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ABSTRACT 

In order to support large-scale distributed simulation, we 
have developed a RTI called StarLink+ with particular ar-
chitecture which is compliant with IEEE 1516. StarLink+ 
is composed of a Central RTI server and multiple Local 
RTI servers. Each Local RTI server manages multiple fed-
erates. Data consistency has great influence on RTI's per-
formance and scale. In StarLink+, only a small portion of 
data must be globally consistent for all Local RTI servers. 
However, a great amount of data is not consistent for dif-
ferent Local RTI servers. This paper focuses on the re-
search of data consistency about a variety of data in Star-
Link+. On the one hand, we introduce the fully consistent 
data such as object name designation and handle assign-
ment; on the other hand, we also study the partly consistent 
data such as publication and subscription, ownership trans-
fer, and time management. 

1 INTRODUCTION 

High Level Architecture (HLA) introduces many advanced 
technologies into distributed simulation and makes distrib-
uted simulation develop rapidly. With the scale of distrib-
uted simulation applications getting larger and larger，the 
performance of current Runtime Infrastructure (RTI) can 
not satisfy increasing need of various applications, and the 
implementation technology of high performance RTI has 
become a focus in distributed simulation area. 

In distributed architecture, data in RTI is deployed in 
different positions. Data consistency has an important ef-
fect on RTI’s performance and scale. Good approaches can 
decrease the volume of information in network and en-
hance the efficiency of RTI, thereby solve the performance 
bottleneck of RTI. 

Different from conventional distributed RTIs, Star-
Link+ is a hierarchical RTI in accordance with IEEE 1516 
standards (IEEE 2000a, IEEE 2000b, IEEE 2000c, IEEE 
2003), which is composed of a Central RTI server (CRTI) 
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and multiple Local RTI servers (LRTIs). We have success-
fully deployed StarLink+ into 31 personal computers inter-
connected by 100 Mbps network and run a federation with 
1800 federates. Thousands of federates joined a whole fed-
eration within a few minutes. It only cost 900 federates 
about 5.63 seconds to advance one step all together using 
the timeAdvanceRequest service, while each federate sent 
one message subscribed by all other federates within a step. 

In StarLink+, only a small portion of data is globally 
consistent in all Local RTI servers and large amount of 
data is not consistent. However, any types of data do not 
prevent concurrent execution of different Local RTI serv-
ers. This paper introduces some important technologies 
about data consistency in StarLink+. In the next section, 
we explain the unique architecture of StarLink+ and give a 
few definitions on data consistency. Several experiments 
and their results are described in this paper, thus these ex-
periments’ environment is also introduced there. In the 
third section, the global data consistency in StarLink+ is 
discussed, including designation of object name and as-
signment of handles. While data inconsistency is discussed 
in the fourth section, such as publication and subscription, 
ownership transfer, and time advance mechanism. In the 
fifth section, we explain three issues about StarLink+, 
which are possibly alternative implementation techniques, 
standardization and future work. All techniques in this pa-
per shall be useful to a robust RTI’s developers for large-
scale simulations. 

2 DATA CONSISTENCY 

StarLink+ was developed on the basis of StarLink (Liu, 
Wang and Yao 2004). As shown in Figure 1, we know that 
the whole system is composed of a Central RTI sever and a 
group of Local RTI servers. The Central RTI server is in 
charge of all Local RTI servers and each Local RTI server 
takes charge of multiple federates. CRTI and all Local RTI 
severs can communicate with one another. Without a Local 
RTI Component (LRC) (DMSO 2000), a federate can only 
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communicate with its LRTI. Communications among 
CRTI, LRTIs and federates are accomplished by the 
CORBA middleware StarBus (CORBA 2005, Liu 2004, 
StarBus 2005). 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Hierarchical Architecture of StarLink+ 
 
Management and delegate are two roles that a Local 

RTI server takes on. On the one hand, any federate's in-
formation is preserved in its LRTI. A Local RTI server 
takes charge in its federates and advances simulation in 
coordination with the Central RTI server and other Local 
RTI servers. On the other hand, a Local RTI server does 
not see those federates managed by other Local RTI serv-
ers. Any Local RTI server can only join to other Local RTI 
servers as a common federate. The term delegate is intro-
duced in StarLink+. 

