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ABSTRACT

We are interested in estimating the bit error rate (BER)
for signal transmission in digital communication sys-
tems. Since BERs tend to be extremely small, it is
difficult to obtain precise estimators based on the use
of crude Monte Carlo simulation techniques. In this
paper, we review, expand upon, and evaluate a number
of importance sampling variance reduction techniques
for estimating the BER. We find that mixtures of cer-
tain “tailed” distributions with a uniform distribution
produce estimators that are at least competitive with
those in the literature. Our comparisons are based on
analytical calculations and lay the groundwork for the
evaluation of more-general mixture distributions.

1 INTRODUCTION

The bit error rate (BER) is defined as the probabil-
ity that an error occurs in the processing of one bit
of information transmission in a digital communication
system. A typical communication system includes a
transmitter (such as a laser or modulator), a commu-
nication channel (such as a fiber or electric cable), an
erbium doped fiber, and amplifiers. Knowledge of the
BER is necessary to understand the quality of service
(QoS) in a digital communication system. By reducing
the BER, the QoS is improved. Analytical approaches
used to compute the BER are often difficult because the
variance of the random noise (disturbance) associated
with the system is unknown. Consequently, it may be
necessary to employ another technique to estimate the
BER. One such approach is Monte Carlo simulation.

We describe here what we mean by using a Monte
Carlo simulation approach to estimate the BER for
communication systems. We conduct a simulation ex-
periment by utilizing a set of machines called a “BER
tester”, which consists of two components: (I) a pulse
pattern generator; and (II) an error detector. In compo-
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nent (I), we use a “bit sequence generator” to generate
a set of digits (called sent-digits) s = {s1, s2, . . . , sn},
such that each si ∈ {s0, s1}, for example, s0 = 0, s1 = 1.
The random noise is denoted as Z = {Z1, Z2, . . . , Zn},
where Zi follows a normal distribution with mean 0
and an unknown variance σ2. In component (II), we
receive the input signal X = {X1, X2, . . . , Xn}, where
X = s+Z. We then compare each Xi with a threshold
T and obtain the output signal Y = {Y1, Y2, . . . , Yn},
which is also called the received-signal,

Yi =

{
s1, if Xi > T

s0, if Xi ≤ T.

Finally, by comparing the sent digits s and received
digits Y , we count the number of incorrect bits received
in the output digits. The BER is estimated by the
ratio of incorrect digits to all digits received. That
is, the estimator of BER can be written as B̂ER =
n−1 ∑n

i=1 I(si �= Yi), where

I(si �= Yi) =

{
1, if si �= Yi

0, if si = Yi.

The above logic is illustrated in Figure 1 by the block
diagram of a common type of BER tester. (The block
diagram in Figure 1 is a modification of the diagram
used in Lee 2004.)

The simulation approach implemented in Figure 1
is called “crude simulation”. Estimation of the BER
using crude simulation requires a very large number
of samples, especially in the case of a low BER. For
example, if a communication system has a BER ≈ 10−12,
then the BER tester may need on the order of hours to
obtain a reasonable BER estimate (Patrin and Li 2002).
It is noteworthy that a low BER is often the case met
in practice; therefore, a challenge in using a BER tester
10
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Generate “sent-digits” s

systems
Communication

Receive input signal

Yi =

{
s1, if Xi > T

s0, if Xi ≤ T

(observed)

Compare s with Y

B̂ER =
∑n

i=1 I(si �= Yi)/n

(II) Error detector

Random noise Z

(observed)

X = s + Z

(I) Pulse pattern generator (unobserved)

Obtain “received-digits” Y

Figure 1: Block diagram of BER tester

to estimate the BER is to increase the efficiency of the
crude simulation.

A variance reduction technique, such as importance
sampling (IS) can be used to estimate a low BER ef-
ficiently. The key idea behind the application of IS
in estimating the BER lies in transforming the input
signal X into X∗ = {X∗

i }n
i=1, where each X∗

i follows
a distribution with a special “biasing” probability den-
sity function (p.d.f.) fX∗(x). Then the “received-digits”
become Y ∗ = {Y ∗

i }n
i=1, where

Y ∗
i =

{
s1, if X∗

i > T

s0, if X∗
i ≤ T.

