
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

ENHANCEMENT OF MEMORY POOLS
TOWARD A MULTI-THREADED IMPLEMENTATION

OF THE JOINT INTEGRATED MISSION MODEL (JIMM)

David W. Mutschler

Naval Air Systems Command (NAVAIR)
Naval Air Warfare Center – Aircraft Division (NAWC-AD)

Patuxent River, MD 20670, U.S.A.

ABSTRACT

The Joint Integrated Mission Model (JIMM) is a legacy
real-time discrete-event simulator. Its initial single-
threaded implementation employed a memory pool to
speed up run-time performance and easily checkpoint
simulation state. Unfortunately, when JIMM started mi-
grating to a multi-threaded implementation, this legacy
memory pool was quickly identified as a bottleneck. This
problem is addressed by dividing the memory into large
chunks managed by a global controller but where thread-
specific memory managers handled lower level memory
allocation. This paper will focus on the legacy memory
pool in JIMM and enhancements necessary for an efficient
multi-threaded implementation.

1 THE JOINT INTEGRATED MISSION MODEL
(JIMM)

The Joint Integrated Mission Model (JIMM) is a legacy
real-time discrete-event simulator employed by the
NAVAIR Air Combat Environment Test and Evaluation
Facility (ACETEF), the Joint Strike Fighter Program Of-
fice (JSFPO), and other agencies for constructive analyses,
training, and installed system test (Lattimore et al. 2005).
Specific uses of JIMM include analysis of swarms of Un-
manned Aerial Vehicles (Niland and Skolnik et al. 2005),
radar simulation (Worsham 2002), Goal-Oriented Human
Performance (Hoagland, Martin, Anesgart et al. 2001), and
Weather Effects in Combat (Kelly, Vick, Schloman, and
Zawada 2004). JIMM was initially created in 1998 as a
merger of the Simulated Warfare Environment Generator
(SWEG) (Lattimore et al. 1996) and the Suppressor models
and thus, is derived from a line of models dating back to
1968.

To generate scenarios, JIMM uses its own simulation
language known as the JIMM Conflict Language (JCL) as
input. JCL uses generic systems and basic tactical criteria

8561-4244-0501-7/06/$20.00 ©2006 IEEE
to build complex players with extensive tactics and doc-
trines. Coupled with its extensive and programmable data
capture, JIMM is highly useful in standalone constructive
analyses (Duquette, Nalepka, and Luczak 2004; Mutschler
2005; Nalepka 2000).

In addition, JIMM permits integrated operation
through a shared memory protocol known as Simulated
Warfare Environment Data Transfer (SWEDAT). With
this protocol, any number of external systems can be inter-
faced into a JIMM scenario and thus, act and react as if op-
erating in the simulated environment (Mutschler 2005).
When operating at real-time, JIMM thus provides a threat
environment highly useful for installed system test. Fur-
thermore, in addition to hardware, the interfaced system
could be a virtual cockpit, a stealth viewer, an engineering
level simulation, or another threat environment provided
by another protocol such as the Distributed Interoperability
Simulation (DIS) or the High Level Architecture.

Figure 1: JIMM and the SWEDAT Architecture

Internally, SWEG (and hence JIMM) was initially im-
plemented with a single-threaded architecture using the
C++ programming language. However, as entities became
more complex and as more entities were employed in sce-
narios, JIMM had difficulty meeting its real-time dead-
lines. Extensive work by ACETEF and others to improve

JIMM

SWEDAT

I/F Stimulator

I/F

I/F

Virtual Cockpit

High Level
Architecture

System
Under
Test

Mutschler

performance was highly successful. However, the limits
imposed by the single-threaded architecture became appar-
ent (Mutschler 2005).

Work to migrate JIMM to a multi-threaded implemen-
tation was started in the year 2000 when the High Perform-
ance Computing Modernization Program Office
(HPCMPO) selected the effort as Project 7 of the Forces
Modeling and Simulation (FMS-7) Computation Technol-
ogy Area (CTA) (Michelletti 2003). The overall approach
employed POSIX threads or “pthreads”. First to be im-
plemented were separate threads for output and then later,
execution of events in parallel (Mutschler 2005). Early in
the effort, the memory pool was identified as a significant
potential bottleneck.

