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ABSTRACT

The purpose of this paper is twofold. First, it serves to

describe a new strategy, called Structured Database Monte

Carlo (SDMC), for efficient Monte Carlo simulation. Its

second aim is to show how this approach can be used for

efficient pricing of path-dependent options via simulation.

We use efficient simulation of a sample of path-dependent

options to illustrate the application of SDMC. Extensions

to other path-dependent options are straightforward.

1 INTRODUCTION

The purpose of this paper is twofold. First, it serves to

describe a new strategy, called Structured Database Monte

Carlo (SDMC), for efficient Monte Carlo simulation. The

word “strategy” is deliberately chosen to emphasize that

the approach is not designed to address a specific prob-

lem, using a specific method, but rather a new way of

designing and implementing MC algorithms. Its second

aim is to show how this approach can be used for efficient

pricing of path-dependent options via simulation. We use

efficient simulation of a sample of path-dependent options

to illustrate the application of SDMC. Extensions to other

path-dependent options are straightforward.

In Monte Carlo simulation, efficient strategies seek

to reduce the variance of the MC estimator and they are

generally referred to as variance reduction techniques. It

is interesting and noteworthy that the small and delightful

1964 book of Hammersley and Handscomb (Hammersley

and Handscomb 1964) has remained a basic reference on

Monte Carlo methods and variance reduction techniques to

this date and is regularly referred to in research publications.

This points to the fact that many of the main strategies for

improving efficiency and for variance reduction date far back.

Many of the results to follow have consisted of adaption

of these techniques to specific domains of application. It is

well established that “the greatest gains in efficiency from

variance reduction techniques result from exploiting specific
7031-4244-0501-7/06/$20.00 ©2006 IEEE
features of a problem, rather than from generic applications

of generic methods.” (Glasserman 2004) Most methods rely

on discovering such specific features for each problem, one

problem at a time, and depend heavily on the ingenuity of

the user of the technique.

The point of departure of SDMC is an attempt to

develop effective variance reduction techniques that are

in fact generic methods and can be generically applied.

We rely on basic techniques of variance reduction such

as stratification, control variate, and importance sampling,

to name a few. The novelty of SDMC is in providing

generic methods for defining strata, control variates, and new

sampling measures when the above techniques are used. As

will be described in the paper, SDMC relies on information

obtained from sample prices (sample performances more

generally) at one parameter value, say θ0, to define strata

(assume stratification is being used) at all “neighboring” θ.

The method is not demanding on user ingenuity.

The idea of using information from paths at a neigh-

boring parameter value to estimate a quantity at another

parameter value is at the heart of the method of Perturba-

tion Analysis (PA) used to derive performance sensitivity

information (see, e.g., Ho and Cao 1991 and Glasserman

1991). SDMC, while different in its objective and appli-

cation from PA, uses a similar principle and is indebted

to developments in PA. Perturbation Analysis, closely re-

lated to the variance reduction technique of common ran-

dom numbers, pairs paths whose “input” variables are only

slightly different (have small perturbations). In the SDMC

approach paths at two parameter values are also paired via

their reference to the same element of the database. The

goal of SDMC, however is to obtain information about the

global dependence of the sample performance on sample

paths while PA seeks to obtain local information about the

dependence of the performance on parameter values.

The rest of the paper is organized as follows. A review

of efficient estimation strategies is provided in Section 2

in order to provide a context for positioning the SDMC

approach. SDMC method is introduced in Section 3. Section
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4 describes how stratification techniques can be used in

the context of a structured database. Section 5 provides

experimental results results when SDMC is applied to a

number of path dependent options.