The estimator of the BER is then given by B̂ER ≡
wn−1 ∑n

i=1 I(si �= Y ∗
i ), where w is an adjustment factor,

which depends on fX∗(x). Two major issues related to
using IS in a BER tester for the estimation of BER are:
(i) How can one determine the “optimal biasing p.d.f.”
fX∗(x), and (ii) how can one transfer X into X∗ such
that the p.d.f. of X∗ satisfies the optimal biasing p.d.f.
determined as a result of issue (i). To our knowledge,
all existing papers on the estimation of BER using IS
address this issue. For general articles discussing this
issue, the reader can consult Jeruchim (1984), Wang
and Bhargava (1987), and Wang and Lu (1993), Smith
(1997), Chen (2002), and Lee (2004).
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Because the distribution of error occurrence is a
tail distribution, many researchers consider the use of
such distributions as the Gaussian tail, Rayleigh tail,
and exponential tail as the biasing p.d.f. Shih and
Song (1995) combines a Gaussian tail and a uniform
distribution as a “mixed” biasing p.d.f., and they show
that the mixed performs better than does the Gaussian
tail distribution alone. This paper reviews, expands
upon, and evaluates the three well-known biasing p.d.f.s
for estimating the BER, including some simple “fixes”
to the mixed biasing p.d.f., e.g., the Gaussian tail and
the uniform. Our results disprove a conjecture from
Shih and Song (1995) that a mixed biasing p.d.f. of any
tail-like biasing distribution with a uniform distribution
should always be more robust than the initial tail-like
biasing distribution alone.

2 PROBLEM STATEMENT

The BER can be written as the sum of two types of
error probabilities, where a Type I error occurs when s0

is sent but a disturbance causes Zi + s0 to exceed the
threshold T ; and a Type II error occurs when s1 is sent
but a disturbance causes Zi + s1 to fall below T . That
is, when the threshold setting is constant, the BER can
be expressed by

BER = P(s1 is received|s0 is sent)P(s0 is sent)

+ P(s0 is received|s1 is sent)P(s1 is sent)

= P(s0 + Z > T |s0 is sent)P(s0 is sent)

+ P(s0 + Z ≤ T |s1 is sent)P(s1 is sent)

= P(X > T |s0 is sent)P(s0 is sent)

+ P(X ≤ T |s1 is sent)P(s1 is sent)

= P(s0 is sent)
∫ ∞

T

f0(x) dx

+ P(s1 is sent)
∫ T

−∞
f1(x) dx,

where f0 and f1 are the distributions of X when the
signals s0 and s1 are sent, respectively. The densities
can be sketched as in Figure 2.

f0 f1

s0
s1T

Figure 2: Densities of signal X: f0 when s0 is sent, f1
when s1 is sent
1
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Because the estimation of the probabilities of Type
I and Type II errors is similar, in this paper we assume
that P(s0 is sent) = 1; and therefore we estimate the
Type I error probability, defined as

p = P(X > T |s0 is sent) =
∫ ∞

T

fX(x) dx,

where fX(x) is used to replace f0(x) in Figure 2.
Suppose in some “ideal” situation, the “nominal”

variance σ2 of the p.d.f. fX(x) is known. Then the
BER p can be computed analytically or approximated
numerically. We call such p the nominal BER.

We can express p as an expectation of a certain
random variable as follows. Define

g(X) =

{
1, if X > T

0, otherwise.
(1)

Then we have

E(g(X)) =
∫ ∞

−∞
g(x)fX(x) dx

=
∫ ∞

T

fX(x) dx

= p.

Therefore, we can use Ê(g(X)), the sample average of
g(X), to estimate p. This approach is called crude
simulation, and the corresponding estimator is denoted
as p̂(c).

p̂(c) =
1
n

n∑
i=1

g(Xi). (2)

Recall that T is the threshold of the receiver, n is
the number of trials, and xi, i = 1, . . . , n, is a sample
of size n following the p.d.f. fX(x), the underlying dis-
tribution for the input signal X. The estimator p̂(c)

obtained via Equation (2) can then be compared with
the nominal BER with nominal variance σ2. If the es-
timator p̂(c) provides a higher BER than the nominal
BER, we then conclude that the true variance of the
noise in the underlying communication system is likely
being underestimated.

