
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

A STUDY OF VARIANCE REDUCTION TECHNIQUES FOR AMERICAN OPTION PRICING

Christiane Lemieux
Jennie La

Department of Mathematics and Statistics
University of Calgary

2500 University Drive N.W.
Calgary, AB, T2N 1N4, CANADA
ABSTRACT

American option pricing is a challenging problem in finan-
cial mathematics for which several approaches have been
proposed in the last few years. In this paper, we consider
the regression-based method of Longstaff and Schwartz
(2001) to price these options, and then investigate the use
of different variance reduction techniques to improve the
efficiency of the Monte Carlo estimators thus obtained. The
techniques considered have been shown to work well for
European option pricing. One of them is importance sam-
pling, in which the approach of Glasserman, Heidelberger,
and Shahabuddin (1999) is applied to find an appropriate
change of measure. We also consider control variates and
randomized quasi-Monte Carlo methods, and use numerical
experiments on American Asian call options to investigate
the performance of these methods.

1 INTRODUCTION

Option pricing is an important problem in financial mathe-
matics, which continues to challenge researchers and prac-
titioners due to the increased complexity in models and
options considered. For European options – options that
can only be exercised at the expiration time T – it is often
possible to derive closed-form solutions for their value at
time t < T . When this is not possible, different approaches
can be used to get accurate approximations. Among these
approaches, those based on Monte Carlo simulations com-
bined with variance reduction techniques are often quite
competitive: see Broadie and Glasserman (1997), Glasser-
man (2004) and the references therein for examples. For
American options – options that can be exercised before
the expiration time – the problem is more challenging since
in that case, it involves finding the optimal exercise time
in addition to the estimation of the option’s value at a
given time. More precisely, for a payoff at time t given
by C(t, S(·)), where S(·) is the vector of underlying assets
1

upon which the option depends, a risk-free interest rate of
r , and a sequence of b possible exercise times given by
t1, . . . , tb, the goal here is to evaluate

μ = max
1≤j≤b

E(e−rtj C(tj , S(·))),

where the expectation is taken under the risk-neutral measure
(Duffie 1996). When the option can only be exercised at
a finite number of times like this, it is usually called a
Bermudan option. We restrict our attention to this type of
option in this paper.

Since the determination of the optimal exercise time
typically requires a backward procedure of some kind, it
was thought for a while that because of the forward nature
of Monte Carlo simulation, this method could not be used to
evaluate American options. However, this problem can be
overcomed and there now exist several Monte Carlo-based
approximations for American option pricing. Not surpris-
ingly, most of these approximations incorporate some type
of variance reduction technique to improve their efficiency.
For instance, Broadie and Glasserman (1997) use a mesh
based on Monte Carlo simulations of the underlying as-
sets and use control variates at different levels to improve
the approximations obtained; Boyle, Kolkiewicz, and Tan
(2003) investigate the same kind of stochastic mesh but
use low-discrepancy point sets to drive the simulations and
incorporate control variates as well; Avramidis and Hyden
(1999) also study this mesh-based approach and show how
to improve it using importance sampling. Another interest-
ing approach that makes use of Monte Carlo simulations is
the one discussed in Haugh and Kogan (2004). We refer
the reader to Chapter 8 of Glasserman (2004) for more on
Monte Carlo methods in the context of American option
pricing.

In this paper, we focus on the regression-based approach
discussed in Longstaff and Schwartz (2001) (henceforth
denoted LS), which also uses Monte Carlo simulation to
generate paths of the underlying assets, and produces a
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low-biased estimator. More precisely, regression is used to
produce function approximations for the continuation value
of the option at each possible exercise time, which in turn
produce estimates of the optimal exercise time. The paths
are then used in a second stage to price the option.

In Lemieux (2004), numerical results are given to il-
lustrate how randomized quasi-Monte Carlo methods can
be used to reduce the variance of the estimators obtained
in the LS approach. The idea is to use a highly-uniform
point set (HUPS) to generate the paths – and we assume
the same paths are used for both stages of the LS approach
– instead of using i.i.d. paths. More details are given in
Section 3, and we refer the reader to L’Ecuyer (2004) for a
recent survey of the use of quasi-Monte Carlo methods in
finance. The use of quasi-Monte Carlo within LS is studied
in Chaudhary (2004) as well.