Definition 1    Delegate means that a Local RTI server 
replaces its federates to communicate with other Local RTI 
servers. 

A Local RTI server can act as the delegate to its feder-
ates. As a delegate, the Local RTI server can join federa-
tion execution, publish and subscribe object class attributes, 
register object instance, update attribute values, transfer 
attribute ownership, etc. 

In StarLink+, the central RTI server is similar to a 
naming server (OMG 2005a) in CORBA. All LRTIs can 
interconnect with one another by CRTI. CRTI can be used 
for creation of federation execution, synchronization point, 
save and restore in federation management. CRTI is not 
used in other services such as declaration management, ob-
ject management, ownership management, time manage-
ment and data distribution management, etc. The data dur-
ing federation execution is mainly managed and 
transmitted by Local RTI servers. Besides all federates' in-
formation, the data maintained by a Local RTI server in-
cludes federation name, federate list, synchronization point 
list, object class list, interaction class list, registered object 
list, object class name and handle pair list, interaction class 
name and handle pair list, registered object instance name 
and handle pair list, dimension list, dimension name and 
handle pair list, reserved object instance name and handle 
pair list, region specification list, etc. 
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All data requires to be consistent in each Local RTI 
server as much as possible, not only static data that can be 
obtained from a FOM Document Data (FDD) file and an 
initialization file but also dynamic data that be produced 
during federation execution such as federate list, synchro-
nization point list, registered object list, registered object 
instance name and handle pair list, reserved object instance 
name and handle pair list. 

Definition 2    Strong consistency means that data 
should be globally consistent in all Local RTI servers. 

To decrease the overhead aroused by global data con-
sistency and enhance simulation efficiency, StarLink+ does 
not compel each Local RTI server to maintain all data con-
sistently. 

Definition 3    Weak consistency means that data is 
not globally consistent in all Local RTI severs. 

Both strong consistency and weak consistency are 
highly efficient in StarLink+. All Local RTI servers can 
execute simulation concurrently, and there is no synchroni-
zation based on lock mechanism. Therefore, StarLink+ is 
able to be used for large-scale distributed parallel simula-
tions. 

In this paper, a few important experiments are de-
scribed. They were conducted in a large computer room for 
students to study and review. As in Figure 2, more than 90 
personal computers are installed in the room, and they have 
the same configuration. The configuration for each com-
puter is: 

 
• CPU: Pentium IV 1.7G 
• Memory: 256M 
• Network: 100Mbps 
• Operating system: Windows 2000. 

 

 
 

Figure 2: Experiment Environment 
 
In addition, all test programs were written in Visual 

C++ 6.0. Except for one control program and one result 
display program, all programs were run in the background. 
The experiment environment was open. While we made 
our experiments, students in the room might browse cam-
pus network, play network games, listen to music and 
watch movies via network. 

3 STRONG CONSISTENCY 

Different from other RTIs which can support multiple fed-
erations, StarLink+ only supports a single federation. Mul-
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tiple federations should be executed by starting multiple 
CRTIs. A federation’s name and a FDD file’s name should 
be saved in an initialization file. Thus, strong consistency 
of static data is easy to implement. Whenever CRTI and 
each LRTI start, they use the same source code to read the 
same FDD file for initialization, including object class list, 
interaction class list, object class name and handle pair list, 
interaction class name and handle pair list, dimension list, 
etc. The data shall be globally consistent in CRTI and all 
LRTIs although most data is useless in CRTI.. 
 This paragraph explains the rationale of strong consis-
tency for dynamic data in StarLink+. Representative ap-
proaches are the designation of object name and the as-
signment of handles. 