2 A REVIEW OF EFFICIENT ESTIMATION

STRATEGIES

In general, estimation (approximation/evaluation) via MC

simulation corresponds to estimating the expected value of

an appropriately defined random variable. Specifically, let

(Ω,F , P ) be a probability space, X a random element of

Ω corresponding to the probability measure P (i.e., for all

A ∈ F , P (X ∈ A) = P (A)), and f(.; θ) : Ω → R a

parametric family of functions defined on Ω (θ ∈ Θ). Let

Y (θ) = f(X, θ) and define J(θ) as

J(θ) = E[Y (θ)] = E[f(X; θ)]

=

∫
Ω

f(X; θ)dP =

∫
Ω

Y (θ)dP.

The objective is to evaluate J(θ) efficiently.

Assume that Ω is the path space of a stochastic process,

f(.; θ) is a function that assigns a real number to each path,

say the sample payoff, and θ is a parameter of the problem.

In simulation there is a chain of transformations that takes

place before a path is generated: A set of i.i.d. uniform (0,1)

random variables are sampled, these are transformed into

a set of more general non-uniform variates from which the

path, X , is generated and finally Y = f(X; θ) is evaluated.

Let us explicitly write out these transformations. Let [0, 1]d

be the d-dimensional hypercube where the uniform[0,1]’s

reside (theoretically, d may be ∞). Let Ω
′

denote the space

of non-uniforms. Then we have

[0, 1]d
T

−→ Ω
′ K
−→ Ω

f(.;θ)
−→ R.

J(θ) can be written as

J(θ) =

∫
[0,1]d

f1(U ; θ)dP1

=

∫
Rd

f2(W ; θ)dP2 =

∫
Ω

f(X; θ)dP.

where the random elements U and W and measures P1 and

P2 are appropriately defined.

Our purpose for specifying the above equivalent in-

tegrals is to point out that different methods that seek to

estimate J(θ) do not adopt the same domain as their basic do-

main of integration. Efficient estimation strategies/methods

depend critically on exploiting the structure of the func-

tion to be integrated and/or the structure of the underlying

domain. As will be seen, adopting the elements of one
704
of the above domains as the primitives of the method has

important implications as to which function is supposed to

provide the structure to be utilized. Primitives for some

methods are the underlying uniforms, for some they are

the non-uniform samples, and for others, they are the final

paths. As will be discussed below, the primitives in the

SDMC approach in most cases will be the paths.

We briefly review some of the main existing methods of

approximation/estimation. Specifically we consider numer-

ical integration (see, e.g., Krommer and Ueberhuber 1998),

basic Monte Carlo (see, e.g., Bratley, Fox, and Schrage

1987, or Glasserman 2004), Quasi-Monte Carlo (see, e.g.,

Niederreiter 1992, or Fox 1999) and three basic variance

reduction techniques for Monte Carlo (see, e.g., Bratley,

Fox, and Schrage 1987, or Glasserman 2004).

With some abuse of notation let us use the same set of

notations for all methods in order to highlight the similarity

between their algorithms and be able to see the difference

between the strategies they utilize. Let

J =

∫
Ω

f(X)dP,

and X1, · · · ,Xn be a random sample from Ω, set Yi =
f(Xi). Let X = (X1, · · · ,Xn) and Y = (Y1, · · · , Yn).

All methods use an estimator of the following form

Ŷ (n) = w1Y1 + · · · + wnYn =
n∑

i=1

wiYn.

The difference between the methods is in how they select the

samples X1, · · · ,Xn in Ω and in their choice of weights

w = (w1, · · · , wn). We now comment on each of the

methods, their choice of weights and samples, and their

effectiveness.

1. Numerical integration. It is very effective when

Ω = [0, 1] (or a subset of R). The Xi’s are con-

strained to deterministic subintervals of [0, 1], i.e.,

they are carefully selected. Selection of wi’s are

determined by different functional approximations

to f and depend heavily on the sampled values of

f , namely on Y . This method has the fastest rate

of convergence for low dimensional d but rapidly

becomes inefficient (or infeasible) as d increases.

In this case the structure of the domain [0, 1]d plays

an important role; the method attempts to cover

[0, 1]d closely while at the same time adapting to

f . The tension between these two goals and, in

particular, the desire to cover [0, 1]d closely makes

this strategy ultimately inefficient for large d.