2 THE LEGACY MEMORY POOL

Both the SWEG and the JIMM simulators employed a leg-
acy memory known as “general purpose memory” (Bulka
and Mayhew 2000) or “gpMemJnr” (Lattimore et al.
2005). Though later translated to the C++ programming
language, SWEG was initially written in FORTRAN and
this framed the construction of the memory pool (Latti-
more et al. 2005). The memory pool is essentially one
large 32-bit integer array. A “free” index is maintained in
the array to show what memory is allocated for use within
the simulation. Initially, memory of a needed size is ob-
tained by moving the free index further in the array.

Figure 2: The Memory Pool and the Free Index

When memory was no longer needed and if it was lo-

cated next to the free index, then the free index could be
moved back. More often however, the memory was stored
in an array of lists of the same-sized memory chunks. The
size of the chunks was always aligned on a 64-bit boundary
for the use of double-precision variables. Since integers
were 32 bits, size was always specified as an even number
where an additional integer was added to requests of an
odd size. Moreover, if the memory chunk was larger than
the maximum size in the array, a linked list of the larger
chunks was maintained. These lists (known as ‘buckets’)
of both fixed-sized and large variably sized chunks would
be referenced first before moving the free index. In this
manner, overall memory usage was reduced.

Unallocated
Memory

Allocated
Memory

Free
Index

0

85

Figure 3: JIMM Memory Buckets

The gpMemJnr memory pool has several advantages.

1. The allocation and subsequent return of memory

avoids the system overhead within procedures
provided by the operating system. Hence, it oper-
ates more quickly.

2. The index of a data structure within the array
serves as a unique identifier in cases where the
data structure location is the same throughout the
simulation.

3. The index also serves as an address. Conversion
from the index to a pointer is achieved by adding
the value of the index to the address of the first
element of the array.

4. Lastly, the state of the simulation is easily saved
(or “checkpointed”) to a single file (a.k.a. a
“checkpoint”) by a single write operation from its
beginning of the array to the free index. The use
of indices remains the same between successive
checkpoints. If the old value of the array ad-
dressed is retained, then pointers in the array can
be “fixed” or adjusted by the difference between
the old value and the new value.

The main disadvantage is that the scenario developer

must explicitly state the size of the memory pool. Should
additional memory be required, then the simulation would
terminate. Hence, the developer had to be sure that suffi-
cient memory was specified and that a contiguous array of
that size could be provided by the underlying operating
system.

2.1 Checkpointing

Checkpointing is a critical component of JIMM operation
(Lattimore et al. 2005). Though it can occur during an
execution, it more commonly occurs at the end of an exe-
cution. A checkpoint could be used in case of error recov-
ery. However, it is more often used to allow a simulation
to proceed past its initial stage. Once the checkpoint (also
known as a “big bang” in Lattimore et al. 2005) is taken,
an analyst could execute multiple runs from that point or

2

4

6

8

7

Mutschler

modify the simulation as required using the checkpointed
state of the simulation as a baseline.

More importantly, since checkpointing is also done at
the end of a JIMM execution, it also allows simulation
construction to proceed in steps where each step builds on
the results of the previous step. Normally, JIMM scenarios
are constructed and executed using nine distinct steps. The
transition from one step to the next is provided via the
checkpoint.

The nine steps of JIMM are provided in Table 1 in the
order they are normally executed.

Table 1: The Nine Steps of JIMM

Step Name Acronym Purpose and Comments
Language
Data Base

LDB Sets up the JIMM Conflict
Language (JCL) for the
following steps

Icon Data
Base

IDB Sets up the icons and col-
ors for the JIMM graphics
display. This is skipped
when no graphics are used.

Ground Data
Base

GDB Translates Digital Terrain
Elevation Data (DTED)
data for use by the EDB.
This step is normally not
checkpointed.

Environment
Data Base

EDB Takes terrain output from
the GDB step and provides
a “terrain skin”. This skin
is kept in a separate file
and this step is also not
commonly checkpointed.

Type Data
Base

TDB Develops specific player
(simulation object) types.
Includes characteristics
and the tactics the player
types employ.

Scenario
Data Base

SDB Specifies specific instances
of player types and their
laydown.