3.1 Object Name Designation 

When a federate calls the registerObjectInstance service to 
register an object instance, each object instance should be 
designated a unique name. One method is that the object 
name is registered and designated in CRTI. CRTI either 
designates a new name for an object instance, or throws an 
exception if a federate tries to register a name already as-
signed. However, the method is less efficient and CRTI 
shall be a bottleneck. In fact, another efficient method is 
used in StarLink+. Multiple federates can register object 
instances to their LRTIs simultaneously. The parallel 
method needn't CRTI to coordinate anything. 

When a federate registers an object instance, the fed-
erate can appoint a name as one parameter of the regis-
terObjectInstance service. If the federate does not appoint a 
name, its LRTI shall designate a default name. Then, the 
LRTI attaches a prefix before each object name as 

 
._"" objectNamelrtiNameobjectName ++=  

 
Thus, the new object name is globally unique. In StarLink+, 
each LRTI should join to CRTI with a unique name lrti-
Name, and we urgently demand that a federate shall not 
register an object instance with any LRTI’s name. For ex-
ample, we often use these names to represent LRTIs such 
as “machine01”, “machine02”, etc. 

After an object instance is successfully registered in a 
LRTI, the LRTI calls the lRTIregisterObjectInstance ser-
vice with the parameter of the new name to notify all other 
LRTIs. These LRTIs register the object instance directly 
and does not attach a prefix again. The lRTIregisterOb-
jectInstance service is added by StarLink+. We usually call 
these services prefixing with "lRTI" expanded HLA ser-
vices, and they are for communication among CRTI and 
LRTIs. 

In StarLink+, CRTI can be started in a single com-
puter or in any computer together with a LRTI because 
CRTI has nothing to do with the performance of our ex-
178
periments. We do not mention CRTI in the following ex-
periments. Here is one case of these experiments. 

Experiment 1 One LRTI and one federate were 
started in two computers respectively. Each federate joined 
to its LRTI within the same computer. Federate F1 called 
the registerObjectInstance service to register an object in-
stance to LRTI1, and LRTI1 called the lRTIregisterOb-
jectInstance service to register the object instance to LRTI2. 
Then, LRTI2 called the discoverObjectInstance service to 
notify federate F2 to discover the object instance. Now F2 
registered another object instance to LRTI2 immediately. 
When F1 found the object instance registered by F2, it 
started the loop again. 

Experimental result When F1 repeats the whole pro-
cedure from its registration to discovery for many times 
such as 1000, 10000, etc.,  the average time Toneloop is 
easy to compute then. However, the average time Tmachi-
nes from F1's registration to F2's discovery is more signifi-
cant, which is a half of Toneloop. In our experiments, 
Tmachines is about 0.5 milliseconds. 

3.2 Handle Assignment 

In StarLink+, all members such as CRTI, LRTIs and feder-
ates are appointed a unique handle respectively. The han-
dle is represented by an integer. Here is the efficient ap-
proach. 
 

1. The handle of CRTI is equal to zero. 
2. When a LRTI joins to CRTI, its handle 

( )handle LRTI  is assigned by CRTI as  
 

.*10000)( erserialNumbLRTIhandle =             
 

The serialNumber in the formula is the LRTI’s 
registering order in CRTI. For example, the first 
LRTI joining to CRTI is assigned the handle 
10000, and the second LRTI's handle is 20000. 

3. When a federate joins to a LRTI, its handle is as-
signed by the LRTI as 

 
.)()( erserialNumbLRTIhandleFederatehandle +=  

 
The serialNumber in the formula is the federate’s 
registering order in its LRTI. For example, the 
first federate joining to a LRTI with handle 20000 
is assigned the handle 20001, and the second fed-
erate's handle is 20002. Of course, the method re-
quires that the number of federates within a LRTI 
should not be more than 9999. 

 
Now it is easy to designate an object instance handle. 

When a federate registers an object instance, its LRTI as-
signs a handle for the object instance as 
9
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.10000/)(
)10000*()(

LRTIhandle
erserialNumbObjecthandle +=

          

  
The serialNumber in the formula is registering order of ob-
ject instance. The formula means that an object instance’s 
handle is made up of two parts, the low four digits repre-
sent a LRTI while the high digits represent registration or-
der. Of course, the method requires that the number of 
LRTIs in a federation should not be more than 9999. 