Our goal in this paper is to investigate the use of other
variance reduction techniques that have been applied suc-
cessfully in the context of European option pricing, study
their combinations, and compare their performance. The
first technique considered is importance sampling, whose
use within the LS approach is studied in Moreni (2003) and
in Bolia, Glasserman, and Juneja (2004). Here we incorpo-
rate it along the lines described in Moreni (2003). That is,
importance sampling is used to modify the probability mea-
sure under which the paths are sampled. Since those paths
are used in both stages, it means both the optimal exercise
time and the option price are estimated using importance
sampling. To decide how to change the measure, we use
the approach of Glasserman, Heidelberger, and Shahabud-
din (1999) that was proposed for path-dependent European
options. In addition to importance sampling, we consider
the use of control variates based on European option prices.

This paper is organized as follows: in Section 2, we
describe the LS approach for American option pricing. The
variance reduction techniques used to improve the efficiency
of the estimators obtained with the LS approach are described
in Section 3. Numerical experiments are reported in Section
4, and concluding remarks are given in Section 5.

2 REGRESSION-BASED AMERICAN OPTION
PRICING

The method uses n realization paths {Si (t), t =
0, t1, . . . , tb; i = 1, . . . , n} of the underlying assets, where
tb = T is the expiration time and t1, . . . , tb are the ex-
ercise dates. Since the payoff C(T , Si (·)) for each path
can be computed at expiration time T , the idea is to pro-
ceed backward from T to 0 to estimate the optimal exer-
cise time t∗i for each path. This is done as follows: set
t∗i = T , then at time t = tb−1, tb−2, . . . , t1, set t∗i = t if

C(t, Si (·)) > F̂ (t, Si (t)), where F̂ (t, Si (t)) is an estimate
of the continuation value of the option at time t given Si (t).
This estimate is obtained by constructing an approxima-
18
for i ← 1 to n // loop over paths – initialization
t∗(i) ← T

for t ← tb−1 downto 1 // go backward in time
for i ← 1 to n // loop over paths

compute β̂0, . . . , β̂M

compute F̂ (t, Si (t)) = ∑M
l=0 β̂lψl(Si (t))

if C(t, Si (t)) > F̂ (t, Si (t)) then
t∗(i) ← t // update

end if
end for

end for

Figure 1: Longstaff-Schwartz Approach

tion at each time t based on a finite set of multivariate
basis functions {ψl(·), l = 0, 1, . . . , M}. The coefficients
β0, . . . , βM for the approximation are estimated by regres-
sion of the actualized payoffs (from time t∗j , for each path
j ) against the current value of the assets over the paths that
are in-the-money, that is, such that C(t, Si (·)) > 0. More
precisely,

(β̂0, . . . , β̂M)T = (�T �)−1�T (y1, . . . , yn∗)T ,

where n∗ is the number of paths that are in-the-money
at time t , yi = C(t∗i , Si (·)), and �i,l = ψl(Si (t)) for

i = 1, . . . , n∗, l = 0, . . . , M . Then F̂ (t, Si (t))) =∑M
l=0 β̂lψl(Si (t)).

Once the optimal exercise times are estimated for each
path, the option’s value is estimated as

μ̂ls = 1

n

n∑
i=1

e−rt∗i C(t∗i , Si (·)).

This estimator is low-biased since it uses for each path an
estimate of the optimal exercise time. Also, note that even
when the n paths used to construct this estimator are inde-
pendent, the variables e−rt∗i C(t∗i , Si (·)) are not independent
since all n paths are used to estimate each t∗i . Figure 1
summarizes the LS approach using pseudocode.