Run Data
Base

RDB Actual execution of the
simulation

Configuration
Data Base

CDB Actual execution of the
simulation with the addi-
tion of instructions for in-
tegrated operation with
SWEDAT.

Analysis
Data Base

ADB Post-processing of simula-
tion runs such as filtering
of captured data, counts of
events for analysis etc.

858
The use of checkpointing within the nine steps is dia-
grammed in Figure 4 with solid arrows indicating transi-
tions via checkpoints.

Figure 4: Checkpointing in the Nine Steps of JIMM

2.2 Temporary Memory

Initially, JIMM also extended the memory pool to allow
“temporary” memory (Lattimore et al. 2005). Temporary
memory had its own free index and was allocated from the
end of the array as opposed to the beginning. In this man-
ner it could be referenced and used in the same manner as
“permanent” memory. However, it would not be saved
whenever a checkpoint was taken.

Temporary Memory was commonly used for simulator
graphics. It was also used is cases when permanence be-
tween checkpoints was not anticipated.

Figure 5: Memory Pool with Temporary Memory

Temporary memory also had its drawbacks.

1. Programmers sometimes used temporary memory

for data that could be required to persist between
successive events. Since a checkpoint could oc-
cur between these events, the data would be lost.
This was a common source of error.

2. Since the memory operation was common, the
small amount of overhead associated with differ-

Terrain
Data only Terrain file only

Allocated
Memory

Free Index Temporary
Memory

Temp.
Free
Index

Unallocated
Memory

LDB
TDB

EDB

IDB

GDB

ADB

CDB

RDB
(may be big
bang step)

SDB

Mutschler

entiating permanent and temporary memory was
still significant and reduced simulation execution
speed.

In the initial phases of the multi-threading effort, it

was determined that the temporary memory mechanism
should be removed and “permanent” memory used instead.
In cases where temporary memory was useful, memory
recollection procedures were employed. The capabilities
that temporary memory possessed were also later provided
by use of the multi-threaded memory pool.

3 PROTECTING THE POOL WITH MUTUAL
EXCLUSION

When the effort for multi-threading in JIMM was started,
internal operation of the memory pool had to be protected.
The first approach was to employ a pthreads “mutex” vari-
able. This variable ensured mutual exclusion in that one
and only one thread could operate within a critical region
of code. Unfortunately, given the large number of memory
operations, the overhead associated with the mutex was
very high. Initial timing studies (later confirmed by the au-
thor) showed an increase of nearly 16% in execution time.
Given the desire to improve performance through parallel-
ism, this drop was deemed to be too great.

4 THE MULTI-THREADED MEMORY POOL

After it was determined that the single memory pool could
not effectively protected, the use of separate memories was
explored. Each of the memory managers would have a
separate set of buckets and would also have a separate
store of memory from which to allocate.

After some analysis, the following requirements for
these memories were determined.

1. Indices and Pointers from one memory should be

usable by other memories.
2. Overhead should not be high.
3. Memory use should be reasonably efficient.
4. Checkpointing should still occur in a single write

operation.
5. Memories should be able to combine with other

memories.
6. If a memory does not contain references to data in

other memories, then it can be deleted easily.

The mechanism developed was based on a two-tiered
approach. First, the array was divided into large fixed-size
chunks controlled by a single manager known as
‘TJNRmemory’. The control of memory within the single
TJNRmemory is protected by a mutex variable.

859
In turn, each thread has its own memory manager
(known as a ‘TJMemory’). Whenever a new TJMemory
manager is created, it obtains a chunk from TJNRmemory.
It then allocates and returns memory from this chunk as
needed. Since this access is only from a single thread,
there is no need for mutex protection. In a similar manner,
if additional memory is needed, it obtains an additional
chunk from TJNRmemory. Fortunately, most memory op-
erations do not require acquisition of additional chunks.
Thereby, the need to access a mutex variable is signifi-
cantly reduced.

In effect, the need for mutex protection is removed

from the immediate thread memory manager and moved to
the TJNRmemory. Hence, the protection is needed signifi-
cantly less often and overhead is reduced. Initial perform-
ance studies showed that the additional overhead was neg-
ligible.

The construction also satisfies the other requirements.