In fact, many other types of handles such as region 
handle have similar results. An alternative way is to define 
a structure with two member for handle types. One means 
LRTI, and another means registration order. More details 
are discussed in section 5.2. 

Experiment 2 One LRTI and 60 federates were 
started in every 30 computers respectively. Each federate 
joined to its LRTI within the same computer. A federate 
called the following services to initialize and then waited a 
synchronization point to advance simulation. These ser-
vices included createFederationExecution, joinFederation-
Execution, getObjectClassHandle, getAttributeHandle, 
publishObjectClassAttributes, subscribeObjectClassAttrib-
utes, registerObjectInstance, enableTimeRegulation, en-
ableTimeConstrained, etc. 

Experimental results   A batch program was used 
to start 60 federates one by one automatically in each com-
puter. If the interval time between two federates was 1, 2, 
or 3 seconds, the whole initialization time for 60 federates 
to reach synchronization point in one computer was exactly 
1, 2, or 3 minutes. If all batch programs in 30 computers 
ran simultaneously, the whole initialization time for 1800 
(60*30) federates was also nearly 1, 2, or 3 minutes. 

4 WEAK CONSISTENCY 

Due to the delegate mechanism, a LRTI does not see any 
federates that belong to other LRTIs. Thus, there exists 
large amount of weak consistency in StarLink+. 
 This paragraph explains the rationale of weak consis-
tency in StarLink+. Representative principles are publica-
tion and subscription, ownership transfer, and time ad-
vance mechanism. 

4.1 Publication and Subscription 

In Figure 1, when federate F1 calls the publishObjectClas-
sAttributes or subscribeObjectClassAttributes service to 
publish or subscribe object class attributes, LRTI1 records 
the information and also calls the same service to publish 
or subscribe object class attributes to LRTI2. Thus, if fed-
erate F2 publishes or subscribes the object class attributes 
which have been published or subscribed by F1, LRTI1 
shall not notify LRTI2 any more. 
17
In the experiments with 1800 federates, all federates 
published and subscribed the same object class attributes. 
Therefore, each LRTI only published and subscribed corre-
sponding attributes to other LRTIs once. When a federate 
called the updateAttributeValues service to update its in-
stance attributes, its LRTI only called the service once to 
notify all other LRTIs. Then these LRTIs called the reflec-
tAttributeValues service to notify their federates. The ex-
periments indicate that the number of messages among 
LRTIs decreases greatly. 

4.2 Ownership Transfer 

In accordance with HLA standards, an instance attribute 
shall be owned by at most one joined federate at any given 
time. The ownership of an instance attribute may be owned 
by a federate, or unowned by all federates, or by RTI such 
as an instance attribute in MOM (Management Object 
Model). 

In StarLink+, ownership state of each LRTI keeps 
consistent at LRTI level, while that may be inconsistent at 
federate level. That's to say, all LRTIs know which LRTI 
the owner of an instance attribute belongs to, although they 
may not know which federate the owner is. This weak con-
sistency can both guarantee correctness of ownership state 
from overall perspective, and reduce communication 
among LRTIs. 

Therefore, a Local RTI server X shall not notify other 
Local RTI servers if the ownership of an instance attribute 
is only transferred between two local federates. While a 
federate in Local RTI server Y requests to acquire the own-
ership, Y shall know that X is just the Local RTI server that 
the owner belongs to. Then Y notifies X that it wants to ac-
quire the ownership. Now X notifies the owner to release 
its ownership. When the ownership is released and owned 
by Y, X should notify all other Local RTI servers to change 
the owner to be Y. Next experiment gives a detailed exam-
ple. In addition, if the ownership of an instance attribute is 
released by a federate in X and no one wants to acquire the 
ownership, the instance attribute is unowned by all local 
federates in X but all other LRTIs such as Y think that the 
owner is still X. 