Crude simulation is time consuming when the BER
is very low. Importance sampling is a variance reduction
technique used in simulation experiments to increase the
simulation’s efficiency. The key concept behind IS is to
generate data from a so-called biasing distribution or
biasing p.d.f. (denoted as fX∗) instead of from the
original underlying distribution (fX). A good biasing
p.d.f. will mimic the underlying p.d.f. closely and will be
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more likely to indicate the location of the error region
(which is the so-called “importance region”).

We rewrite E(g(X)) as follows:

E(g(X)) =
∫ ∞

−∞
g(x)fX(x) dx

=
∫ ∞

−∞

[
fX(x)
fX∗(x)

g(x)
]

fX∗(x) dx

=
∫ ∞

−∞
[w(x)g(x)] fX∗(x) dx

= E(g∗(X∗)),

where

w(·) =
fX(·)
fX∗(·) (3)

is called an adjustment factor or weight factor, and
g∗(X∗) = w(·)g(X∗) is a function of the random variable
X∗ which follows p.d.f. fX∗(·) instead of fX(·).

The corresponding IS estimator of p is denoted as

p̂(IS) =
1
n

n∑
i=1

g∗(X∗
i ) =

1
n

n∑
i=1

w(X∗
i )g(X∗

i ),

where

g(X∗
i ) =

{
1, if X∗

i > T

0, otherwise,
(4)

which is the same as that used in Equation (1). The
weight w(·) is obtained by plugging the nominal vari-
ance σ2 and the corresponding nominal variance for the
biasing p.d.f. into fX(x) and fX�(x), respectively. The
estimator p̂(IS) obtained via Equation (4) can then be
compared with the nominal BER with variance σ2.

When T is constant, the Gaussian tail distribution
is known as the optimal biasing distribution (Kahn and
Marshall 1953, I and Lusignan 1986), and is defined by

fg(x) =




1
σ
√

2πQ(T/σ)
e−x2/(2σ2), x ≥ T

0, x < T,
(5)

where Q(a) ≡ P(Z ≥ a) =
∫ ∞

a
(2π)−1/2e−z2/2 dz, and

where Z follows the standard normal distribution.
What if the threshold setting T is random instead

of a constant? Consider the situation in which the
threshold of the receiver decision device is distorted
by some random noise or the underlying noise departs
slightly from the original Gaussian distribution. In both
cases, the threshold value is no longer a constant. So
let us assume that the threshold is a random variable
2
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which follows some p.d.f. fT (t) bounded within a certain
interval (c1, c2). Then BER can be written as

p = P(X > T |s0 is sent)

= P(X > T |T = t)fT (t)

=
∫ c2

c1

∫ ∞

t

fX(x)fT (t) dx dt.

(6)

Equation (6) indicates that p is the volume under a
two-dimensional integral. In summary, the problem
we address in this paper is to estimate p defined in
Equation (6), where the threshold setting T is a random
variable. In this paper, we consider the case when the
real threshold T follows a uniform distribution between
c1 and c2.

3 TAIL BIASING DISTRIBUTIONS

In this section, we review and expand upon the Gaussian
tail (fg), Rayleigh tail (fr), and exponential tail (fe)
biasing distributions. The corresponding IS estimators
using fg, fr, fe as the biasing distributions are denoted
as p̂g, p̂r, p̂e, respectively. In the following discussion,
the parameter c is denoted as the truncation point of
each tail biasing p.d.f. We use the mean squared error
(mse), which is equal to bias2 + variance, as the criterion
for comparison.

3.1 Gaussian Tail Biasing Distribution

The Gaussian tail biasing distribution (I and Lusignan
1986) is defined as

fg(x) =




1
σ
√

2πQ(c/σ)
e−x2/(2σ2), if x ≥ c

0, if x < c.

The mse, derived in Shih and Song (1995), has the
form

(c2 − c1) mse(p̂g)

=
∫ c2

c1

{
bias2(p̂g|T = t) + var(p̂g|T = t)

}
dt,

where the conditional bias and variance of p̂g are

bias(p̂g|T = t) =




Q(t/σ) − Q(c/σ), if c ≥ t

0, if c < t,

var(p̂g|T = t)
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=

{
0, if c ≥ t

Q(c/σ)Q(t/σ) − Q2(t/σ), if c < t.