The use of a single array in TJNRmemory means that array
indices employed by the different memories would be in-
terpreted in the same way since the offset is from the be-
ginning of the overall array. Hence, an index of memory
created from one thread memory manager could be prop-
erly referenced by another thread. In addition, memory al-
located from one manager could be added to the buckets of
another without difficulty.

Figure 6: Multiple Thread Memories

Moreover, if the chunks were reasonably sized, then

the loss of usable memory through internal fragmentation
within the larger chunks would be small. Thus, the use of
memory is still reasonably efficient.

Rapid checkpointing is still achieved via the

TJNRmemory since it allocates the chunks in order of as-
cending index. Thereby, the checkpoint still consists of a
single file to the chunk last allocated.

Thread memories can merge by combining their buck-

ets and their chunks. The large fragment at the end of the

TJNRMemory
(with mutex)
 Thread

Memory
Manager #1

Thread
Memory
Manager #2

Free Pointer0

TJMemories

Mutschler

chunk being processed and merged is added to the buckets.
If the chunk is large, it is added to the variable list. More-
over, allocation of memory is modified to look at larger
chunks in the buckets before requested memory from the
TJNRmemory manager.

Lastly, if thread is isolated such that the memory from

its memory manager cannot be placed into another man-
ager’s buckets, then the memory can be restored at thread
termination by simply returning the chunks back to
TJNRmemory control. This mimics the capability previ-
ously provided by “temporary” memory.

4.1 Other Memory Types

In some cases such as terrain (constructed in the EDB step)
and contour graphics, it was found that memory operation
via memory pools was desirable but that there was also no
need to intermix the required memory with memory used
for the general simulation. Furthermore, the specific
amount of memory required could be determined in ad-
vance. For these cases, specific instances of memory
without a TJNRmemory manager were created. This was
implemented using a base class for a memory (TBMem-
ory) and derived classes for the thread memory mangers
(TJMemory) and these other more simple managers
(TMemory).

5 EXPERIMENTAL WORK

The performance of the initial solution of protecting the
memory pool directly and the solution using fixed-sized
chunks of memory was confirmed by the author. The tim-
ing test result is the average of one hundred (100) runs of
JIMM ACE 2.4.1 A29 using the default JIMM “Final Bat-
tle Obruty” Scenario (Lattimore et al. 2005). The size of
the chuck was set to 16K 32-bit integers. A count of the
calls to pthreads “mutex” operations was also taken.

Table 2: Timing Test of Proposed Solutions
Solution Mutex

Call Count
Average
Time (100
runs)

No Solution Implemented 0 60.7 sec.
Protecting the memory
pool directly (call for every
allocation from the pool
and return of memory to
the pool)

88,989,102 70.4 sec.

Memory chunks (with a
call every time a chunk is
allocated or returned to its
pool)

242 60.7 sec.

860
The scenario itself is used to provide users with exam-
ples of JIMM operation and thus contains a wide variety of
simulated activities. The scenario runs for an extended pe-
riod of simulated time (4.2 hours) and requires more than
two million events. The experiment was executed on an
866 MHz IBM PC running the Red Hat 9 Linux Operating
System. The code was compiled with the default GNU
compiler with optimization (-02) turned on.

The effect of the size of the chunks was also tested.

Over the range of the test, the difference in timing was not
significant when compared to the solution of protecting the
memory pool directly. Figure 7 shows the indirect rela-
tionship between the number of mutex calls given the page
chunk size.

256

512

1K

2K
4K 8K 16K 32K 64K

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

CHUNK SIZE (32-bit words)

M
U

TE
X

C
A

LL
S

Figure 7: Relation of Chunk Size to Mutex Calls

In JIMM ACE 5.0 (Lattimore et al. 2006), the size of

the memory chunk is set to 16K 32-bit bytes.

6 EXPANDING THE MEMORY POOL

One of the main shortcomings of memory pools is the re-
quirement for a single contiguous allocation of memory.
However, once the implementation of multiple thread man-
agers was tested and proven, it was noted that the fixed-
size chunks in TJNRmemory are similar to pages (or
frames) as commonly used by operating systems. There-
fore, if a mechanism akin to a page table was added to the
memory managers, then the chunks would not need to be
part of a contiguous array and additional chunks could be
obtained from the operating system should additional
memory be required (Kitchen, 2005).