Experiment 3 Three local RTI servers LRTIA, 
LRTIB and LRTIC ran in three computers. Federate F1 ran 
in the same computer with LRTIA and joined to LRTIA. 
Federate F2 ran in the same computer with LRTIB and 
joined to LRTIB. In Figure 3, an instance was initially reg-
istered by F2 and F2 was the owner of its attributes. When 
F1 called the attributeOwnershipAcquisition service to re-
quest to acquire the ownership of an attribute, LRTIA 
knows that the owner belonged to LRTIB so that LRTIA 
called the lRTIattributeOwnershipAcquisition service to 
notify LRTIB. LRTIB called the requestAttributeOwner-
shipRelease service to notify F2 to release ownership. 
Then, F2 called the unconditionalAttributeOwnershipDi-
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vestiture service to divest the attribute’s ownership. LRTIB 
set the attribute’s owner to be LRTIA and called the 
lRTIsetOwnership service to notify all other LRTIs. Thus, 
LRTIC set the attribute’s owner to be LRTIA while 
LRTIA set the owner to be F1. Finally, LRTIA called the 
attributeOwnershipAcquisitionNotification service to no-
tify F1 and F1 acquired the attribute ownership. 

Experimental result The average time is 2 millisec-
onds, which was from F1's requesting to acquire the attrib-
ute ownership to receiving the notification of ownership 
acquisition. 

4.3 Time Advance 

The computation of Greatest Available Logical Time 
(GALT) is critical to implement time management services. 
GALT is also called Lower Bound Time Stamp (LBTS) in 
HLA 1.3 (DMSO 1998a, DMSO 1998b, DMSO 1998c). 
For short discussion, we suppose that all federates call the 
timeAdvanceRequest service to advance logical time, and 
they do not modify their lookahead (Chandy and Misra 
1979, Fujimoto 1988, Fujimoto 1996, Fujimoto 2000). 

Definition 4    The symbol S(i) is defined: 
 
(a) If i is a federate, we have S(i)=T(i)+L(i). When 

federate i is in time advancing state, T(i) is the 
logical time to which the federate request to ad-
vance. Otherwise, T(i) is the federate's current 
logical time. L(i) means the federate's lookahead. 
179
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(b) If i is a Local RTI server, we have 
S(i)=min{T(j)+L(j)}. For any j, j is a federate that 
belongs to i.  

 
To compare different values visually, we usually call 

S(i) as i's stature (i is a federate or a Local RTI server). If 
S(i)<S(j), we say that i's stature is less than j's. 

If X is the Local RTI server that federate i belongs to, 
the federate's GALT is computed as 

 
GALT(i)=min{S(j), S(Y)}.                        

 
Where: For any j, j∈ X and i ≠  j; 

 For any Local RTI server Y, X ≠  Y. 
From the above algorithm, we know that quite few 

messages occur among LRTIs for computing GALT. Time 
management in StarLink+ is very efficient. As an example 
of the federation with 30 LRTIs and 1800 federates, the 
stature of a LRTI was equal to the minimal stature of its 60 
federates'. Only when all 60 federates advanced one step, 
the LRTI's stature was then changed and it should send a 
message to notify all other LRTIs. In addition, a LRTI 
must not send any message to its federates because its fed-
erates' information for computing GALT was preserved in 
the LRTI. 

Although the timeAdvanceRequest service is dis-
cussed and lookahead is supposed not to be modified dur-
ing a federation execution, this is similar to other time 
management services even if lookahead is modified.  

 

