- Vari-Metric solution.  For the heuristic solu-
tion, we used the part 1 stock level from the ++- Vari-
Metric policy and the parts 2 and 3 stock levels from the -
+- Vari-Metric policy.  The heuristic solution performed 
reasonably well, yielding only a slight increase in Ao over 
the -+- case at a lower cost than the ++- Vari-Metric solu-
tion. 

3.4 The Impact of Negative Binomial Failure Counts 

We also tested the effect of generating failures according 
to a negative binomial distribution as opposed to a Poisson 
process with the same mean number of arrivals.  Since we 
were interested in the interaction of this assumption with 
other assumptions about the stochastic nature of the inven-
tory system, we performed an analysis in which we also 
varied  two other control variables.   First,  the  Vari-Metric 
6
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Table 6:  Comparison of Various Policies 
 – + – 

Baseline 
V-Metric 

+ + –   
V-Metric 

+ + –   
Optquest 

+ + – 
Heuristic 

Parts cost $14.368 
million 

$15.328 
million 

$14.770 
million 

$15.011 
million 

Overall 
Ao 

90.97% 
± 0.12 

92.50% 
± 0.10 

90.49% 
± 0.11 

91.16% 
± 0.10 

Part 1 
Avail. 

97.51% 
± 0.03 

97.45% 
± 0.05 

97.00% 
± 0.05 

97.61% 
± 0.10 

Part 2 
Avail. 

99.95% 
± 0.00 

99.96% 
± 0.00 

99.96% 
± 0.00 

99.95% 
± 0.00 

Part 3 
Avail. 

93.51% 
± 0.12 

95.09% 
± 0.10 

93.53% 
± 0.10 

93.59% 
± 0.10 

 
procedure assumes that repair times are constant; in our 
system we estimated the repair times for parts 1, 2, and 3 to 
be 108, 172, and 215 days, respectively.  In order to get 
some understanding of the consequences of this assump-
tion, we allowed the repair times to be distributed uni-
formly plus or minus 30 days from the deterministic times.  
The Vari-Metric procedure also assumes infinite repair ca-
pacity, and we expected that the impact of deterministic 
repair times might be influenced by queueing effects.  We 
therefore constructed a version of the simulation model in 
which parts compete for repair resources.  We determined 
the average number of parts undergoing repair in the origi-
nal model and set the number of repair resources equal to 
this number inflated by 10%. 
 The results of these experiments are displayed in Table 
7.  An ANOVA based on this output showed that only the 
assumptions concerning the distribution of the failure 
process and the repair capacity were significant at α = 
0.05.  Clearly the extra variability associated with the 
negative binomial distribution reduced the operational 
availability from that obtained assuming a Poisson arrival 
process.  Although a more complete analysis should be 
conducted, the fact that neither the distribution of repair 
time nor its interaction with repair capacity was significant 
confirms Sherbrooke’s (1992) appeal to Palm’s Theorem 
as justification for using only the mean of the repair time in 
Vari-Metric regardless of their distribution. 

4 CONCLUSION 

This study illustrates the benefits of using simulation to 
validate another optimization method beyond the simple 
matching of model output.  By drilling down to individual 
part availability levels, the simulation revealed interesting 
characteristics of the Vari-Metric procedure.  Knowledge 
of these characteristics led to a possible method for over-
coming one of the shortcomings of the Vari-Metric 
method.  By optimizing the simulation model we also 
gained insight concerning the efficient frontier of this 
multi-criteria optimization problem. 
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Table 7:  The Impact of Assumptions Concerning the Fail-
ure and Repair Processes 

 Fixed Repair Times 
(+) 

Stochastic Repair 
Times (–) 

 Infinite 
Repair 

Capacity 
(+) 

Repair 
Queues 

 
(–) 

Infinite 
Repair 

Capacity 
(+) 

Repair 
Queues 

 
(–) 

Negative 
Binomial 
Failures (+) 

(+ + +) 
90.97% 
± 0.12 

(+ – +) 
90.23% 
± 0.11 

(– + +) 
91.10% 
± 0.11 

(– – +) 
90.30% 
± 0.13 

Poisson 
Failures (–) 

(+ + –) 
93.70% 
± 0.07 

(+ – –) 
93.01% 
± 0.07 

(– + –) 
93.63% 
± 0.07 

(– – –) 
92.94% 
± 0.08 

 
We believe the method for generating aircraft part 

failures from a negative binomial distribution holds prom-
ise for modeling any type of arrival process in which the 
distribution of the number of arrivals per time period is un-
imodal and the variance exceeds the mean.  It is apparent 
that the ability to vary the VMR of failure counts had a 
significant impact on the simulation output of our model.  
This method is useful when arrival data exists in the form 
of number of arrivals per time period, which is common in 
a number of other applications. 
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