To conclude this section, let us say a few words on how
a path in the LS approach is generated. Here we assume
that there exists an updating function φ(u, S(t), t, �t) that
generates a price vector at time t + �t given a value of
S(t) at time t . The vector u ∼ U [0, 1)d represents the
source of randomness, where the value of d depends on the
model used. Hence a path S(t1), . . . , S(tb) can be generated
using a vector u ∼ U [0, 1)s with s = db as its source of
randomness, by using S(tj ) = φ(u, S(tj−1), tj−1, �t), with,
for instance, u = (u(j−1)d+1, . . . , ujd). For example, in
a single-asset model under the Black-Scholes model (i.e.,
S(·) follows a geometric Brownian motion) – which is what
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is used in Section 4 – we have d = 1 since we can set

φ(u, S(t), t, �t) = S(t)e(r−σ 2/2)�t+σ
√

�t�−1(u),

where �−1 denotes the inverse of a standard normal CDF.
Note that the paths can also be generated using alternative
methods. For instance, with RQMC methods it is sometimes
useful to generate them in a non-sequential way by making
use of the Brownian bridge formula for the underlying
Brownian motion. We refer the reader to Chaudhary (2004),
Glasserman (2004) and L’Ecuyer (2004) for more on this.

3 VARIANCE REDUCTION TECHNIQUES

We now describe the techniques used to reduce the variance
of the LS estimator μ̂ls based on i.i.d. points u1, . . . , un ∼
U([0, 1)s) to generate the n paths.

3.1 Randomized Quasi-Monte Carlo

By using a highly-uniform point set to generate the paths
instead of i.i.d. points as in Monte Carlo, we can expect
the variance of the resulting estimator to be reduced. More
precisely, the idea here is to take a point set P̃n such that (i)
each ui in P̃n is uniformly distributed over [0, 1)s ; (ii) P̃n has
the same high uniformity as the original HUPS Pn. Point sets
like this can be obtained by using a deterministic construction
yielding n points and then randomizing it appropriately. A
simple example of this is to use a shifted Korobov lattice
(Korobov 1959), which is based on the deterministic point
set

Pn =
{

i

n
(1, a, a2, . . . , as−1) mod 1, i = 0, . . . , n − 1

}
,

and a randomization that shifts each point in Pn by a random
uniform vector v ∼ U [0, 1)s . That is,

P̃n = {(ui + v) mod 1, ui ∈ Pn},

where the mod1 operation is applied coordinate-wise.
Other examples of point sets and randomizations can be
found in Owen (1998), L’Ecuyer and Lemieux (2002).

Note that property (i) ensures that a path generated
from a point ũi in P̃n has the same distribution as when
Monte Carlo is used, while property (ii) suggests that an
estimator based on P̃n should have a smaller variance than a
Monte Carlo estimator based on a random point set. There
exist theoretical results providing support for this claim
(Owen 1998), but it can also be verified empirically. More
precisely, one can generate m i.i.d. copies of the RQMC
estimator in order to estimate its variance, and then compare
with the Monte Carlo estimator’s variance.
18
In the experiments reported in Section 4, in addition to
shifted Korobov lattices, we also use two types of digital
nets, which are widely used constructions for HUPS. The
first one is a Sobol’ net (Sobol’ 1967, Bratley and Fox 1988),
and the second one is a polynomial Korobov lattice (Lemieux
and L’Ecuyer 2003). In both cases, the randomization used
is a digital shift in base 2 (L’Ecuyer and Lemieux 2002).
This randomization technique is similar to the one used for
Korobov lattices, except the random shift v is added to each
point ui in the net using bitwise addition modulo 2. That
is, for a digital net Pn = {u1, . . . , un} in base 2, let

P̃n = {ui ⊕ v, i = 1, . . . , n},

where

u ⊕ v =
(
u1 ⊕ v1, . . . , us ⊕ vs

)
,

and for each j = 1, . . . , s,

uj ⊕ vj =
∞∑
l=1

((u
j
l + v

j
l ) mod 2)2−l ,

where u
j
l , v

j
l ∈ {0, 1} are from the binary expansion of

uj and vj , respectively. That is, uj = ∑∞
l=1 u

j
l 2−l and

vj = ∑∞
l=1 v

j
l 2−l (where we assume that u

j
l and v

j
l are 0

for infinitely many l).