In work done by Mr. Blair Kitchen, each chunk of al-
located memory was referenced in a thread memories page
table. The operations where indices and pointers were con-
verted back and forth were modified to use these page ta-
bles. Conversion from an index to a pointer was handled
by a single table lookup. However, the reverse conversion
required a search of the table. This significantly increased
overhead.

Mutschler

Checkpointing was achieved by writing each of the
pages (chunks) to the file in order of initial indices. This
would restore the contiguous nature of the memory man-
ager. Furthermore, the old page table was retained for
conversion of pointers should the checkpoint be utilized.

Figure 8: Thread Memories without a Contiguous Under-
lying Array

This work with page tables was done as a prototype.

It showed that a paging scheme could be implemented and
still maintain correct operation of the model. However, the
overhead in use of a single page table as well as the over-
head of the page lookup was deemed to be too great to im-
plement in its current form (Kitchen 2005).

Anecdotal evidence suggests that as modification of

JIMM progresses, there will be less explicit use of indices
for memory addresses. Hence, the use of tables can be ex-
plored at a later case since greater source of overhead will
be reduced. Moreover, the use of multiple page tables to
relieve contention can also be explored to further improve
efficiency.

7 CONCLUSION

This paper has described the successful implementation of
multiple thread-specific memory managers as a solution to
multi-threading given a common memory pool. The addi-
tional cost was significantly lower than the cost of the ini-
tial implementation using a single mutex variable.

The use of smaller memory chunks leads to the em-
ployment of a mechanism similar to page tables. This
eliminates the constraint given the limits of contiguous in a
similar and the need for a scenario programmer to specify
the size of memory pool. The implementation was shown
to be correct. However, further efficiencies are currently
needed for integration into JIMM operation.

TJNRMemory
(with mutex)

Thread Memory
Manager #1

Thread Memory
Manager #2

Free Pointer0

TJMemories

Page Table
861
ACKNOWLEDGMENTS

The acknowledged creator of the SWEG and JIMM family
of models is Peter Lattimore. The initial implementation
of the memory pool was conducted under his guidance and
leadership.

The work to initially create the thread memory manag-
ers was done as part of project FMS-7 from the High Per-
formance Computing Modernization Program Office. The
CTA leader was Dr. Larry Peterson. Dr. Michael Chap-
man and Ralph Gibson were instrumental in testing the re-
sults and showing correctness. William E. Brooks pro-
vided the initial implementation with mutual exclusion and
performed that initial timing study. Other team members
include Jon Anderson, Stuart Baldwin, Ronald Chesley,
Doug Pickeral and Jonathan Smith. The work for tables of
non-contiguous memory was done in 2004 by Blair
Kitchen after completion of the parallelization project.

This work has been cleared for open publication by the

Naval Air Systems Command (NAVAIR) Public Affairs
Office (PAO) as NAVAIR Public Release 06-0079, Distri-
bution Statement A – “Approved for public release; distri-
bution is unlimited”.

The multi-threaded version of JIMM is known as

JIMM ACE. All versions of JIMM are currently managed
by the JIMM Model Management Office (JMMO). Cur-
rent members of the JMMO include Natasha Bailey, Sum-
mer Brandt, David Cassidy, Michael Chapman, Ronald
Chesley, Jeffrey Fischer, Ralph Gibson, and Maritza
Miller. The JIMM Model Manager and head of the JMMO
is Gordon Long. The JMMO can be contacted via e-mail
at <jmmo@navy.mil>.

REFERENCES

Bulka, D. and D. Mayhew. 2000. Efficient C++ -- Per-
formance Programming Techniques. Addison
Wesley, Boston Mass.

Duquette, M., J. Nalepka, and R. Luczak. 2004. The en-
hanced generic air defense system. AIAA Modeling
and Simulation Technologies Conference and Exhibit
AIAA-2004-4799. Providence RI, Aug 16-19.

Hoagland, D., E. Martin, and M. Anesgart. 2001. Repre-
senting goal-oriented human performance in construc-
tive simulations: validation of a model performing
complex time-critical-target missions. Proceedings
from the Spring 2001 Simulation Interoperability
Workshop. Simulation Interoperability Standards Or-
ganization. San Diego CA. Paper Number 01S-SIW-
137.