F2 LRTIB LRTIC LRTIA F1

attributeOwnershipAcquisition

lRTIattributeOwnershipAcquisition

requestAttributeOwnershipRelease

unconditionalAttributeOwnershipDivestiture

lRTIsetOwnership

lRTIsetOwnership

attributeOwnershipAcquisitionNotification

 
Figure 3: Time Delay of Acquiring Attribute Ownership
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Experiment 4 We started 30 LRTIs in 30 com-
puters, and 30, 40 or 60 federates ran in each LRTI. All 
federates were both time regulating and constrained, and 
they advanced logical time step by step. Each federate’s 
lookahead was not larger than the interval logical time bet-
ween two steps. Thus all federates must advance simula-
tion together, and one federate could not go ahead or be-
hind another for the timeAdvanceRequest service. After 
each federate initialized, it waited for a synchronization 
point. When all 900, 1200, 1800 federates were started, a 
control federate in 31st machine registered federation syn-
chronization point. Once the whole federation synchro-
nized, all federates called the timeAdvanceRequest service 
to advance regularly. In each step, any federate sent a Re-
ceive Order (RO) message that was subscribed by all other 
federates. A LRTI would call the timeAdvanceGrant ser-
vice to grant each local federate’ advance only when all 
federates in the federation were time synchronized, i.e. 
they requested to advance to the same logical time. 
 Experiment results The average time for 900, 1200 
and 1800 federates was 5.63, 7.58 and 21.04 seconds, 
which was from a federate’s calling the timeAdvanceRe-
quest service to being granted. In fact, the best result we 
have obtained for 900 federates was only 4 seconds. 

5 MORE CONSIDERATIONS 

Three issues are discussed in the section: alternative im-
plementation techniques, standardization and future work 
about StarLink+. 

5.1 Alternative Approaches 

A few useful techniques about data consistency have been 
introduced before. Of course, more complicated ap-
proaches may also be used for implementing StarLink+. 
For example: 
 

1. Let CRTI manage global data. This shall make 
data consistency rather difficult. Suppose that 
each federate's GALT be computed by CRTI. 
CRTI should know each federate's advancing 
status although a federate's status is already stored 
in its LRTI. Thus, it is very complicated to con-
firm each federate's consistent status both in CRTI 
and its LRTI such as publication and subscription 
relationship, Time Stamp Order (TSO) message 
queue, whether a federate is regulating or con-
strained, etc. 

2. Let all federates join to all LRTIs. The approach 
requires that each LRTI preserves all federates 
status, which shall also make data consistency 
complicated. 
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5.2 Standardization of StarLink+ 

The interface services in StarLink+ are compliant with 
IEEE 1516, but a part of data types are in accordance with 
HLA 1.3 and OMG HLA standards (OMG 2005b, OMG 
2005c). For example, most handle types are defined as in-
teger. Both RTI::LogicalTime and RTI::LogicalTimeIn-
terval are defined as double. However, these types are de-
fined as the class type in IEEE 1516. This shall bring more 
advantages: 
 

1. Simplify the development of StarLink+. 
2. Make users develop applications easily. Here is an 

example. Two different variables x and y can be 
written as x+y in StarLink+ although one may has 
the RTI::LogicalTime type and the other owns the 
RTI::LogicalTimeInterval type. However, the two 
data types are different in IEEE 1516 and x+y is 
illegal. 

3. Be compatible with earlier RTI versions. The 
RTIs that we developed before StarLink+ were 
implemented in the same way. 

5.3 Future Work 

StarLink+ aims at different groups of users for large-scale 
simulations. High performance computing is one important 
research branch in our school (NUDT 2005). Besides 
large-scale simulations over wide area network and local 
area network, we shall migrate it to high performance com-
puters made by our school. Therefore, future work in Star-
Link+ may include: 
 

1. Within a high performance computer, the Mes-
sage-Passing Interface (MPI) communication 
mechanism shall replace underground CORBA 
technology in StarLink+ (Hwang and Xu 1998, 
MPI 2005). But CORBA is still applied for com-
munication between a high performance computer 
and exterior machines. 

2. In a single node or computer, a LRTI and its local 
federates shall communicate via shared memory 
rather than CORBA based on TCP/IP. 

6 CONCLUSION 

StarLink+ is a hierarchical RTI compliant with IEEE 1516 
standards. Data consistency has a considerable effect on 
RTI's correctness and efficiency. In StarLink+, all local 
RTI servers can execute simulation concurrently, which 
can enhance performance of StarLink+ greatly. This paper 
introduces a few efficient technologies for data consistency 
such as definition of object class name, and assignment of 
various handle types. More efficient technologies for data 
inconsistency are also described such as publication and 
2
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subscription, ownership transfer, and time advance mecha-
nism. In addition, we have also presented multiple experi-
ments and their results. 
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