3.2 Importance Sampling

Importance sampling (IS) is a well-known variance reduction
technique that is most useful for rare-event simulation, which
in the context of option pricing is relevant for options with
values close to 0. It has been used in that context for
European options in Vázquez-Abad and Dufresne (1998);
Glasserman, Heidelberger, and Shahabuddin (1999); Su
and Fu (2000), among others. Its use in the context of the
LS approach is discussed in Moreni (2003) and in Bolia,
Glasserman, and Juneja (2004). Here we use the framework
discussed in Moreni (2003), and incorporate the approach
of Glasserman, Heidelberger, and Shahabuddin (1999) –
designed for path-dependent European options – to find an
appropriate change of measure for generating the paths used
in the LS approach. More precisely, let Z = (Z1, . . . , Zs) be
a vector of normal random variables such that the discounted
payoff of the option at expiration time T can be written as
a function g(Z) of these variables. The (European) option
price can thus be written as

μeur =
∫

[0,1)s
g(z)fZ(z)dz1 . . . dzs,
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where fZ(z) is the density function of Z, which is assumed
to be N(0, Is), where Is denotes the s × s identity matrix.
For instance, in the case of an Asian call option on a
single asset based on an arithmetic average taken at times
tj = j�t , where �t = T/s, we have that

g(Z) = e−rT max(0,
1

s

s∑
j=1

S(0)e(r−σ 2/2)�t+σ
√

�tZj − K),

where Z1, . . . , Zs are i.i.d. standard normal random vari-
ables. With IS, the estimator for μeur becomes

1

n

n∑
i=1

e−rT g(z̃i )L(z̃i ),

where L(z) is the likelihood ratio given by L(z) =
fZ(z)/hZ(z), hZ(z) is the IS density, and z̃i is generated un-
der hZ(·). In Glasserman, Heidelberger, and Shahabuddin
(1999), IS densities of the form N(μ∗, Is) are considered,
and a method to find an approximately optimal vector μ∗ is
presented. In other words, they show how to choose a new
mean vector μ∗ for Z that will (approximately) give the
estimator with smallest variance among all possible choices
for μ∗. Using this μ∗ for the corresponding American op-
tion means we are presumably even further away from the
optimal choice, and as expected, we see in Section 4 that
IS applied this way does not work as well as for European
options, but can still be quite efficient in some cases.

In the context of American option pricing, the IS esti-
mator is obtained as follows (Moreni 2003):

1

n

n∑
i=1

e−rt∗i gt∗i (z̃i )Lt∗i (z̃i ),

where Lt∗i (z̃i ) is the likelihood ratio for the variables in
z̃i used from time 1 to time t∗i , and gt∗i (z̃i ) is the payoff
obtained at time t∗i . In other words, paths are generated
under the new measure, the LS approach is applied to find
the optimal exercise time for each of these paths, and the
estimator is then corrected by multiplying by the appropriate
likelihood ratio.

3.3 Control Variates

Control variates are another method widely used in simula-
tion, with several success stories in the context of finance.
We first quickly recall how this technique works, and then
focus on the case where it is used in combination with
RQMC methods. In the presentation that follows, we re-
strict ourselves to the case where only one control variate
based on an European option is used, which is what is done
in Section 4.
18
Let α(t, S(·)) be the payoff for some European option
whose value μα at time 0 can be evaluated analytically. We
can also estimate μα by

μ̂α = 1

n

n∑
i=1

e−rT α(T , Si (·)),

where S1(·), . . . , Sn(·) denote the simulated paths of the
underlying assets. Note that since we are dealing with
a European option, the above estimator does not depend
on the estimated optimal exercise times found in the LS
approach.

The CV estimator for the American option is then given
by

μ̂cv = μ̂ls + β(μα − μ̂α)

where β needs to be estimated.
When the n paths are generated using a (randomized)

HUPS, the optimal β can be written as (Hickernell, Lemieux,
and Owen 2005)

βrqmc = Cov(μ̂rqmc,α, μ̂rqmc,ls)

Var(μ̂rqmc,α)
,

where μ̂rqmc,α and μ̂rqmc,ls are the estimators for the Amer-
ican option and μα , respectively, based on a HUPS. We can
then estimate βrqmc by

β̂rqmc =
∑m

p=1 μ̂rqmc,ls,pμ̂rqmc,α,p − mμ̄rqmc,αμ̄rqmc,ls∑m
p=1 μ̂2

rqmc,α,p − mμ̄2
rqmc,α

,

where μ̂rqmc,α,p and μ̂rqmc,ls,p denote the version of the
estimators μ̂rqmc,α and μ̂rqmc,ls obtained with the pth ran-
domized copy of the HUPS,

μ̄rqmc,α = 1

m

m∑
p=1

μ̂rqmc,α,p,

and

μ̄rqmc,ls = 1

m

m∑
p=1

μ̂rqmc,ls,p.