Kelly, M., S. Vick, J. Schloman, and F. Zawada. 2004. A
weather service for introducing dynamic attenuation

mailto:jmmo@navy.mil

Mutschler

factors in the joint integrated mission model (JIMM).
Proceedings from the Simulation Interoperability
Workshop. Simulation Interoperability Standards Or-
ganization. 04F-SIW-107, Fall.

Kitchen, B. 2005. Eliminating memory constraints in
JIMM. JIMM Users Group, May 2005. JIMM Model
Management Office, Patuxent River MD 2005. Avail-
able via the JMMO at <jmmo@navy.mil>.

Lattimore, P. et al. 2005. SWEG 6.5.5 source code and
user guides. JIMM Model Management Office.
Patuxent River MD 2005. Available via the JMMO at
<jmmo@navy.mil>.

Lattimore, P. et al. 2005. JIMM 2.4.1 volume I users guide.
JIMM Model Management Office. Patuxent River
MD 2005. Available via the JMMO at
<jmmo@navy.mil>.

Lattimore, P. et al. 2005. JIMM ACE 5.0 source code.
JIMM Model Management Office. Patuxent River
MD 2005. Available via the JMMO at
<jmmo@navy.mil>.

Michelletti, M.L. 2003. “FMS-7 JIMM ACE beta test re-
view JIMM ACE 2.4.1_A529”. DoD High Perform-
ance Computing Modernization Program Office
(HPCMPO). 31 July. Available via the JMMO at
<jmmo@navy.mil>.

Mutschler, D.W. 2005. Parallelization of the joint inte-
grated mission model (JIMM) using cautious optimis-
tic control. Proceedings of the 2005 Summer Com-
puter Simulation Conference. Society for Modeling
and Simulation International, July, pg. 145-152.

Mutschler, D.W. 2005. Language-based simulation, flexi-
bility and development speed in the joint integrated
mission model. Proceedings of the 2005 Winter Simu-
lation Conference. Orlando FL, December 2005

Mutschler, D.W. 2005. Improved integrated operation in
the joint integrated mission model (JIMM) and the
simulated warfare environment data transfer
(SWEDAT) protocol”. ITEA Modeling and Simula-
tion Conference, Las Cruces NM, December.

Nalepka, J.P. 2000. JIMM: the next step for mission level
Simulation models. AIAA Modeling and Simulation
Technologies Conference. AIAA 2000-4491, AIAA,
Washington D.C.

Niland, W., B. Skolnik, S. Rasmussen, K. Finle, and K. Al-
len. 2005. Enhancing a collaborative UAV mission
simulation using JIMM and the HLA. Proceedings of
the Spring 2005 Simulation Interoperability Work-
shop, Simulation Interoperability Standards Organiza-
tion, San Diego CA, Spring.

Worsham, R. 2002. Northrop Grumman radar simulation
(AVSIM). Proceedings of the 2002 IEEE Radar Con-
ference. April. pg 176-186.
862
AUTHOR BIOGRAPHY

DAVID MUTSCHLER obtained his Ph.D. in Computer
and Information Sciences from Temple University in 1998.
He has been employed by the Naval Air Systems Command
(NAVAIR) since 1985 working for ten years at Warminster
PA and the remainder at Patuxent River, MD. He has served
as the principal investigator of the project “Parallelization of
the Joint Integrated Mission Model (JIMM) Using Cautious
Optimistic Control (COC)” and as the JIMM Model Man-
ager and head of the JIMM Model Management Office
(JMMO). He is also an Associate Professor at the Florida
Institute of Technology School University College. He is a
member of Association for Computing Machinery (ACM)
and its Special Interest Group in Simulation (ACM/SIGSIM)
and the Institute of Electrical and Electronics Engineers
Computer Society (IEEE, IEEE/CS). His research interests
include modeling and simulation, parallel discrete event
simulation, and software engineering. His e-mail address is
<david.mutschler@navy.mil>.

mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:jmmo@navy.mil
mailto:david.mutschler@navy.mil

	MAIN MENU
	PREVIOUS MENU

	Search
	Next Document
	Next Result
	Previous Result
	Previous Document

	Print