2. Standard Monte Carlo. This method is available

for very general Ω. Xi’s are randomly selected

from Ω. wi = 1
n are independent of Y . The rate
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of convergence is the slow rate of O( 1√
n
). In this

case there is no attempt to cover all regions of Ω
closely or any attempt to adapt the sampling to the

important areas, i.e., no attempt to take the structure

of f into account. It is these deficiencies of the

standard Monte Carlo that the variance reduction

techniques seek to remedy.

3. Quasi-Monte Carlo. The domain of Quasi-MC is

in an important way restricted to [0, 1]d. Xi’s are

carefully selected from Ω = [0, 1]d so as to form

a low discrepancy sequence. This is an approach

to ensure that [0, 1]d is closely sampled. wi = 1
n

are independent of Y . The rate of convergence of

Quasi-Monte Carlo deteriorates as d increases. The

innovation in this method is its strategy to cover

[0, 1]d intelligently and with a smaller number of

samples (compared to numerical integration). It

does not adapt itself to the function f and in fact,

similar to the standard Monte Carlo, it ignores f
completely.

4. Variance Reduction techniques. There are quite

a number of techniques for reducing the variance

of the standard MC. We limit ourselves to dis-

cussing three of the basic techniques. Most of

these techniques can be used in conjunction with

each other; they are also intimately related to each

other where, from an appropriate perspective, one

can be viewed as a subset of the other.

• Control variate. Xi’s are randomly selected

from Ω. wi’s depend on Y and samples of a

secondary variable Z called the control vari-

ate. The effectiveness of the technique de-

pends entirely on the correlation between Z
and Y (higher correlation, more effective).

Utilizing a control variate Z can be viewed

as an indirect attempt to capture some of the

underlying structure of f . The selection of

Xi’s and hence the corresponding Zi’s are

not controlled. There is no generic method

for selecting effective control variates. User

ingenuity is the key here.

• Stratified sampling. Xi’s are sampled in such

a way that a specified number of samples from

each stratum is selected (hence this method

applies some control over the choice of Xi’s,

similar to numerical integration). wi = 1
n

if standard stratified sampling is used; the

weights are adjusted by a discrete likelihood

ratio if a sampling scheme other than pro-

portional sampling induced by the probability

measure P is used. Straightforward stratifica-

tion has some similarity with the strategy of

numerical integration in its desire to cover the
70
domain. On the other hand, it is significantly

more flexible, both in aiming for a far coarser

coverage, and in being able to adapt to the

structure of f . Again, the choice of the strata

is problem dependent and at the discretion of

the user.

• Importance sampling. Xi’s are randomly se-

lected according to a different probability mea-

sure Q. The probability measure Q can be

viewed as an indirect way of controlling the

choice of Xi’s so as to take the underlying

structure of f into account. wi’s are likeli-

hood ratios and are used to remove the bias

due to sampling from Q. Importance sampling

is one of the most sophisticated and effective

variance reduction techniques. However, us-

ing Q can be viewed as an indirect way of

tilting/biasing the sampling towards the most

“important” samples. The effectiveness and

the degree of control over sampling impor-

tant regions can be improved if it is used in

conjunction with Stratified Sampling.

Having reviewed the above techniques we are prepared to

introduce the SDMC method.

3 STRUCTURED DATABASE MONTE CARLO

SDMC aims to capture/identify the “structure” of the func-

tion f at a nominal parameter value θ0 and to use this

knowledge in designing more effective variance reduction

techniques when estimating J(θ) at “neighboring” values

of θ.

The following are the basic steps of the algorithm.

First, the primitives of the simulation need to be selected.

(In examples to follow, primitives are paths of the standard

Brownian motion). Next a large database of the primitives

needs to be generated. The most straightforward approach is

to generate the primitives from the given probability measure

defined on the set of primitives. (Sampling according to a

more general user defined measure is possible.)