The rqmc-cv estimator is then given by

μ̂rqmc,cv = 1

m

m∑
p=1

μ̂rqmc,cv,p,

where

μ̂rqmc,cv,p = μ̂rqmc,ls,p + β̂rqmc(μα − μ̂rqmc,α,p).
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4 NUMERICAL RESULTS

We now present some numerical results to illustrate the
performance of the different combinations of techniques on
an Asian American call option whose corresponding average
is taken over the b exercise times t1, . . . , tb. For the control
variate (CV), we use the corresponding European Asian
call on the geometric average (Kemna and Vorst 1990), for
which a closed-form solution exists.

The RQMC methods used are a shifted Korobov lattice
(Kor), a digitally shifted Sobol’ net, and a digitally shifted
polynomial Korobov lattice (PKor). In each case, we use
n = 4096 points (so this is the number of paths used in the LS
approach), and m = 100 randomizations. The parameters
used are T = 1 year, r = 0.05, S(0) = 50, with exercise
times of the form tj = j/b, j = 1, . . . , b, for some value
b: in Table 1, b = 16 and σ = 0.1, while in Tables 2 and
3, b = 64 and σ = 0.3. In each table, for each method and
exercise price K , we give the estimator for the option, with
the corresponding standard error below. We provide this
information for both the American and European options.

Several observations can be made from these results.
First, for in-the-money options, IS gives estimators with a
larger (negative) bias than without IS. More precisely, in
Table 1, when K = 45 the estimators with IS are about two
cents smaller than the ones without IS, while in Table 2, the
difference is about 16, 5 and 1 cents, for K = 45, 50 and
55, respectively. We believe this is due to the fact that as
the difference between the American option’s value and the
European one – called the early exercise premium – gets
larger, the two types of options are more and more different,
and thus the change of measure that is optimal for the
European option gets further away from the one that would
be optimal for the American option. This phenomenon is
discussed in Moreni (2003) as well.

A similar argument may be used to explain the per-
formance of the control variate: as the optimal exercise
time becomes smaller, the correlation between the Amer-
ican option payoff and the control variate – which uses a
payoff at expiration – becomes smaller and thus the control
variate becomes less effective. More precisely, for Monte
Carlo, the reduction factors in the standard error are about
3, 6 and 15 for K = 45, 50 and 55, respectively. The
corresponding factors in Table 2 are about 2.5, 4 and 5.5.
For the RQMC estimators, CV does not reduce the standard
error significantly for K = 45, while for K = 55, reduction
factors between 5 and 8 can be observed in Table 1, and
of about 2 in Table 2. By comparison, for the European
option CV can reduce the standard error by factors as large
as 92, as seen in Table 1, when K = 45 for Monte Carlo.
Note that as opposed to what happens for American options,
CV tends to work better for in-the-money options in the
European case.
188
Table 1: T = 1, σ = 0.1, and b = 16
MC Sobol’ Kor PKor