3.2 Rayleigh Tail Biasing Distribution

The Rayleigh tail biasing distribution, proposed in
Beaulieu (1990) and Wang and Lu (1993), is defined
as

fr(x) =

{
2αxeα(c2−x2), if x ≥ c

0, if x < c.

We can derive the mse of p̂r as follows.

(c2 − c1) mse(p̂r)

=
∫ c2

c1

{
bias2(p̂r|T = t) + var(p̂r|T = t)

}
dt,

where the conditional bias and variance are

bias(p̂r|T = t) =




Q(t/σ) − Q(c/σ), if c ≥ t

0, if c < t,

var(p̂r|T = t)

=




0, if c ≥ t

e−αt2E1[t2(1/σ2 − α)]
8πσ2α

− Q2(t/σ), if c < t,

where E1(s) =
∫ ∞

s
e−y/y dy is the exponential integral.

Beaulieu (1990) compares the performance of BER
for Rayleigh with α = 1/(2σ2) and Gaussian tail distri-
butions assuming that the threshold is unknown. His
results show that Rayleigh with α = 1/(2σ2) performs
better than does the Gaussian tail distribution.

3.3 Exponential Tail Biasing Distribution

The exponential tail biasing, proposed in Wang and Lu
(1993), is defined as

fe(x) =

{
αeα(c−x), if x ≥ c,

0, otherwise,

where 0 < α < 1.
We can derive the mse of p̂e as follows.

(c2 − c1) mse(p̂e)

=
∫ c2

c1

{
bias2(p̂e|T = t) + var(p̂e|T = t)

}
dt,

where the conditional bias and variance are
3



Song, Chiu, and Goldsman
bias(p̂e|T = t) =




Q(t/σ) − Q(c/σ), if c ≥ t

0, if c < t,

var(p̂e|T = t)

=




0, c ≥ t

exp(−αc + α2σ2

4 )
2α

√
πσ

Q

(
t − ασ2/2

σ/
√

2

)
− Q2( t

σ ), c < t.

4 MIXED BIASING DISTRIBUTIONS

Shih and Song (1995) proposed the Gaussian tail and
uniform mixed distribution and showed that this dis-
tribution performs better than the Gaussian tail distri-
bution alone when the signal or the threshold setting
follows the uniform distribution. In this section, we in-
vestigate three examples of mixed biasing distributions.
The term “mixed” is chosen because the biasing p.d.f.s
combine two types of distributions:

1. the Gaussian tail and uniform distributions,
denoted as fgu,

2. the Rayleigh tail and uniform distributions, de-
noted as fru, and

3. the exponential tail and uniform distributions,
denoted as feu.

The general forms of the mixed biasing p.d.f.s are
similar for the three examples and can be illustrated
in Figure 3. The three parameters in Figure 3 are the
height h, 0 ≤ hk ≤ 1, and two widths a and b, where
0 ≤ a ≤ b ≤ c2 − c1.

Figure 3: Tail p.d.f. + uniform p.d.f.

We use p̂gu, p̂ru, p̂eu to denote the IS estimator of
the BER p obtained by using fgu, fru, feu as the bias-
ing distributions, respectively. We derive mean squared
error results in Sections 4.1–4.3, followed by correspond-
ing numerical results. The derivations and additional
details regarding the propositions can be found in Song,
Chiu, and Goldsman (2005).
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4.1 Gaussian Tail + Uniform Distribution

The p.d.f. of the Gaussian tail and uniform distribution
proposed by Shih and Song (1995) is as follows:

fgu(x) =




h, x ∈ [c1 + b − a, c1 + b]

(1 − ha)e− x2

2σ2

Q ((c1 + b)/σ)
√

2πσ
, x > c1 + b

0, otherwise.

The mse of p̂gu is given in Proposition 1.

Proposition 1.