Let us denote the database by ΩN where N =
|ΩN | is the size of the database. The probability space

(ΩN , 2ΩN , PN ) where PN is the uniform measure is now

the basic probability space of our estimation problem. Note

that we have changed the estimation problem to an approx-

imate version of its original form. Namely, we are now

interested in estimating

J1(θ) = E[f(X1; θ)] =
1

N

N∑
i=1

f(ωi; θ).
5
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where X1 is a random element of ΩN selected uniformly.

For large N , J1(θ) approximates J(θ) closely.

Once the database of primitives is generated, f(., θ0) is

used to “structure” the database. The appropriate structure

may depend on the method of variance reduction to be

used. In what follows, we impose a linear order on the

database using f(., θ0) or a function closely related to

f(., θ0). This linear order induces some homogeneity of

function values, i.e., values that have close database indices

(|i − j| < k for “small” k), have “close” function values

(|f(ωi; θ0) − f(ωj ; θ0)| < a for “small” a). If the sample

performance is continuous with respect to θ, the homogeneity

induced survives when θ is perturbed.

The last step of SDMC is to use the imposed struc-

ture to design effective variance reduction techniques. The

implementation of this step depends on the variance re-

duction technique being used. In this paper we illustrate

one possible implementation of this step when stratification

technique is used.

The above basic steps of the approach are summarized

in the following:

1. Data base generation: Generate a “large” set of

samples (paths) from Ω according to the probability

measure P . Let {ω1, · · · , ωN} denote the set of

paths generated. From now on we refer to this

finite set of paths as the database and denote it by

DB.

2. Structuring the database DB: Induce a linear

order on the database DB according to the values

f(ω, θ0). In other words,

ωi ≤ ωj ⇔ f(ωi, θ0) ≤ f(ωj , θ0).

3. Simulation/sampling at θ 6= θ0: Sample from the

database DB, taking into account the structure of

the database. (We expect that the structure remains

approximately unperturbed if θ is close to θ0.)

Before making some general comments about SDMC

strategy we provide an example by way of a graph to

illustrate what we hope to gain from this approach.

This example refers to pricing an arithmetic Asian

option. At this point, however, the specifics of the problem

are less important. One can view the problem as follows.

25000 sample paths are generated. They are ordered based

on the payoff of the option at the volatility parameter σ = 0.2.

The points on the horizontal axis correspond to sample paths.

Now assume that we wish to solve the estimation problem

at σ = 0.1 or σ = 0.3. In this case, as can be seen from

Figure 2, the structure that is induced on the database is to

a great extent maintained for σ = 0.1 and σ = 0.3. While

the value of the path payoffs when σ = 0.1 or σ = 0.3
are not known (before sampling), by viewing the samples
706
Figure 1: Database Ordered for σ = 0.2, Payoff for σ =
0.1, 0.2, 0.3

at σ = 0.2 we already know which paths are important

for σ = 0.1 and σ = 0.3 (those to the right of the axis).

Moreover, the monotonicity induced by paths at σ = 0.2 is

in some sense maintained for σ = 0.1 and σ = 0.3. This

additional information about the underlying domain, as we

will see shortly, can be exploited very effectively to design

very efficient stratification algorithms. It is important to

note that in this example, to generate each path, 64 random

variables are used. Therefore, the estimation problem can

be viewed as the evaluation of a 64-dimensional integral.

The ordering induced by the paths at σ = 0.2 has in effect

turned the problem into that of integrating two single variable

functions whose graphs are depicted above.

We make the following general comments about the

SDMC strategy.

1. As mentioned earlier “the greatest gains in effi-

ciency from variance reduction techniques result

from exploiting specific features of a problem,

rather than from generic applications of generic

methods.” Most methods rely on discovering such

specific features for each problem, one problem at

a time. We rely on the problem itself to reveal the

structure via inducing an order on the database.