K = 45 American
naive 6.393 6.392 6.392 6.392

4.30 e-3 5.77 e-4 7.21 e-4 5.04 e-4
IS 6.377 6.377 6.378 6.377

9.67 e-4 3.23 e-4 4.18 e-4 3.11 e-4
CV 6.393 6.392 6.392 6.392

1.41 e-3 5.70 e-4 7.11 e-4 4.98 e-4
IS+CV 6.377 6.377 6.378 6.377

8.40 e-4 3.23 e-4 3.80 e-4 3.12 e-4
European

naive 6.055 6.055 6.055 6.055
4.69 e-3 2.32 e-4 2.97 e-4 1.63 e-4

IS 6.054 6.055 6.056 6.055
1.36 e-3 2.34 e-4 5.14 e-4 2.78 e-4

CV 6.055 6.055 6.055 6.055
5.51 e-5 1.68 e-5 1.95 e-5 1.01 e-5

IS+CV 6.055 6.055 6.055 6.055
5.10 e-5 1.44 e-5 2.07 e-5 1.53 e-5

K = 50 American
naive 2.000 1.999 1.999 1.999

3.38 e-3 4.87 e-4 6.70 e-4 4.63 e-4
IS 1.994 1.995 1.995 1.995

1.24 e-3 4.14 e-4 6.28 e-4 4.70 e-4
CV 1.998 1.999 1.999 1.999

5.44 e-4 3.93 e-4 4.27 e-4 3.53 e-4
IS+CV 1.995 1.995 1.995 1.995

4.65 e-4 2.70 e-4 3.17 e-4 2.45 e-4
European

naive 1.921 1.920 1.919 1.919
3.49 e-3 3.45 e-4 6.06 e-4 3.64 e-4

IS 1.918 1.920 1.919 1.920
1.30 e-3 4.59 e-4 6.77 e-4 5.22 e-4

CV 1.919 1.920 1.920 1.920
4.54 e-5 1.68 e-5 2.23 e-5 1.65 e-5

IS+CV 1.920 1.920 1.920 1.920
3.82 e-5 1.94 e-5 2.00 e-5 1.81 e-5

K = 55 American
naive 0.204 0.204 0.205 0.204

1.11 e-3 3.23 e-4 5.28 e-4 3.50 e-4
IS 0.204 0.204 0.204 0.204

2.74 e-4 1.54 e-4 1.82 e-4 1.50 e-4
CV 0.204 0.201 0.204 0.204

7.19 e-5 6.14 e-5 6.73 e-5 5.74 e-5
IS+CV 0.204 0.204 0.204 0.204

3.61 e-5 2.90 e-5 3.12 e-5 3.08 e-5
European

naive 0.202 0.202 0.203 0.202
1.11 e-3 3.13 e-4 5.34 e-4 3.54 e-4

IS 0.202 0.203 0.202 0.202
2.76 e-4 1.54 e-4 1.76 e-4 1.51 e-4

CV 0.202 0.202 0.202 0.202
3.76 e-5 2.31 e-5 2.88 e-5 2.35 e-5

IS+CV 0.202 0.202 0.202 0.202
2.09 e-5 1.50 e-5 1.79 e-5 1.61 e-5
8
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Table 2: T = 1, σ = 0.3, and b = 64
MC Sobol’ Kor PKor