(c2 − c1) mse(p̂gu)

=
∫ c2

c1

{
bias2(p̂gu|T = t) + var(p̂gu|T = t)

}
dt,

where the conditional bias and variance of p̂gu, derived
in Shih and Song (1995), are

bias(p̂gu|T = t)

=




Q(t/σ) − Q(c/σ),if c1 + b − a ≥ t

0, otherwise,
var(p̂gu|T = t)

=




0, if t ∈ [c1, c1 + b − a]

Q(
√

2t/σ) − Q(
√

2(c1 + b)/σ)
2hσ

√
π

− Q2(t/σ)

+Q2((c1 + b)/σ)
1 − ha

, if t ∈ [c1 + b, c1 + b − a]

Q((c1 + b)/σ)Q(t/σ)
1 − ha

− Q2(t/σ), ift ∈ [c1 + b, c2].

The results in this paper correct some typos in Shih
and Song (1995).

4.2 Rayleigh Tail + Uniform Distribution

The p.d.f. of the Rayleigh tail and uniform distribution
is

fru(x) =




h, x ∈ [c1 + b − a, c1 + b]

(1 − ha)2αxeα((c1+b)2−x2), x > c1 + b

0, otherwise,

where 0 < α < 1.
The mse of p̂ru is given in Proposition 2.
4
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Proposition 2.

(c2 − c1) mse(p̂ru)

=
∫ c2

c1

{
bias2(p̂ru|T = t) + var(p̂ru|T = t)

}
dt,

where the conditional bias and variance are

bias(p̂ru|T = t)

=




Q(t/σ) − Q(c/σ), if c1 + b − a ≥ t

0 otherwise,
var(p̂ru|T = t)

=




0, if t ∈ [c1, c1 + b − a]

Q(
√

2t/σ) − Q(
√

2(c1 + b)/σ)
2hσ

√
π

− Q2(t/σ)

+
e−α(c1+b)2

8πσ2α

[
E1

[
(c1 + b)2(1/σ2 − α)

]
1 − ha

]
,

if t ∈ [c1 + b, c1 + b − a]

e−αt2

8πσ2α

{
E1

[
t2(1/σ2 − α)

]
1 − ha

− Q2(t/σ)

}
,

if t ∈ [c1 + b, c2].

4.3 Exponential Tail + Uniform Distribution

The p.d.f. of the exponential tail and uniform distribu-
tion is defined as

feu(x) =




h, x ∈ [c1 + b − a, c1 + b]
(1 − ha)αeα((c1+b)−x), x > c1 + b

0, otherwise.

The mse of is given in Proposition 3.

Proposition 3.

mse(p̂eu) =

∫ c2

c1

{
bias2(p̂eu|T = t) + var(p̂eu|T = t)

}
dt

c2 − c1
,

where the conditional bias and variance are

bias(p̂eu|T = t)

=




Q(t/σ) − Q(c/σ), if c1 + b − a ≥ t

0 otherwise,
var(p̂eu|T = t)
2715
=




0, if g ∈ [c1, c1 + b − a]

Q(
√

2t/σ) − Q(
√

2(c1 + b)/σ)
2hσ

√
π

− Q2(t/σ)

+
exp(−αt + α2σ2

4 )
2α

√
πσ(1 − ha)

· Q

(
c1 + b − ασ2/2

σ
√

2

)
,

if t ∈ [c1 + b, c1 + b − a]

exp(−αt + α2σ2

4 )
2α

√
πσ(1 − ha)

Q

(
t − ασ2/2

σ/
√

2

)
− Q2(t/σ),

if t ∈ [c1 + b, c2].

4.4 Numerical Comparison

In this section we compare the “optimal” mixed biasing
p.d.f.s discussed in Sections 4.1–4.3 with the correspond-
ing original “optimal” biasing p.d.f.s. Consider p̂gu as
an example. The optimal mixed biasing pdf can be
obtained by using the optimal parameters a∗, b∗, and
h∗ such that the mse(p̂gu(a∗, b∗, h∗)) ≤ mse(p̂gu(a, b, h))
for all 0 ≤ h ≤ 1, and 0 ≤ a ≤ b ≤ c2 −c1. The optimal
values a∗, b∗, and h∗ are obtained via a numerical (grid
serach) method.

The results are summarized in Tables 1–3. We
consider a variety of choices for c1 and c2, for which the
BERs range from moderate to small values. We assume
that the variance of the Gaussian noise is σ2 = 1.