2. The SDMC strategy implies two setup costs that

may not be minimal. The first is that of generating

the database and the second is that of ordering

it. There are important classes of problems for

which the database can be generated once and

for all. Consider classes of stochastic processes

that are driven by vectors of Brownian motion. For

example, many models in mathematical finance and

many in statistical physics fall into this category.

The cost of ordering and reordering the database

can not be avoided. The issue to be explored is

the extent of utility of a database ordered at θ0 as
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θ deviates from θ0. One expects the answer to be

problem dependent. It should be stressed that in

many instances the reordering of the database can

take place “off-line” and during the “downtime”

of the estimation problem.

3. It is worth noting that the perspective of SDMC

is closer to the perspective of Lebesgue integra-

tion than that of Riemann integration prevalent in

all the methods we reviewed above. This differ-

ence is a key point of departure. Let us clarify

this critical contrast. A recent book on computa-

tional integration states “Many mathematical dis-

ciplines (such as probability theory, statistics, or

functional analysis) rely heavily on the concept of

Lebesgue integration. However, the definition of

Lebesgue integrals is inherently nonconstructive,

which is why Lebesgue integration is important

only in mathematical theory. The concept relevant

to computational practice is the more restricted,

but constructive concept of Riemann integration,”

(see, Krommer and Ueberhuber 1998). We con-

tend that the Lebesgue perspective can, in fact, be

computationally very beneficial.

In Lebesgue integration it is the range of the func-

tion that provides the structure and there is less

emphasis on the topology of the domain. The

pullback by the function f of the Borel sets in the

range, i.e., the well behaving real line R, are the

relevant sets in the domain. In a similar fashion,

SDMC structures the domain (orders the set of

paths) using the values of the function f(.; θ0). As

we will see, this approach can lead to significant

benefits.

4 SDMC & STRATIFICATION

In this section we discuss how the monotonicity or approx-

imate monotonicity of the database can be used to design

very efficient variance reduction algorithms. We limit our-

selves to the stratification technique. It is not difficult to see

how similar advantages can be gained when other variance

reduction techniques are used.

We briefly review the stratification technique (for a

thorough description of the technique see Glasserman

2004, Section 4.3).

Assume {A1, · · ·Ak} is a partition of Ω. Let pi =
P (Ai), µi = E[Yi] = E[Y |X ∈ Ai] and σ2

i = V ar[Yi] =
V ar[Y |X ∈ Ai].

Direct or proportional stratified sampling selects ni =
⌊n ∗ pi⌋ samples randomly from Ai and uses the following
707
estimator

Ŷ (n, k) =

k∑
i=1

pi ·

∑ni

j=1 Yij

ni
.

It can be shown easily that this estimator is unbiased. How-

ever, this is not the best one can do. In other words,

proportional sampling (i.e., ni = ⌊n ∗ pi⌋) is not neces-

sarily the best allocation possible; note that this allocation

completely disregards the structure of f , unless the parti-

tioning of Ω into A1, · · · , Ak has taken this structure into

account. Given a fixed partition, it is well known that the

optimal allocation of samples is according to quantities qi

(i.e., n
′

i = ⌊n ∗ qi⌋) where

qi =
piσi∑K

j=1 pjσj

.

The estimator in this case needs to be adjusted to

Ŷ ′(n, k) =

k∑
i=1

pi

n′
i

n′

i∑
j=1

Yij =
1

n

k∑
i=1

pi

qi

n′

i∑
j=1

Yij ,

and the minimum variance is given by

σ∗2 = (

K∑
i=1

piσi)
2.

In general, strata definition, i.e., the appropriate par-

titioning of Ω, is problem dependent and is left to the

creativity of the user. Once a partition is selected, optimal

sampling within strata requires knowing σi’s or estimating

them. In almost all cases, these values are not known in

advance and need to be estimated via pilot runs.