K = 45 American
naive 8.243 8.223 8.218 8.221

9.96 e-3 2.75 e-3 2.79 e-3 2.85 e-3
IS 8.077 8.079 8.074 8.073

4.23 e-3 2.23 e-3 2.67 e-3 2.33 e-3
CV 8.227 8.224 8.218 8.222

3.80 e-3 2.65 e-3 2.68 e-3 2.82 e-3
IS+CV 8.079 8.079 8.074 8.074

3.49 e-3 2.19 e-3 2.50 e-3 2.18 e-3
European

naive 7.039 7.019 7.020 7.023
1.12 e-2 1.42 e-3 1.79 e-3 1.06 e-3

IS 7.018 7.020 7.022 7.018
3.73 e-3 1.76 e-3 1.91 e-3 1.72 e-3

CV 7.021 7.021 7.021 7.021
4.10 e-4 2.37 e-4 2.57 e-4 1.52 e-4

IS+CV 7.020 7.020 7.021 7.021
3.43 e-4 1.96 e-4 1.94 e-4 1.98 e-4

K = 50 American
naive 4.507 4.492 4.491 4.492

9.31 e-3 2.50 e-3 2.18 e-3 1.76 e-3
IS 4.454 4.454 4.451 4.451

3.38 e-3 1.92 e-3 2.02 e-3 1.91 e-3
CV 4.494 4.493 4.491 4.491

2.46 e-3 1.79 e-3 1.70 e-3 1.63 e-3
IS+CV 4.453 4.453 4.451 4.452

2.01 e-3 1.48 e-3 1.68 e-3 1.42 e-3
European

naive 4.036 4.022 4.023 4.024
9.47 e-3 1.82 e-3 2.09 e-3 1.51 e-3

IS 4.023 4.023 4.022 4.021
3.09 e-3 1.65 e-3 1.77 e-3 1.78 e-3

CV 4.022 4.023 4.023 4.022
3.77 e-4 2.22 e-4 2.47 e-4 1.54 e-4

IS+CV 4.022 4.022 4.022 4.022
2.51 e-4 1.47 e-4 1.85 e-4 1.36 e-4

K = 55 American
naive 2.236 2.225 2.225 2.225

7.32 e-3 2.36 e-3 2.40 e-3 1.87 e-3
IS 2.221 2.221 2.219 2.219

2.19 e-3 1.32 e-3 1.39 e-3 1.33 e-3
CV 2.228 2.224 2.225 2.225

1.29 e-3 1.08 e-3 1.13 e-3 1.07 e-3
IS+CV 2.219 2.220 2.219 2.220

8.34 e-4 7.40 e-4 7.63 e-4 6.54 e-4
European

naive 2.088 2.082 2.079 2.079
1.20 e-2 2.14 e-3 2.46 e-3 1.73 e-3

IS 2.081 2.080 2.080 2.079
2.06 e-3 1.28 e-3 1.34 e-3 1.28 e-3

CV 2.079 2.080 2.080 2.080
3.63 e-4 1.98 e-4 2.63 e-4 1.78 e-4

IS+CV 2.079 2.080 2.080 2.080
2.30 e-4 1.39 e-4 1.75 e-4 1.53 e-4
Table 3: T = 1, σ = 0.3, b = 64, and K = 60
MC Sobol’ Kor PKor

American
naive 1.030 1.027 1.025 1.021

5.39 e-3 2.13 e-3 2.57 e-3 1.95 e-3
IS 1.025 1.024 1.024 1.024

1.25 e-3 8.23 e-4 8.31 e-4 8.04 e-4
CV 1.025 1.025 1.023 1.024

7.29 e-4 5.41 e-4 6.54 e-4 5.60 e-4
IS+CV 1.024 1.024 1.024 1.024

3.69 e-4 3.24 e-4 3.45 e-4 3.15 e-4
European

naive 0.989 0.987 0.986 0.981
5.31 e-3 2.16 e-3 2.50 e-3 1.99 e-3

IS 0.985 0.984 0.985 0.984
1.20 e-3 7.80 e-4 7.93 e-4 7.85 e-4

CV 0.984 0.985 0.985 0.984
3.43 e-4 2.46 e-4 2.39 e-4 2.14 e-4

IS+CV 0.984 0.984 0.984 0.984
1.63 e-4 1.40 e-4 1.70 e-4 1.34 e-4

More generally, we can say that since both CV and IS
are designed to work well for the European Asian option, we
can expect them to work better for American option’s with
a smaller early exercise premium. The reduction factors
obtained in this case are quite interesting: for instance the
standard error for Monte Carlo is reduced by a factor of
about 30 when K = 55 in Table 1, when both IS anc CV
are used. The reduction factors continue to increase as
the option becomes more out-the-money, as seen in Table
3, where the parameters are the same as in Table 2, but
K = 60.

Turning to the performance of RQMC compared to IS
and/or CV, we see that Monte Carlo becomes competitive
with RQMC when IS and CV are applied, especially for
options that are out-of-the money (since as discussed above,
those are the cases where IS and CV work better). However,
RQMC estimators still outperform Monte Carlo in all cases.
Also, we can compare the individual performance of RQMC
with that of IS and CV taken alone: the reduction factors
brought by RQMC alone (compare the second to fourth
column to the first one for the naive row) vary between 2
and 8, which is not as good as the best performance seen
with CV (factor of about 30, as discussed previously), but is
better than what IS does, with the advantage that RQMC does
not make the bias larger. Note also that applying RQMC
does not require any extra work: in fact, simulations based
on HUPS tend to be faster than Monte Carlo.

5 CONCLUSION

In this paper we investigated the effectiveness of differ-
ent variance reduction techniques to improve estimators
obtained in the Longstaff-Schwartz approach. We only
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looked at one type of option – an Asian call – and have
seen that for this particular case, importance sampling and
a control variate can help reducing the variance, but that
their usefulness is sensitive to the choice of parameters for
the option. Randomized quasi-Monte Carlo methods have
been used as well, and have been seen to consistently reduce
the variance with respect to Monte Carlo, whether other
techniques are used or not.

For future research, it would obviously be important to
extend our investigations to other types of options. We expect
that in some cases, schemes other than the one used here
for importance sampling will need to be used. A promising
approach is the one discussed in Bolia, Glasserman, and
Juneja (2004).
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