Table 1 shows that for three choices of (c1, c2), the IS
estimator with the mixed Gaussian biasing p.d.f. yields
smaller mses than does the Gaussian tail p.d.f. when
the threshold follows a uniform distribution. Table 1
corrects some typos in Shih and Song (1995).

Table 1: Gaussian tail and the mixed Gaussian

(c1, c2) (2,5) (3,5) (4,5)

Gaussian tail b∗ = 0.3 b∗ = 0.2 b∗ = 0.2

mse 1.32E-5 4.33E-8 3.63E-11

mixed b∗ = 0.8 b∗ = 0.6 b∗ = 0.5

(Gaussian h∗ = 1.2 h∗ = 1.5 h∗ = 1.9

+uniform) a∗ = 0.5 a∗ = 0.4 a∗ = 0.3

mse 8.06E-6 3.19E-8 2.96E-11

mse-reduction 39% 26% 18%

Table 2 shows that for the three choices of (c1, c2),
the IS estimator with the mixed Rayleigh biasing p.d.f.
yields essentially the same mse compared to the Rayleigh
tail p.d.f. when the threshold follows a uniform distribu-
tion. First, we can see that the optimal setting occurs
when α ≈ 1/(2σ2), which is consistent with the results
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in Beaulieu (1990). Second, the results between the
Rayleigh tail and the mixed Rayleigh + uniform dis-
prove the conjecture from Shih and Song (1995) that
a mixed biasing p.d.f. of any tail-like biasing distribu-
tion with a uniform distribution should always be more
robust than the initial tail-like biasing distribution.

Table 2: Rayleigh tail and the mixed Rayleigh

(c1, c2) (2,5) (3,5) (4,5)

Rayleigh tail α∗ = 0.55 α∗ = 0.55 α∗ = 0.50

b∗ = 0.05 b∗ = 0.05 b∗ = 0.05

mse 6.42E−8 4.01E−10 7.44E−13

α∗ = 0.55 α∗ = 0.55 α∗ = 0.50

mixed b∗ = 0.05 b∗ = 0.05 b∗ = 0.05

(Rayleigh h∗ = 0.0 h∗ = 0.0 h∗ = 0.0

+uniform) a∗ = 0.0 a∗ = 0.0 a∗ = 0.0

mse 6.42E-8 4.01E-10 7.44E-13

mse-reduction 0% 0% 0%

Table 3 shows that for two of the cases, the IS esti-
mator with the mixed exponential biasing distribution
yields a smaller mse than those with the exponential
tail p.d.f. alone when the threshold follows a uniform
distribution with smaller range.

Table 3: Exponential tail and the mixed exponential

(c1, c2) (2,5) (3,5) (4,5)

Exp tail α∗ = 1.0 α∗ = 1.0 α∗ = 1.0

b∗ = 0.3 b∗ = 0.25 b∗ = 0.25

mse 9.52E−6 4.73E−8 4.83E−11

α∗ = 1.0 α∗ = 1.0 α∗ = 1.0

mixed b∗ = 0.3 b∗ = 0.9 b∗ = 0.8

(Exp h∗ = 0.0 h∗ = 1.2 h∗ = 1.4

+uniform) a∗ = 0.0 a∗ = 0.7 a∗ = 0.6

mse 9.52E-6 4.16E-8 3.77E-11

mse-reduction 0% 12% 22%

5 CONCLUSION

This paper investigates the idea of using a mixed biasing
distribution to estimate the bit error rate for a linear
binary digital communication system with a threshold
logic receiver. The performance measure used in this
paper is the mean squared error. The statistical per-
formance of the mixed distribution is superior to that
271
of the corresponding initial tail-like biasing distribution
if the initial biasing distribution is a Gaussian tail or
an exponential tail. The mixed distribution performs
essentially the same as the initial tail-like biasing dis-
tribution if the initial biasing distribution is a Rayleigh
tail.

The theoreticalmse expressions provide a reasonable
foundation to search for the optimal biasing distribution
when the threshold T is a random variable; and the
three mixed biasing p.d.f.s studied in this paper lay the
groundwork for the evaluation of more-general mixture
distributions.
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