The key difficulty in both steps of (a) strata definition

and (b) optimal allocation of samples is the fact that the

structure of f is not known in advance. This difficulty is

to a great extent removed in an appropriately structured

database. In what follows we describe one possible strata

definition approach in the context of SDMC. In the SDMC

context:

1. The problem of partitioning the database ΩN is

transformed into that of partitioning a linearly or-

dered set (similar to a subinterval of R) over which

the function f(.; θ) is monotone (precisely or “ap-

proximately”). In what follows, assume it is mono-

tone.

2. Assuming monotonicity of f(.; θ) over the

database, any function evaluation provides a great

deal of relevant information in the following sense.

Assume f(ω0; θ) is evaluated. Then for all ω < ω0

we know f(ω; θ) ≤ f(ω0; θ) and for all x > x0
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we know f(x; θ) ≥ f(ω0; θ). This information has

significant implications for strata construction.

3. Consider two elements of the database a and b
where a < b. If the points between a and b are

sampled randomly from the database (think of [a, b]
as a stratum), then the standard deviation of the

random function values are bounded by a multiple

of (f(b)−f(a)). In this case, (f(b)−f(a)) can be

used as substitute for σi. Therefore, again, a limited

number of function evaluations from the database

provides a significant amount of information that

can be used for designing appropriate strata.

Given the form of the minimum variance when optimal

sample allocation is used (i.e., σ∗2 = (
∑K

i=1 piσi)
2), we

use the following algorithm:

1. Initialization: Let ω[0] and ω[N ] be the smallest

and the largest values of the database (note that

the database is linearly ordered). Select the point

ω[N/2] at the midpoint of the database. [ω[0], ω[N/2]]
and [ω[N/2], ω[N ]] form a partition of the database

into two (equal size) strata. (If N is even choose

ω[(N−1)/2] as the “midpoint.”)

2. Iteration: Assume the database is partitioned into

n strata. For each stratum (say [ωi, ωi] evaluate

p̂iσ̂i = [f(ωi) − f(ωi)](ωi − ωi). Select the stra-

tum with the maximum index p̂iσ̂i and divide that

stratum into two equal size strata. (In case of ties

select any of the strata to subdivide.)

This partitioning algorithm is not in general the optimal

stratification algorithm but it has the useful property of

requiring only one additional partition point in order to

go from k to k + 1 strata. In other words, the partitioning

sequence goes through a refinement of already existing strata

rather than defining a whole new set of strata. Similar choices

are made in numerical integration and in Quasi-Monte Carlo.

Taking some liberty with precise definitions we offer

the following connection between the above stratification

approach and methods of adaptive subdivision for numerical

univariate integration (see Krommer and Ueberhuber 1998,

Chapter 8). Let ΩN = {ω1 < · · · < ωN}. For large N , the

mapping ωi → i/N defines a “one-to-one” map between

the ordered database and the unit interval. Our estimation

problem in this case is equivalent to evaluating

∫ 1

0

f(x; θ)dx.

The above stratification approach is the same as an adap-

tive subdivision approach for calculating the above integral

under the assumption that f(.; θ) is monotone. In this case

(and in our estimation problem) at each step of stratifica-
70
tion a precise (deterministic) error bound to the estimation

problem is available and repeated subdivision (further strat-

ification) leads to more accurate estimates. In other words,

if we know that f(.; θ) is monotone, no sampling is needed

and one can have an efficient deterministic algorithm for es-

timating the desired expected value. In most cases however,

f(.; θ0) is approximately monotone and random sampling

a la stratification is needed.

We next give a few examples and computational results

to illustrate the effectiveness of the approach.

5 PRICING PATH-DEPENDENT OPTIONS

For illustrating examples we consider pricing of simple

Asian, lookback, and hindsight options (See, e.g., Grant,

Vora, and Weeks 1997, Vázquez-Abad and Dufresne 1998,

Glasserman, Heidelberger and Shahabuddin 1999, Ross and

Shanthikumar 2000, and Glasserman and Staum 2001 for

a sample of efficient simulation methods applied to pricing

path-dependent options). In all the cases we consider, the

sample payoffs are continuous with respect to parameters

of the model. Discontinuous cases such as digital or barrier

options require modified algorithms and are not included

here. See Zhao, Zhou, and Vakili 2006 for a discussion of

these cases.

Let S(t) be the price of an asset/security at time t
(t ∈ [0, T ]) and assume it follows a geometric Brownian

motion (GBM) with constant drift and volatility (Black

Scholes model), i.e.,

dS(t) = µdt + σdW (t)

where {W (t); t ≥ 0} is a Brownian motion (BM). In a

risk neutral setting the asset price follows the following

stochastic differential equation (with an abuse of notation

we use S(t) for the asset price in this case as well).

dS(t) = rdt + σdW (t)

where r is the risk free rate. (SDMC applies equally well

to other more general asset price models.)

Let a discrete set of monitoring instances be given by

{0 < t1 < · · · < tk = T}. Pricing of an Asian option at a

discrete set of points in time is one of the simplest option

pricing problems that requires simulation even when the

asset price follows a geometric Brownian motion. Let

S̄A =
1

n

k∑
i=1

S(ti).

Then the Asian option payoff is given by

L = [S̄A − K]+
8
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Figure 2: Database Ordered for K = 50, Payoff for K =
45, 50, 55

where x+ max{x, 0}. Let

SM = max{S(t1), · · · , S(T )}.

The payoff of a look-back option is

L = SM − ST ,

and that of the hindsight option is

L = [SM − K]+.

The pricing problem is therefore equivalent to the es-

timation of the following expected value

J(r,K, σ) = E[e−rT L].

The database we consider consists of 105 standard Brownian

paths randomly generated. The database is ordered based

on S̄A for Asian option, based on SM − ST for lookback

option, and based on SM for hindsight option. In each

case with r = 0.05, σ = 0.2 were used. We perturb these

parameters (as well as the strike price K) as follows (the

nominal values are given in bold):

r 0.01 0.05 0.10

σ 0.1 0.2 0.3

K 45 50 55

Note that the perturbations in this context are not small

perturbations. Figures 2, 4, and 5 show how the ordered

payoff of the Asian option (ordered based on the nominal

values) is perturbed as a result of parameter perturbations.

In the case of the strike price the monotonicity is retained

strictly. In the case of the risk free rate (drift parameter)
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Figure 3: Database Ordered for r = 0.05, Payoff for r =
0.01, 0.05, 0.1

and volatility (σ) after perturbations, local monotonicity is

lost; however, in some sense some global monotonicity is

retained. This feature forms the basis of variance reduction

that we achieve (see Tables 1 -3).

In the case of adaptive strata definition, the strata and

the number of samples in each stratum were determined

based on the payoff at the nominal parameter values and the

strata and the number of samples were not changed when

the parameters were perturbed. In all cases the database

was partitioned into 20 stratum, estimators were based on

1000 samples. Variance estimates are based on estimates

from 100 replications.

Table 1: Asian Option, σ = 0.1, r=0.05, K=55

Method Mean & Variance

Standard Monte Carlo 0.1816 . . . 4.66e − 004
SDMC & equal strata 0.1821 . . . 1.10e − 004
SDMC & adaptive strata 0.1822 . . . 1.60e − 006

Table 2: Lookback Option, σ = 0.3

Method Mean & Variance

Standard Monte Carlo 10.8119 . . . 6.57e − 02
SDMC & equal strata 10.8081 . . . 1.20e − 03
SDMC & adaptive strata 10.8049 . . . 9.35e − 04

Table 3: Hindsight Option, σ = 0.2, r=0.1, K=50

Method Mean & Variance

Standard Monte Carlo 11.0078 . . . 7.00e − 02
SDMC & equal strata 11.0414 . . . 2.76e − 03
SDMC & adaptive strata 11.0333 . . . 9.82e − 04
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